參考文獻 |
[1] Kivelson, M., Khurana, K., Russell, C. et al. (1996). Discovery of Ganymede′s magnetic field by the Galileo spacecraft. Nature, 384, 537–541. https://doi.org/10.1038/384537a0
[2] Grodent, D., Bonfond, B., Radioti, A., Gérard, J. C., Jia, X., Nichols, J. D., & Clarke, J. T. (2009). Auroral footprint of Ganymede. Journal of Geophysical Research: Space Physics, 114(7). https://doi.org/10.1029/2009JA014289
[3] Jia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. (2008). Three-dimensional MHD simulations of Ganymede’s magnetosphere. Journal of Geophysical Research, 113, A06212. https://doi.org/10.1029/2007JA012748
[4] Bagenal, F. (2013). Chapter 6: Planetary Magnetospheres. Planets, Stars and Stellar Systems, 3: Solar and Stellar Planetary Systems. https://doi.org/10.1007/978-94-007-5606-9_6
[5] Belcher, J. W. (1987). The Jupiter-Io Connection: An Alfvén Engine in Space. New Series, 9(4824).
[6] Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Ajello, J. M., Atreya, S. K., Donahue, T. M., & Mcelroy, M. B. (1979). Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter. Science, 204, 979-982. https://doi.org/10.1126/science.204.4396.979
[7] Schubert, G., Sonett, C. P., Schwartz, K., & Lee, H. J. (1973). Induced magnetosphere of the Moon: 1. Theory. Journal of Geophysical Research, 78(13), 2094–2110. https://doi.org/10.1029/JA078i013p02094
[8] Schneider, N. M., & Bagenal, F. (2007). Io′s neutral clouds, plasma torus, and magnetospheric interaction. In R. C. Lopes, & J. R. Spencer (Eds.), Io After Galileo, (pp. 265–286). New York: Springer. https://doi.org/10.1007/978-3-540-48841-5_11
[9] Lundin, R., et al. (2004). Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 305, 1933 - 1936. https://doi.org/10.1126/science.1101860
[10] Saur, J., Neubauer, F. M., Strobel, D. F., & Summers, M. E. (1999). Three dimensional plasma simulation of Io′s interaction with the Io plasma torus: Asymmetric plasma flow. Journal of Geophysical Research, 104, 25,105–25,126.
[11] McGrath, M. A., & Johnson, R. E. (1987). Magnetospheric plasma sputtering of Io′s atmosphere. Icarus, 69, 519–531.
[12] Acuna, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén Wave current system at Io: Voyager 1 observations. Journal of Geophysical Research, 86(A10). https://doi.org/10.1029/JA086iA10p08513
[13] Belcher, J. W. (1987). The Jupiter‐Jo connection: An Alfvén engine in space. Science, 238, 170–176. https://doi.org/10.1126/science.238.4824.170
[14] Goertz, C. K. (1980). Io′s Interaction with the Plasma Torus. Journal of Geophysical Research, 85, 2949–2956.
[15] Neubauer, F. M. (1980). Nonlinear standing Alfven wave current system at Io: Theory. Journal of Geophysical Research, 85, 1171.
[16] Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter: Planet, Satellites. Magnetosphere, (pp. 513–536). Cambridge: Cambridge University Press.
[17] Clarke, J., Ajello, J., Ballester, G. et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415, 997–1000. https://doi.org/10.1038/415997a
[18] Johnson, R. E., & Quickenden, T. I. (1997). Photolysis and radiolysis of water ice on outer solar system bodies. Journal of Geophysical Research: Planets, 102(E5), 10985–10996. https://doi.org/10.1029/97JE00068
[19] [20] Ligier, N., Poulet, F., Carter, J., Brunetto, R., & Gourgeot, F. (2016). VLT/SINFONI observations of Europa: New insights into the surface composition. The Astrophysical Journal, 151(6), 163. https://doi.org/10.3847/0004-6256/151/6/163
[20] Ligier, N., Poulet, F., Carter, J., Brunetto, R., & Gourgeot, F. (2016). VLT/SINFONI observations of Europa: New insights into the surface composition. The Astrophysical Journal, 151(6), 163. https://doi.org/10.3847/0004-6256/151/6/163
[21] Khurana, K., Kivelson, M., Stevenson, D. et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777–780. https://doi.org/10.1038/27394
[22] Kivelson, M. G., et al. (2000). Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 289(5483), 1340–1343. https://doi.org/10.1126/science.289.5483.1340
[23] Burger, M. H. & Johnson, R. E. (2004). Europa’s neutral cloud: morphology and comparisons to Io. Icarus, 171, 557–560. https://doi.org/10.1016/j.icarus.2004.06.014
[24] Johnson, R. E., & Quickenden, T. I. (1997). Photolysis and radiolysis of water ice on outer solar system bodies. Journal of Geophysical Research: Planets, 102(E5), 10985–10996. https://doi.org/10.1029/97JE00068
[25] Nordheim, T. A., Regoli, L. H., Harris, C. D. K., Paranicas, C., Hand, K. P., & Jia, X. (2022). Magnetospheric Ion Bombardment of Europa’s Surface. The Planetary Science Journal, 3, 5. https://doi.org/10.3847/PSJ/ac382a
[26] Howett, C. J. A., Spencer, J. R., Schenk, P., Johnson, R. E., Paranicas, C., Hurford, T. A., Verbiscer, A., & Segura, M. (2011). A high-amplitude thermal inertia anomaly of probable magnetospheric origin on Saturn’s moon Mimas. Icarus, 216(1), 221–226. https://doi.org/10.1016/J.ICARUS.2011.09.007
[27] Schaible, M. J., Johnson, R. E., Zhigilei, L. v., & Piqueux, S. (2017). High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons. Icarus, 285, 211–223. https://doi.org/10.1016/j.icarus.2016.08.033
[28] Paranicas, C., Roussos, E., Decker, R. B., Johnson, R. E., Hendrix, A. R., Schenk, P., Cassidy, T. A., Dalton, J. B., Howett, C. J. A., Kollmann, P., Patterson, W., Hand, K. P., Nordheim, T. A., Krupp, N., & Mitchell, D. G. (2014). The lens feature on the inner saturnian satellites. Icarus, 234, 155–161. https://doi.org/10.1016/j.icarus.2014.02.026
[29] Lainey, V., Rambaux, N., Tobie, G., Cooper, N., Zhang, Q., Noyelles, B., & Baillié, K. (2024). A recently formed ocean inside Saturn’s moon Mimas. Nature, 626(7998), 280–282. https://doi.org/10.1038/s41586-023-06975-9
[30] Howett, C. J. A., Spencer, J. R., Hurford, T., Verbiscer, A., & Segura, M. (2012). PacMan returns: An electron-generated thermal anomaly on Tethys. Icarus, 221(2), 1084–1088. https://doi.org/10.1016/j.icarus.2012.10.013
[31] Smith, B. A., et al. (1986). Voyager 2 in the Uranian System: Imaging Science Results. Science, 233, 43–64. https://doi.org/10.1126/science.233.4759.43
[32] DeColibus, R. A., Chanover, N. J., & Cartwright, R. J. (2023). Are NH3 and CO2 Ice Present on Miranda? Planetary Science Journal, 4(10). https://doi.org/10.3847/PSJ/acf834
[33] Schenk, P. M. (1991). Fluid volcanism on Miranda and Ariel: flow morphology and composition. Journal of Geophysical Research, 96(B2), 1887–1906. https://doi.org/10.1029/90JB01604
[34] Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1987). The magnetic field of Uranus. Journal of Geophysical Research, 92(A13), 15329–15336. https://doi.org/10.1029/JA092iA13p15329
[35] Ness, N. F., Acuña, M. H., Behannon, K. W., Burlaga, L. F., Connerney, J. E. P., Lepping, R. P., & Neubauer, F. M. (1986). Magnetic Fields at Uranus. Science, 233, 85–89. https://doi.org/10.1126/science.233.4759.85
[36] Buratti, B. J., & Mosher, J. A. (1991). Comparative Global Albedo and Color Maps of The Uranian Satellites. Icarus, 90, 1–17.
[37] Shoemaker, E. M., & Wolfe, R. F. (1982). Cratering time scales for the Galilean Satellites. In D. Morrison (Ed.), Satellites of Jupiter (pp. 277–339). University of Arizona Press, Tucson.
[38] Buratti, B. J., Mosher, J., & Johnson, T. (1990). Albedo and color maps of the Saturnian satellites. Icarus, 87, 339–357.
[39] Thompson, W. R., Murray, B., Khare, B., & Sagan, C. (1987). Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer Solar System. Journal of Geophysical Research, 92, 14,933–14,947.
[40] Alfvén, H. (1950). Cosmical Electrodynamics. Oxford.
[41] Regi (2016). Il Nuovo Cimento, 39C, 285. https://doi.org/10.1393/ncc/i2016-16285-x
[42] Baumjohann, W., & Treumann, R. A. (1996). Basic Space Plasma Physics. London: Imperial College Press.
[43] Hamlin, D. A., Karplus, R., Vik, R. C., & Watson, K. M. (1961). Mirror and azimuthal drift frequencies for geomagnetically trapped particles. Journal of Geophysical Research, 66, 1–4. https://doi.org/10.1029/JZ066i001p00001
[44] Paranicas, C., Cheng, A. F., & Mauk, B. H. (1996). Charged particle phase space densities in the magnetospheres of Uranus and Neptune. Journal of Geophysical Research: Space Physics, 101(A5), 10681–10693. https://doi.org/10.1029/96ja00077
[45] Marchand, R. (2010). Test-particle simulation of space plasmas. Communications in Computational Physics, 8(3), 471. https://doi.org/10.4208/cicp.201009.280110a |