博碩士論文 111623014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.14.251.43
姓名 趙政勛(CHAO JHENGSYUN)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福爾摩沙衛星三號掩星觀察中緯度電子密度增強
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 利用福爾摩沙衛星三號 (FORMOSAT-3/COSMIC, F3/C) 電離層掩星觀測電子密度廓線研究2007年至2010年期間中緯度電子密度增強 (Midlatitude Electron Density Enhancement, MEDE) 之日變化、月變化、年變化。研究結果顯示MEDE具有地方時間、季節、太陽活動、地磁緯度效應。夜晚至清晨期間之MEDE較為明顯,其中以0500LT (local time, 當地時間) 最為顯著,而白天則不容易觀測到MEDE現象。春秋分期間,南北半球MEDE在各個經度上都會明顯出現;冬夏至期間則在冬季半球較為顯著,可能是夏季半球威德海異常 (Weddell Sea Anomaly) 和鄂霍次克海異常 (Okhotsk Sea Anomaly) 之電子密度異常增加,使得MEDE現象較不明顯。MEDE之分布以地磁緯度±40°N附近最為明顯。電離層F2層層峰電子密度一般位於250~350公里高,MEDE現象會隨著高度之增加而更加明顯,推測上層電離層電漿動力機制扮演一定的角色。電離層電子密度正比於太陽活動,MEDE現象於高太陽活動期間卻相對不明顯。分析0200~0500 LT不同經度之緯度-高度剖面電子密度,並將各個高度之電子密度歸一化,可以探討MEDE緯度-高度剖面隨時間變化,以及磁偏角和赤道偏移效應。比對福衛三號電子密度廓線觀測與水平風場模式 (Horizontal Wind Model, HWM 14) 結果,發現MEDE形成主要是電漿層電漿向下擴散,但受到中性風影響,在不同的經度形成不同的密度分布。
摘要(英) The research investigates the diurnal, monthly, and annual variations of Midlatitude Electron Density Enhancement (MEDE) from 2007 to 2010 using FORMOSAT-3/COSMIC (F3/C) GPS occultation electron density profiles. The results indicate that MEDE exhibits effects related to local time, season, solar activity, and geomagnetic latitude. MEDE is more pronounced during nighttime to early morning, with the most significant occurrence at 0500 LT (local time), whereas it is less observable during the daytime. During the equinoxes, MEDE is evident in both hemispheres across various longitudes; during solstices, it is more prominent in the winter hemisphere. This may be due to the anomalous increase in electron density over the Weddell Sea and Okhotsk Sea in the summer hemisphere, making MEDE less noticeable. The distribution of MEDE is most evident around geomagnetic latitudes of ±40°N. The F2 layer peak electron density typically occurs at altitudes of 250-350 km, with the MEDE phenomenon becoming more pronounced at higher altitudes, suggesting the involvement of upper ionospheric plasma dynamics. The ionospheric electron density is proportional to solar activity; however, MEDE is relatively less apparent during high solar activity periods. By analyzing the electron density profiles from 0200 to 0500 LT at different longitudes and normalizing the electron density at various altitudes, we can explore the temporal variation of the latitude-altitude profile of MEDE, as well as the effects of magnetic declination and equatorial offset. Comparing the F3/C electron density profiles with the Horizontal Wind Model (HWM 14) results reveals that the formation of MEDE is primarily due to the downward diffusion of plasmaspheric plasma, influenced by neutral winds, resulting in different density distributions at various longitudes.
關鍵字(中) ★ 電離層
★ 電漿
★ 中緯度電子密度增強
★ 福爾摩沙衛星三號
★ 掩星
★ 電子密度
關鍵字(英) ★ Ionosphere
★ plasma
★ MEDE
★ FORMOSAT-3/COSMIC
★ occultation
★ electron density
論文目次 目錄
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究目的 1
1-2 文獻回顧 3
第二章 觀測儀器與分析方法 9
2-1福爾摩沙衛星三號 9
2-2酬載及掩星觀測 11
2-3 資料處理及方法 12
第三章 觀測結果 14
3-1 日變化 14
3-2 四季變化 19
3-3 緯度變化 21
3-4 年變化 23
3-5 高度變化 26
第四章 水平風場模型 34
第五章 討論與結論 39
5-1 討論 39
5-2 結論 44
參考文獻 45
附錄 O 47
附錄 A 50
附錄 B 57
參考文獻 Chen, Y., Liu, L., Le, H., & Zhang, H. (2019). Interhemispheric conjugate effect in longitude variations of mid-latitude ion density. Journal of Space Weather and Space Climate, 9, A40. https://doi.org/10.1051/swsc/2019039
El-Desoky, E. M., Hoque, M. M., Youssef, M., & Mahrous, A. (2024). Seasonal morphology and solar activity dependence analysis of mid-latitude post-midnight enhancement using Global Ionospheric Map. Advances in Space Research, 73(2024), 3624–3641. https://doi.org/10.1016/j.asr.2023.09.061
Luan, X., Wang, W., Burns, A., Solomon, S. C., & Lei, J. (2008). Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition. Journal of Geophysical Research, 113(A9), A09319. https://doi.org/10.1029/2008JA013063
Li, Q., Hao, Y., Zhang, D., & Xiao, Z. (2018). Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere. Journal of Geophysical Research: Space Physics, 123(9), 7686–7696. https://doi.org/10.1029/2018JA025422
Li, Q.-H., Hao, Y.-Q., Guo, J.-G., Zhang, X.-X., Zhang, D.-H., Xiao, Z., & Cui, J. (2023). Winter nighttime enhancement of the midlatitude ionosphere: Contribution from the diffusive and wind-driven plasma transport. Journal of Geophysical Research: Space Physics, 128, e2022JA031108. https://doi.org/10.1029/2022JA031108
Rajesh, P. K., Liu, J. Y., Balan, N., Lin, C. H., Sun, Y. Y., & Pulinets, S. A. (2016). Morphology of midlatitude electron density enhancement using total electron content measurements. Journal of Geophysical Research: Space Physics, 121(2), 1503–1517. https://doi.org/10.1002/2015JA022251
Tsai, H., Liu, J., Tsai, W., Liu, C., Tseng, C., & Wu, C. (2001). Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. Journal of Geophysical Research: Space Physics, 106(A12), 30363–30369. https://doi.org/10.1029/2001ja001107
Zhong, J., Lei, J., Yue, X., Luan, X., & Dou, X. (2019). Middle-latitudinal band structure observed in the nighttime ionosphere. Journal of Geophysical Research: Space Physics, 124(8), 5857–5873. https://doi.org/10.1029/2018JA026059
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明