博碩士論文 111324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.135.182.13
姓名 黃齡儀(Ling-Yi Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用 Bacillus subtilis 與 Lactobacillus buchneri 對黑豆共發酵探討生產γ-胺基丁酸及抗氧化活性之影響
(Investigating the Effects of γ-Aminobutyric Acid Production of Black Soybean Co-fermented by Bacillus subtilis and Lactobacillus buchneri)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-10以後開放)
摘要(中) 近年來,隨著生活步調加快,失眠變成是一種常見的睡眠障礙,這給人們的身心健康帶來了不良影響,因此要如何改善失眠的狀況,是很多人都很注重的,研究指出適量的攝取γ-氨基丁酸(GABA)也能夠改善睡眠的問題。GABA 是一種天然的氨基酸,對人體神經系統有抑制作用,可產生鎮靜效果,有助於改善睡眠、緩解焦慮等問題。GABA可以通過多種途徑攝取,包括保健食品和發酵食品等,含有高濃度GABA的食品,如發酵乳製品、茶葉及發酵豆類等,其中像是豆類具有許多高營養食品成分,而黑豆不僅是一種植物性蛋白質來源,其多酚類物質和抗氧化特性有助於增強發酵產物的健康效益,也因此本研究選擇黑豆作為基質進行發酵生產GABA。針對菌種選擇,本研究使用乳酸菌及枯草桿菌進行共發酵,因乳酸菌是一種常見益生菌補充劑,且具有生產GABA的能力。另外,枯草桿菌也常被用作來發酵食品,能夠表現出免疫增強、抗癌和降血壓等活性。
因此,本研究目的為利用Bacillus subtilis 與 Lactobacillus buchneri對黑豆共發酵生產GABA,探討在不同發酵條件下的影響並探討其生物活性與最適化發酵條件,其探討發酵條件包含黑豆濃度、不同菌種、氧氣條件、Peptone濃度、溫度、MSG濃度、起始pH值。本研究經實驗得到的最適發酵條件為添加6%黑豆、利用L. buchneri與B. subtilis共發酵、第一階段前12小時好氧及第二階段後156小時厭氧下、添加4% Peptone、3% Sucrose、恆溫37 ˚C、添加7 % MSG、起始pH值為6條件下進行發酵,可得到GABA濃度為31.13 g/L、單位MSG對GABA轉化率(YG/M)為0.64、總多酚含量為648.19 mg/L、清除DPPH自由基能力為55.26 %、L. buchneri菌數為9.85 log CFU/mL、B. subtilis菌數為6.46 log CFU/mL、菌種代謝物乳酸13.05 g/L。因此綜合以上結果,可以了解到乳酸菌和枯草桿菌共發酵黑豆具有開發潛力,並且可應用於功能性健康飲品產業。
摘要(英) In recent years, the fast pace of life has made insomnia common, affecting physical and mental health. Studies suggest that γ-amino butyric acid (GABA) can improve sleep and reduce anxiety. GABA is found in healthy foods and fermented products like dairy, teas, and beans. This study uses black beans for GABA production due to their protein, polyphenols, and antioxidants. Lactic acid bacteria and Bacillus subtilis were chosen for co-fermentation. Lactic acid bacteria produce GABA, while B. subtilis offers immune, anticancer, and blood pressure benefits. The study aimed to optimize GABA production from black beans using Bacillus subtilis and Lactobacillus buchneri under various conditions, including bean concentration, strain type, oxygen levels, peptone concentration, temperature, MSG concentration, and pH.
The optimal fermentation conditions obtained in this study were 6% of black beans, co-fermentation with L. buchneri and B. subtilis, 12 hours of aerobic conditions in the first stage, and 156 hours of anaerobic conditions in the second stage, 4% of Peptone, 3% of Sucrose, constant temperature of 37 ˚C, 7% of MSG, and pH 6 at the onset. The concentration of GABA was 31.13 g/L, the conversion rate of GABA per unit MSG (YG/M) was 0.64, the total polyphenol content was 648.19 mg/L, the scavenging capacity of DPPH was 55.26%, the counts of L. buchneri was 9.85 log CFU/mL, and the counts of B. subtilis was 6.46 log CFU/mL, and the metabolite lactic acid 13.05 g/L. Therefore, summarizing the above results, it can be understood that the co-fermentation of black beans with Lactobacillus and Bacillus subtilis has the potential to be developed and applied in the functional health beverage industry.
關鍵字(中) ★ 黑豆
★ γ-胺基丁酸
★ 乳酸菌
★ 枯草桿菌
★ 共發酵
關鍵字(英) ★ Black soybean
★ γ-Aminobutyric acid
★ Lactic acid bacteria
★ Bacillus subtilis
★ Co-fermentation
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧與探討 3
2.1 γ-胺基丁酸 3
2.1.1 γ-胺基丁酸的基本介紹 3
2.1.2 γ-胺基丁酸的合成 3
2.1.3 γ-胺基丁酸的生理功效 5
2.2 黑豆 8
2.2.1 黑豆的基本介紹 8
2.2.2 黑豆的成分 9
2.2.3 黑豆發酵 12
2.3 乳酸菌 15
2.3.1 乳酸菌的基本介紹 15
2.3.2 Lactobacillus buchneri的介紹 17
2.4 枯草桿菌 18
2.5 影響發酵工程之物化因數 19
2.5.1 培養基成分之影響 19
2.5.2 MSG濃度之影響 22
2.5.3 氧氣之影響 22
2.5.4 pH值之影響 24
2.5.5 溫度之影響 25
2.6 共發酵工程 26
第三章 研究方法與流程 28
3.1 研究流程 28
3.2 實驗材料 29
3.2.1 實驗菌株 29
3.2.2 實驗原料 30
3.2.3 實驗藥品 31
3.2.4 實驗儀器 33
3.3 實驗方法 35
3.3.1 菌株之短期固態盤保存培養 35
3.3.2 菌種之液態種瓶培養 36
3.3.3 液態發酵 38
3.4 分析方法 43
3.4.1 菌種之生長曲線 43
3.4.2 pH值分析 43
3.4.3 總菌落數分析 44
3.4.4 總多酚含量分析 45
3.4.5 清除DPPH自由基能力分析 46
3.4.6 麩胺酸鈉及-胺基丁酸濃度分析 47
3.4.7 乳酸濃度分析 50
第四章 結果與討論 52
4.1 生長曲線 52
4.1.1 L. buchneri之生長曲線 52
4.1.2 B. subtilis之生長曲線 53
4.2 單一菌種L. buchneri發酵 55
4.2.1 黑豆濃度對L. buchneri生長之影響 55
4.2.2 黑豆濃度對發酵黑豆生產GABA之影響 56
4.2.3 黑豆濃度對發酵黑豆抗氧化物質及活性之影響 59
4.2.4 黑豆濃度對發酵黑豆之結論 61
4.3 單一菌種發酵與雙菌種共發酵比較 63
4.4 氧氣對L. buchneri及B. subtilis共發酵之影響 65
4.4.1 氧氣對L. buchneri及B. subtilis生長之影響 65
4.4.2 氧氣對L. buchneri及B. subtilis共發酵黑豆生產GABA之影響 67
4.4.3 氧氣對L. buchneri及B. subtilis共發酵黑豆抗氧化物質及活性之影響 70
4.4.4 氧氣對L. buchneri及B. subtilis共發酵黑豆之結論 72
4.5 Peptone濃度對L. buchneri及B. subtilis共發酵之影響 74
4.5.1 Peptone濃度對L. buchneri及B. subtilis生長之影響 74
4.5.2 Peptone濃度對L. buchneri及B. subtilis共發酵黑豆生產GABA之影響 75
4.5.3 Peptone濃度對L. buchneri及B. subtilis共發酵黑豆抗氧化物質及活性之影響 78
4.5.4 Peptone濃度對L. buchneri及B. subtilis共發酵黑豆共發酵黑豆之結論 80
4.6 溫度對L. buchneri及B. subtilis共發酵之影響 82
4.6.1 溫度對L. buchneri及B. subtilis生長之影響 82
4.6.2 溫度對L. buchneri及B. subtilis共發酵黑豆生產GABA之影響 83
4.6.3 溫度對L. buchneri及B. subtilis共發酵黑豆抗氧化物質及活性之影響 85
4.6.4 溫度對L. buchneri及B. subtilis共發酵黑豆共發酵黑豆之結論 87
4.7 MSG濃度對L. buchneri及B. subtilis共發酵之影響 88
4.7.1 MSG濃度對L. buchneri及B. subtilis共發酵黑豆生產GABA之影響 88
4.8 起始pH值對L. buchneri及B. subtilis共發酵之影響 90
4.8.1 起始pH值對L. buchneri及B. subtilis生長之影響 90
4.8.2 起始pH值對L. buchneri及B. subtilis共發酵黑豆生產GABA之影響 91
4.8.3 起始pH值對L. buchneri及B. subtilis共發酵黑豆抗氧化物質及活性之影響 94
4.8.4 起始pH值對L. buchneri及B. subtilis共發酵黑豆共發酵黑豆之結論 96
4.9 菌種代謝產物分析 97
4.10 最適發酵條件之結論 98
第五章 結論 99
第六章 未來研究方向 101
參考文獻 102
參考文獻 [1] Bhaskar, S., Hemavathy, D., & Prasad, S. (2016). Prevalence of chronic
insomnia in adult patients and its correlation with medical comorbidities.
Journal of family medicine and primary care, 5(4), 780-784.
[2] Taylor, D. J., Mallory, L. J., Lichstein, K. L., Durrence, H. H., Riedel, B. W., &
Bush, A. J. (2007). Comorbidity of chronic insomnia with medical problems.
Sleep, 30(2), 213-218.
[3] Fernandez-Mendoza, J., & Vgontzas, A. N. (2013). Insomnia and its impact on
physical and mental health. Current psychiatry reports, 15, 1-8.
[4] Plante, D. T., Jensen, J. E., & Winkelman, J. W. (2012). The role of GABA in
primary insomnia. Sleep, 35(6), 741-742.
[5] Dhakal, R., Bajpai, V. K., & Baek, K.-H. (2012). Production of GABA (γaminobutyric acid) by microorganisms: a review. Brazilian Journal of
Microbiology, 43, 1230-1241.
[6] Cho, Y.-R., Chang, J.-Y., & Chang, H.-C. (2007). Production of γ-Aminobutyric
$ Acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its
neuroprotective effect on neuronal cells. Journal of Microbiology and
Biotechnology, 17(1), 104-109.
[7] Kim, J. E., Kim, J. S., Song, Y. C., Lee, J., & Lee, S. P. (2014). Novel
bioconversion of sodium glutamate to γ-poly-glutamic acid and γ-amino butyric
acid in a mixed fermentation using Bacillus subtilis HA and Lactobacillus
plantarum K154. Food Science and Biotechnology, 23, 1551-1559.
[8] Boonstra, E., De Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., &
Nieuwenhuis, S. (2015). Neurotransmitters as food supplements: the effects of
GABA on brain and behavior. Frontiers in psychology, 6, 167121.
[9] Li, L., Dou, N., Zhang, H., & Wu, C. (2021). The versatile GABA in plants.
Plant signaling & behavior, 16(3), 1862565.
[10] Tillakaratne, N. J., Medina-Kauwe, L., & Gibson, K. M. (1995). Gammaaminobutyric acid (GABA) metabolism in mammalian neural and nonneural
tissues. Comparative Biochemistry and Physiology Part A: Physiology, 112(2),
247-263.
[11] Rashmi, D., Zanan, R., John, S., Khandagale, K., & Nadaf, A. (2018). γaminobutyric acid (GABA): Biosynthesis, role, commercial production, and
applications. Studies in natural products chemistry, 57, 413-452.
[12] Steward, F. (1949). γ-Aminobutyric acid: a constituent of potato tubers? Science,
110, 439-440.
[13] Roberts, E., & Frankel, S. (1950). γ-Aminobutyric acid in brain: its formation
from glutamic acid. Journal of biological chemistry, 187, 55-63.
[14] Zhu, N., Wang, T., Ge, L., Li, Y., Zhang, X., & Bao, H. (2017). γ-Amino butyric
acid (GABA) synthesis enabled by copper-catalyzed carboamination of alkenes.
Organic letters, 19(18), 4718-4721.
[15] Hudec, J., Kobida, Ľ., Čanigová, M., Lacko‐Bartošová, M., Ložek, O., Chlebo,
P., Bystrická, J. (2015). Production of γ‐aminobutyric acid by microorganisms
from different food sources. Journal of the Science of Food and Agriculture,
95(6), 1190-1198.
[16] Narayan, V. S., & Nair, P. (1990). Metabolism, enzymology and possible roles
of 4-aminobutyrate in higher plants. Phytochemistry, 29(2), 367-375.
[17] Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a
bioactive compound in foods: a review. Journal of functional foods, 10, 407-
420.
[18] Wang, J.-J., Lee, C.-L., & Pan, T.-M. (2003). Improvement of monacolin K, γaminobutyric acid and citrinin production ratio as a function of environmental
conditions of Monascus purpureus NTU 601. Journal of Industrial
Microbiology and Biotechnology, 30(11), 669-676.
[19] Lu, X., Chen, Z., Gu, Z., & Han, Y. (2008). Isolation of γ-aminobutyric acidproducing bacteria and optimization of fermentative medium. Biochemical
Engineering Journal, 41(1), 48-52.
[20] Huang, J., Lehe, M., Sheng, Q., Shanjing, Y., & Dongqiang, L. (2007).
Purification and characterization of glutamate decarboxylase of Lactobacillus
brevis CGMCC 1306 isolated from fresh milk. Chinese Journal of Chemical
Engineering, 15(2), 157-161.
[21] Sun, T., Zhao, S., Wang, H., Cai, C., Chen, Y., & Zhang, H. (2009). ACEinhibitory activity and gamma-aminobutyric acid content of fermented skim
milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China.
European Food Research and Technology, 228, 607-612.
[22] Barla, F., Koyanagi, T., Tokuda, N., Matsui, H., Katayama, T., Kumagai, H.,
Enomoto, T. (2016). The γ-aminobutyric acid-producing ability under low pH
conditions of lactic acid bacteria isolated from traditional fermented foods of
Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory
peptides. Biotechnology Reports, 10, 105-110.
[23] Wang, Q., Liu, X., Fu, J., Wang, S., Chen, Y., Chang, K., & Li, H. (2018).
Substrate sustained release-based high efficacy biosynthesis of GABA by
Lactobacillus brevis NCL912. Microbial Cell Factories, 17, 1-8.
[24] Tajabadi, N., Ebrahimpour, A., Baradaran, A., Rahim, R. A., Mahyudin, N. A.,
Manap, M. Y. A., . . . Saari, N. (2015). Optimization of γ-aminobutyric acid
production by Lactobacillus plantarum Taj-Apis362from honeybees. Molecules,
20(4), 6654-6669.
[25] Nomura, M., Kimoto, H., Someya, Y., Furukawa, S., & Suzuki, I. (1998).
Production of γ-aminobutyric acid by cheese starters during cheese ripening.
Journal of Dairy Science, 81(6), 1486-1491.
[26] Li, H., & Cao, Y. (2010). Lactic acid bacterial cell factories for gammaaminobutyric acid. Amino acids, 39, 1107-1116.
[27] Ramos-Ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). GABA, a nonprotein amino acid ubiquitous in food matrices. Cogent Food & Agriculture,
4(1), 1534323.
[28] Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H.
(2002). GABA and GABA receptors in the central nervous system and other
organs. International review of cytology, 213, 1-47.
[29] Ghose, S., Winter, M. K., McCarson, K. E., Tamminga, C. A., & Enna, S. J.
(2011). The GABAB receptor as a target for antidepressant drug action. British
journal of pharmacology, 162(1), 1-17.
[30] Plante, D. T., Jensen, J. E., Schoerning, L., & Winkelman, J. W. (2012). Reduced
γ-aminobutyric acid in occipital and anterior cingulate cortices in primary
insomnia: a link to major depressive disorder? Neuropsychopharmacology,
37(6), 1548-1557.
[31] Ngo, D.-H., & Vo, T. S. (2019). An updated review on pharmaceutical properties
of gamma-aminobutyric acid. Molecules, 24(15), 2678.
[32] Choi, W.-c., Reid, S. N., Ryu, J.-k., Kim, Y., Jo, Y.-H., Jeon, B. H., Kim, Y.
(2016). Effects of γ-aminobutyric acid-enriched fermented sea tangle
(Laminaria japonica) on brain derived neurotrophic factor-related muscle
growth and lipolysis in middle aged women. Algae, 31(2), 175-187.
[33] Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H., & Yamori,
Y. (2004). Effect of a γ-aminobutyric acid-enriched dairy product on the blood
pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats.
British Journal of Nutrition, 92(3), 411-417.
[34] Kleinrok, Z., Matuszek, M., Jesipowicz, J., Matuszek, B., Opolski, A., &
Radzikowski, C. (1998). GABA content and GAD activity in colon tumors
taken from patients with colon cancer or from xenografted human colon cancer
cells growing as sc tumors in athymic nu-nu mice. Journal of physiology and
pharmacology, 49(2).
[35] An, J., Seok, H., & Ha, E.-M. (2021). GABA-producing Lactobacillus
plantarum inhibits metastatic properties and induces apoptosis of 5-FU-resistant
colorectal cancer cells via GABAB receptor signaling. Journal of Microbiology,
59(2), 202-216.
[36] Adeghate, E., & Ponery, A. (2002). GABA in the endocrine pancreas: cellular
localization and function in normal and diabetic rats. Tissue and Cell, 34(1), 1-
6.
[37] Al-Kuraishy, H. M., Hussian, N. R., Al-Naimi, M. S., Al-Gareeb, A. I., AlMamorri, F., & Al-Buhadily, A. K. (2021). The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal.
International Journal of Preventive Medicine, 12.
[38] Soltani, N., Qiu, H., Aleksic, M., Glinka, Y., Zhao, F., Liu, R., Ng, T. (2011).
GABA exerts protective and regenerative effects on islet beta cells and reverses
diabetes. Proceedings of the National Academy of Sciences, 108(28), 11692-
11697.
[39] Lee, B.-J., Kim, J.-S., Kang, Y. M., Lim, J.-H., Kim, Y.-M., Lee, M.-S., Je, J.-Y.
(2010). Antioxidant activity and γ-aminobutyric acid (GABA) content in sea
tangle fermented by Lactobacillus brevis BJ20 isolated from traditional
fermented foods. Food Chemistry, 122(1), 271-276.
[40] Aryannejad, A., Tabary, M., Noroozi, N., Mashinchi, B., Iranshahi, S., Tavangar,
S. M., . . . Dehpour, A. R. (2022). Anti-inflammatory Effects of Ivermectin in
the Treatment of Acetic Acid-Induced Colitis in Rats: Involvement of GABA B
Receptors. Digestive diseases and sciences, 1-11.
[41] Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi,
H. (2006). Relaxation and immunity enhancement effects of γ‐aminobutyric
acid (GABA) administration in humans. Biofactors, 26(3), 201-208.
[42] Jessen, K. R., Mirsky, R., Dennison, M. E., & Burnstock, G. (1979). GABA may
be a neurotransmitter in the vertebrate peripheral nervous system. Nature,
281(5726), 71-74.
[43] Chen, S., Tan, B., Xia, Y., Liao, S., Wang, M., Yin, J., Bin, P. (2019). Effects of
dietary gamma-aminobutyric acid supplementation on the intestinal functions
in weaning piglets. Food & function, 10(1), 366-378.
[44] Joy, P., Thomas, J., Mathew, S., & Skaria, P. (1998). Medicinal plants, kerala
agricultural university. Aromatic and Medicinal Plants Research Station, 4-6.
[45] Kim, J.-M., Kim, J.-S., Yoo, H., Choung, M.-G., & Sung, M.-K. (2008). Effects
of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on
colonic inflammation and cell proliferation in vitro and in vivo. Journal of
Agricultural and Food Chemistry, 56(18), 8427-8433.
[46] Hildebrand, D., Phillips, G., & Collins, G. (1986). Soybean [Glycine max (L.)
Merr.] Crops I (pp. 283-308): Springer.
[47] Nwokolo, E. (1996). Soybean (Glycine max (L.) Merr.) Food and Feed from
Legumes and Oilseeds (pp. 90-102): Springer.
[48] Meenu, M., Chen, P., Mradula, M., Chang, S. K., & Xu, B. (2023). New insights
into chemical compositions and health‐promoting effects of black beans
(Phaseolus vulgaris L.). Food Frontiers, 4(3), 1019-1038.
[49] Xu, Y., Xu, P., & Wang, X. (2009). Studies on extraction technology and
stability of black soybean polysaccharides. Food Res. Dev, 30, 49-52.
[50] Choung, M.-G., Baek, I.-Y., Kang, S.-T., Han, W.-Y., Shin, D.-C., Moon, H.-P.,
& Kang, K.-H. (2001). Isolation and determination of anthocyanins in seed
coats of black soybean (Glycine max (L.) Merr.). Journal of Agricultural and
Food Chemistry, 49(12), 5848-5851.
[51] Varnosfaderani, S. M., Razavi, S. H., & Fadda, A. M. (2019). Germination and
fermentation of soybeans: Two healthy steps to release angiotensin converting
enzyme inhibitory activity compounds. Applied Food Biotechnology, 6(4), 201-
215.
[52] Fetriyuna, F. (2015). The potential of darmo black soybean varieties as an
alternative of a promising food for future. International Journal on Advanced
Science, Engineering and Information Technology, 5(1), 44-46.
[53] Mateos-Aparicio, I., Cuenca, A. R., Villanueva-Suárez, M., & Zapata-Revilla,
M. (2008). Soybean, a promising health source. Nutricion hospitalaria, 23(4),
305-312.
[54] Council, N. R., Earth, D. o., Studies, L., & Swine, C. o. N. R. o. (2012). Nutrient
requirements of swine.
[55] Hoover, R., Hughes, T., Chung, H., & Liu, Q. (2010). Composition, molecular
structure, properties, and modification of pulse starches: A review. Food
research international, 43(2), 399-413.
[56] Landi, N., Pacifico, S., Piccolella, S., Di Giuseppe, A. M., Mezzacapo, M. C.,
Ragucci, S., . . . Di Maro, A. (2015). Valle Agricola lentil, an unknown lentil
(Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and
prebiotic source. Food & function, 6(9), 3155-3164.
[57] Chang, W.-H., Liu, J.-J., Chen, C.-H., Huang, T.-S., & Lu, F.-J. (2002). Growth
inhibition and induction of apoptosis in MCF-7 breast cancer cells by fermented
soy milk. Nutrition and cancer, 43(2), 214-226.
[58] Wang, H.-J., & Murphy, P. A. (1994). Isoflavone composition of American and
Japanese soybeans in Iowa: effects of variety, crop year, and location. Journal
of Agricultural and Food Chemistry, 42(8), 1674-1677.
[59] Bingham, S., Atkinson, C., Liggins, J., Bluck, L., & Coward, A. (1998). Phytooestrogens: where are we now? British Journal of Nutrition, 79(5), 393-406.
[60] Tepavčević, V., Atanacković, M., Miladinović, J., Malenčić, D., Popović, J., &
Cvejić, J. (2010). Isoflavone composition, total polyphenolic content, and
antioxidant activity in soybeans of different origin. Journal of medicinal food,
13(3), 657-664.
[61] Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019).
Isoflavones. Molecules, 24(6), 1076.
[62] Ganesan, K., & Xu, B. (2017). A critical review on polyphenols and health
benefits of black soybeans. Nutrients, 9(5), 455.
[63] Katsuzaki, H., Hibasami, H., Ohwaki, S., Ishikawa, K., Imai, K., Kimura, Y., &
Komiya, T. (2003). Cyanidin 3-O-β-D-glucoside isolated from skin of black
Glycine max and other anthocyanins isolated from skin of red grape induce
apoptosis in human lymphoid leukemia Molt 4B cells. Oncology reports, 10(2),
297-300.
[64] Shen, Y., Zhang, N., Tian, J., Xin, G., Liu, L., Sun, X., & Li, B. (2022).
Advanced approaches for improving bioavailability and controlled release of
anthocyanins. Journal of Controlled Release, 341, 285-299.
[65] Rekha, C., & Vijayalakshmi, G. (2010). Bioconversion of isoflavone glycosides
to aglycones, mineral bioavailability and vitamin B complex in fermented
soymilk by probiotic bacteria and yeast. Journal of applied microbiology,
109(4), 1198-1208.
[66] Hwang, C. E., Kim, S. C., Lee, H. Y., Suh, H. K., Cho, K. M., & Lee, J. H.
(2021). Enhancement of isoflavone aglycone, amino acid, and CLA contents in
fermented soybean yogurts using different strains: Screening of antioxidant and
digestive enzyme inhibition properties. Food Chemistry, 340, 128199.
[67] Cheng, K.-C., Lin, J.-T., & Liu, W.-H. (2011). Extracts from fermented black
soybean milk exhibit antioxidant and cytotoxic activities. Food Technology and
Biotechnology, 49(1), 111-117.
[68] Shrestha, A. K., Dahal, N. R., & Ndungutse, V. (2010). Bacillus fermentation of
soybean: A review. Journal of Food Science and Technology Nepal, 6, 1-9.
[69] Khosravi, A., & Razavi, S. H. (2021). Therapeutic effects of polyphenols in
fermented soybean and black soybean products. Journal of functional foods, 81,
104467.
[70] Kim, Y., Cho, J.-Y., Kuk, J.-H., Moon, J.-H., Cho, J.-I., Kim, Y.-C., & Park, K.-
H. (2004). Identification and antimicrobial activity of phenylacetic acid
produced by Bacillus licheniformis isolated from fermented soybean,
Chungkook-Jang. Current microbiology, 48, 312-317.
[71] Hosoi, T., & Kiuchi, K. (2003). Natto–a food made by fermenting cooked
soybeans with Bacillus subtilis (natto). Handbook of fermented functional foods,
20034675, 227-250.
[72] Kim, J. Y., Lee, S. Y., Park, N. Y., & Choi, H. S. (2012). Quality characteristics
of black soybean paste (Daemaekjang) prepared with Bacillus subtilis HJ18-4.
Korean Journal of Food Science and Technology, 44(6), 743-749.
[73] Deng, J., Wu, H. C., Zhao, X. X., & Shi, J. J. (2013). Isolation and identification
of Bacillus from spontaneous fermented sufu. Advanced Materials Research,
634, 1179-1183.
[74] Lee, Y.-C., Kung, H.-F., Huang, Y.-L., Wu, C.-H., Huang, Y.-R., & Tsai, Y.-H.
(2016). Reduction of biogenic amines during miso fermentation by
Lactobacillus plantarum as a starter culture. Journal of Food Protection, 79(9),
1556-1561.
[75] Li, S., Du, X., Feng, L., Mu, G., & Tuo, Y. (2021). The microbial community,
biogenic amines content of soybean paste, and the degradation of biogenic
amines by Lactobacillus plantarum HM24. Food Science & Nutrition, 9(12),
6458-6470.
[76] Kim, Y., Yoon, S., Lee, S. B., Han, H. W., Oh, H., Lee, W. J., & Lee, S.-M.
(2014). Fermentation of soy milk via Lactobacillus plantarum improves
dysregulated lipid metabolism in rats on a high cholesterol diet. PloS one, 9(2),
e88231.
[77] Apostolidis, E., Kwon, Y.-I., Ghaedian, R., & Shetty, K. (2007). Fermentation
of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus
enhances functionality for potential dietary management of hyperglycemia and
hypertension. Food biotechnology, 21(3), 217-236.
[78] Bao, W., Huang, X., Liu, J., Han, B., & Chen, J. (2020). Influence of
Lactobacillus brevis on metabolite changes in bacteria‐fermented sufu. Journal
of Food Science, 85(1), 165-172.
[79] Lee, R., Cho, H., Shin, M., Yang, J., Kim, E., Kim, H., Cho, Y. S. (2016).
Manufacturing and quality characteristics of the Doenjang made with
Aspergillus oryzae strains isolated in Korea. Microbiology and Biotechnology
Letters, 44(1), 40-47.
[80] Handoyo, T., & Morita, N. (2006). Structural and functional properties of
fermented soybean (tempeh) by using Rhizopus oligosporus. International
Journal of food properties, 9(2), 347-355.
[81] Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: a literature
survey. Critical reviews in microbiology, 28(4), 281-370.
[82] Rotar, M.-A., Semeniuc, C., Apostu, S., Suharoschi, R., Mureşan, C., Modoran,
C., . . . Culea, M. (2007). Researches concerning microbiological evolution of
lactic acid bacteria to yoghurt storage during shelf-life. Journal of
Agroalimentary Processes and Technologies, 13(1), 135-138.
[83] van Geel-Schutten, G., Flesch, F., Ten Brink, B., Smith, M., & Dijkhuizen, L.
(1998). Screening and characterization of Lactobacillus strains producing large
amounts of exopolysaccharides. Applied Microbiology and Biotechnology, 50,
697-703.
[84] Zúñiga, M., Pardo, I., & Ferrer, S. (1993). An improved medium for
distinguishing between homofermentative and heterofermentative lactic acid
bacteria. International journal of food microbiology, 18(1), 37-42.
[85] Linares, D. M., Gómez, C., Ross, R., & Stanton, C. (2017). Lactic acid bacteria
and bifidobacteria with potential to design natural biofunctional healthpromoting dairy foods. Frontiers in microbiology, 8, 248410.
[86] Mathur, H., Beresford, T. P., & Cotter, P. D. (2020). Health benefits of lactic
acid bacteria (LAB) fermentates. Nutrients, 12(6), 1679.
[87] Mora-Villalobos, J. A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C.,
Usaga, J., Redondo-Solano, M., . . . López-Gómez, J. P. (2020). Multi-product
lactic acid bacteria fermentations: a review. Fermentation, 6(1), 23.
[88] Walter, J. (2008). Ecological role of lactobacilli in the gastrointestinal tract:
implications for fundamental and biomedical research. Applied and
environmental microbiology, 74(16), 4985-4996.
[89] Koll, P., Mändar, R., Smidt, I., Hütt, P., Truusalu, K., Mikelsaar, R.-H.,
Hammarström, L. (2010). Screening and evaluation of human intestinal
lactobacilli for the development of novel gastrointestinal probiotics. Current
microbiology, 61, 560-566.
[90] Fröhlich-Wyder, M.-T., Guggisberg, D., Badertscher, R., Wechsler, D., Wittwer,
A., & Irmler, S. (2013). The effect of Lactobacillus buchneri and Lactobacillus parabuchneri on the eye formation of semi-hard cheese. International Dairy
Journal, 33(2), 120-128.
[91] Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Aquilanti, L., & Clementi,
F. (2015). The occurrence of beer spoilage lactic acid bacteria in craft beer
production. Journal of Food Science, 80(12), M2845-M2852.
[92] Heinl, S., Spath, K., Egger, E., & Grabherr, R. (2011). Sequence analysis and
characterization of two cryptic plasmids derived from Lactobacillus buchneri
CD034. Plasmid, 66(3), 159-168.
[93] Danner, H., Holzer, M., Mayrhuber, E., & Braun, R. (2003). Acetic acid
increases stability of silage under aerobic conditions. Applied and
environmental microbiology, 69(1), 562-567.
[94] Cohn, F. (1875). Untersuchungen Ü ber Bacterien: I: JU Kern.
[95] Nishito, Y., Osana, Y., Hachiya, T., Popendorf, K., Toyoda, A., Fujiyama, A.,
Sakakibara, Y. (2010). Whole genome assembly of a natto production strain
Bacillus subtilis natto from very short read data. BMC genomics, 11, 1-12.
[96] Wang, C., Du, M., Zheng, D., Kong, F., Zu, G., & Feng, Y. (2009). Purification
and characterization of nattokinase from Bacillus subtilis natto B-12. Journal of
Agricultural and Food Chemistry, 57(20), 9722-9729.
[97] Blanc, P., Loret, M., Santerre, A., Pareilleux, A., Prome, D., Promé, J.-C., Goma,
G. (1994). Pigments of monascus. Journal of Food Science, 59(4), 862-865.
[98] Park, S. J., Kim, D. H., Kang, H. J., Shin, M., Yang, S.-Y., Yang, J., & Jung, Y.
H. (2021). Enhanced production of γ-aminobutyric acid (GABA) using
Lactobacillus plantarum EJ2014 with simple medium composition. Lwt, 137,
110443.
[99] Hussin, F. S., Chay, S. Y., Hussin, A. S. M., Wan Ibadullah, W. Z., Muhialdin,
B. J., Abd Ghani, M. S., & Saari, N. (2021). GABA enhancement by simple
carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus
plantarum Taj-Apis362 and metabolomics profiling. Scientific reports, 11(1),
9417.
[100] Anggraini, L., Marlida, Y., Wizna, W., Jamsari, J., & Mirzah, M. (2019).
Optimization of nutrient medium for Pediococcus acidilactici DS15 to produce
GABA. Journal of World′s Poultry Research, 9(3), 139-146.
[101] Iorizzo, M., Paventi, G., & Di Martino, C. (2023). Biosynthesis of GammaAminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented
Food Production. Current Issues in Molecular Biology, 46(1), 200-220.
[102] Li, H., Qiu, T., Huang, G., & Cao, Y. (2010). Production of gammaaminobutyric acid by Lactobacillus brevis NCL912 using fed-batch
fermentation. Microbial Cell Factories, 9, 1-7.
[103] Krieg, N., & Hoffman, P. (1986). Microaerophily and oxygen toxicity. Annual
Reviews in Microbiology, 40(1), 107-130.
[104] Sassi, S., Ilham, Z., Jamaludin, N. S., Halim-Lim, S. A., Shin Yee, C., Weng
Loen, A. W., Wan-Mohtar, W. A. A. Q. I. (2022). Critical optimized conditions
for gamma-aminobutyric acid (GABA)-Producing tetragenococcus halophilus
strain KBC from a commercial soy sauce moromi in batch fermentation.
Fermentation, 8(8), 409.
[105] Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., & Kimura, T. (2005).
Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated
from traditional fermented foods. Food microbiology, 22(6), 497-504.
[106] Yang, S.-Y., Lü, F.-X., Lu, Z.-X., Bie, X.-M., Jiao, Y., Sun, L.-J., & Yu, B.
(2008). Production of γ-aminobutyric acid by Streptococcus salivarius subsp.
thermophilus Y2 under submerged fermentation. Amino acids, 34, 473-478.
[107] Harcombe, W. (2010). Novel cooperation experimentally evolved between
species. Evolution, 64(7), 2166-2172.
[108] Maki, M., Leung, K. T., & Qin, W. (2009). The prospects of cellulase-producing
bacteria for the bioconversion of lignocellulosic biomass. International journal
of biological sciences, 5(5), 500.
[109] Watanabe, Y., Hayakawa, K., & Ueno, H. (2011). Effects of co-culturing LAB
on GABA production. J. Biol. Macromol, 11(1), 3-13.
[110] 彭文正. (2020). 探討以 Lactobacillus buchneri 發酵巴西蘑菇並產生 γ-氨
基丁酸之研究 . ( 碩 士 ), 國立中央大學 , 桃園縣 . Retrieved from
https://hdl.handle.net/11296/jkx2fu 臺灣博碩士論文知識加值系統 database.
[111] Chen, K., Gao, C., Han, X., Li, D., Wang, H., & Lu, F. (2021). Co‐fermentation
of lentils using lactic acid bacteria and Bacillus subtilis natto increases
functional and antioxidant components. Journal of Food Science, 86(2), 475-
483.
[112] Folin, O., & Denis, W. (1915). A colorimetric method for the determination of
phenols (and phenol derivatives) in urine. Journal of biological chemistry, 22(2),
305-308.
[113] Eddy, D. R., Nursyamsiah, D., Permana, M. D., Solihudin, Noviyanti, A. R., &
Rahayu, I. (2022). Green production of zero-valent iron (ZVI) using tea-leaf
extracts for fenton degradation of mixed rhodamine B and methyl orange dyes.
Materials, 15(1), 332.
[114] Ford, L., Theodoridou, K., Sheldrake, G. N., & Walsh, P. J. (2019). A critical
review of analytical methods used for the chemical characterisation and
quantification of phlorotannin compounds in brown seaweeds. Phytochemical
Analysis, 30(6), 587-599.
[115] Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl
(DPPH) for estimating antioxidant activity. Songklanakarin J. sci. technol,
26(2), 211-219.
[116] Pyrzynska, K., & Pękal, A. (2013). Application of free radical
diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food
samples. Analytical Methods, 5(17), 4288-4295.
[117] Feehily, C., & Karatzas, K. (2013). Role of glutamate metabolism in bacterial
responses towards acid and other stresses. Journal of applied microbiology,
114(1), 11-24.
[118] Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative
properties of xanthan on the autoxidation of soybean oil in cyclodextrin
emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.
[119] Lim, J.-S., Garcia, C. V., & Lee, S.-P. (2016). Optimized production of GABA
and γ-PGA in a turmeric and roasted soybean mixture co-fermented by Bacillus
subtilis and Lactobacillus plantarum. Food Science and Technology Research,
22(2), 209-217.
[120] Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., & Juneja, L. R.
(2010). ORAC and DPPH assay comparison to assess antioxidant capacity of
tea infusions: Relationship between total polyphenol and individual catechin
content. International journal of food sciences and nutrition, 61(2), 109-124.
[121] Gauvry, E., Mathot, A.-G., Couvert, O., Leguérinel, I., & Coroller, L. (2021).
Effects of temperature, pH and water activity on the growth and the sporulation
abilities of Bacillus subtilis BSB1. International journal of food microbiology,
337, 108915.
[122] Zhang, L., Yue, Y., Wang, X., Dai, W., Piao, C., & Yu, H. (2022). Optimization
of fermentation for γ-aminobutyric acid (GABA) production by yeast
Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess and
biosystems engineering, 45(7), 1111-1123.
[123] Hwang, C. E., Haque, M. A., Lee, J. H., Joo, O. S., Kim, S. C., Lee, H. Y., . . .
Cho, K. M. (2018). Comparison of γ-aminobutyric acid and isoflavone aglycone
contents, to radical scavenging activities of high-protein soybean sprouting by
lactic acid fermentation with Lactobacillus brevis. Korean Journal of Food
Preservation, 25(1), 7-18.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2024-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明