博碩士論文 110384601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.141.31.108
姓名 武忠孝(Trung Hieu Vo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 共晶凝膠的設計與製造:新興離子軟材料邁向永續應變感測器
(Design and Fabrication of Eutectogels: Emerging Ionic Soft Materials Toward Sustainable Strain Sensors)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-1以後開放)
摘要(中) 戴式感測器,特別是直接黏附在人體皮膚上、用於精確動態監測人體運動和生理訊號的應變感測器,已經經歷了快速發展,並在現代醫療系統中展示了顯著的實用性。 穿戴式感測器的開發需要具有卓越柔韌性的材料,而聚合物凝膠已顯示出巨大的潛力。 聚合物凝膠被定義為在溶劑中膨脹的交聯聚合物的三維 (3D) 網路。 凝膠的特性很大程度上取決於所使用的溶劑,因為它是主要成分。 在這種背景下,低共熔溶劑(DES)已成為水、離子液體和有機溶劑的導電、可生物降解、經濟高效且無毒的替代品,用於製造聚合物凝膠。
透過利用DES的優勢特性,共熔凝膠(聚合物和DES的複合材料)已針對各種應用進行了廣泛的研究,特別是在應變感測器中。在本論文中,我們開發了多種共熔凝膠,包括化學和物理類型,每種都具有獨特的性能,適用於應變感測應用。本論文包括四篇論文:
第一章:利用深共晶溶劑中的堵塞微凝膠開發可持續且經濟高效的墨水,用於3D列印具有拉伸結構的應變感測器。
本章介紹了利用微凝膠和低共熔溶劑(DES)開發的一種環保、低成本的3D列印墨水,適用於直接墨水書寫技術。3D列印墨水可用於製造各種結構,尤其是拉伸框架。與薄膜共析凝膠相比,具有拉伸結構的共析凝膠可以有效地充當應變感測器,透過增強皮膚舒適度和透氣性來檢測人體運動。
第二章:微凝膠誘導的晶域調控,一步製備具有優異可回收性的物理共熔凝膠。
本章介紹了一種透過一步製造過程獲得的物理共熔凝膠,其僅使用綠色且低成本的材料,包括微凝膠、聚乙烯醇(PVA)和DES。這歸因於PVA晶域在DES內的均勻分散,由PVA和Carbopol之間的氫鍵和空間限制效應促進。此外,具有可回收性的物理共析凝膠可持續產生電阻訊號,凸顯了其作為可靠應變感測器的潛力。
第 三 章:一步、無添加劑製造高拉伸性和超堅韌的物理共熔凝膠。
本章介紹了一種使用部分水解的PVA代替完全水解的PVA,以一步製備高度可拉伸且超堅韌的物理共析凝膠的方法。這種物理共熔凝膠僅含有PVA和DES,具有出色的機械性能,包括6.8 MPa的拉伸強度、高達2420%的應變的拉伸性以及122.3 MJ/m³的超高韌性。它還具有0.15 S/m的良好離子電導率,在各種人體運動中持續產生可靠的電阻訊號,展示了其在應變感測方面的有效性。
第四章:基於超高分子量聚合物的功能性共熔凝膠:低共熔溶劑中的物理纏結。
本章介紹了基於超高分子量聚乙烯吡咯烷酮(PVP)在DES中的纏結,開發出的物理共析凝膠。纏結的共構凝膠具有出色的拉伸性,應變達到1410%,並產生可靠的電阻訊號,非常適合應變感測應用。此外,除了具有高黏合強度外,纏結共析凝膠還具有透過聚合物鏈的擴散和重新纏結實現的自修復能力。
摘要(英) Wearable sensors, particularly strain sensors that adhere directly to human skin for precise and dynamic monitoring of human motion and physiological signals, have undergone rapid development and demonstrated significant utility in modern medical systems. The development of wearable sensors necessitates materials with exceptional flexibility, a requirement for which polymeric gels have shown significant potential. Polymer gels are defined as three-dimensional (3D) networks of cross-linked polymers that swell in solvents. The properties of gels depend highly on the solvent used, as it constitutes a major component. In this context, deep eutectic solvents (DESs) have emerged as conductive, biodegradable, cost-effective, and non-toxic alternatives to water, ionic liquids, and organic solvents for fabricating polymer gels.
By harnessing the advantageous properties of DESs, eutectogels—composites of polymers and DESs—have undergone extensive research for diverse applications, notably in strain sensors. Within this thesis, a diverse range of eutectogels, encompassing both chemical and physical types, each possessing unique properties, has been developed for implementation in strain sensing applications. This thesis encompasses four papers:
Chapter 1: Developing Sustainable and Cost-Effective Inks from Jammed Microgels in Deep Eutectic Solvents for 3D Printing of Strain Sensors with Auxetic Structures
A green and low-cost 3D printing ink suitable for the direct ink writing technique has been developed using microgels and DES. The 3D printing ink can be used to fabricate various structures, especially auxetic frameworks. In contrast to a thin-film structure, the eutectogel with auxetic structures serves effectively as a strain sensor, detecting human motion with enhanced skin comfort and breathability.
Chapter 2: Microgel-Induced Regulation of Crystalline Domains toward the One-step Fabrication of Physical Eutectogels with Excellent Recyclability
The physical eutectogel is obtained through a one-step fabrication process using only green and low-cost materials, which include Carbopol (microgel), polyvinyl alcohol (PVA), and DES. This is attributed to the uniform dispersion of PVA crystalline domains within the DES, facilitated by the hydrogen bonds and space restriction effects between PVA and Carbopol. Furthermore, the recyclable physical eutectogel can consistently generate electrical resistance signals, highlighting its potential as a reliable strain sensor.
Chapter 3: One-step, Additive-free Fabrication of Highly Stretchable and Ultra-Tough Physical Eutectogels
A highly stretchable and ultra-tough physical eutectogel is fabricated in a single step using partially hydrolyzed PVA instead of fully hydrolyzed PVA. The physical eutectogel, containg only PVA and DES, exhibits outstanding mechanical properties, including a tensile strength of 6.8 MPa, stretchability of up to 2420% strain, and ultra-high toughness of 122.3 MJ/m³. It also exhibits good ionic conductivity, at 0.15 S/m, and consistently produces reliable resistance signals over a variety of human movements, showcasing its effectiveness in strain sensing.
Chapter 4: Functional Eutectogel Based on Ultrahigh-Molecular-Weight Polymers: Physical Entanglements in Deep Eutectic Solvents
A physical eutectogel is developed based on the entanglements of ultra-high molecular weight polyvinylpyrrolidone (PVP) in DES. The entangled eutectogel showcases outstanding stretchability, reaching 1410% strain, and produces a dependable resistance signal, ideal for strain-sensing applications. Additionally, alongside its high adhesive strength, the entangled eutectogel demonstrates self-healing capabilities, enabled by the diffusion and re-entanglement of polymer chains.
關鍵字(中) ★ 共晶凝膠
★ 應變感測器
★ 聚合物凝膠
★ 3D 列印具
★ 低共熔溶劑
關鍵字(英) ★ polymer gels
★ strain sensor
★ microgels
★ 3D Printing
★ deep eutectic solvents
論文目次 Contents
中文摘要 I
Abstract III
Acknowledgements V
Contents VI
List of Figures VIII
List of Tables XIV
Chapter 1: Developing Sustainable and Cost-Effective Inks from Jammed Microgels in Deep Eutectic Solvents for 3D Printing of Strain Sensors with Auxetic Structures 1
1-1 Abstract: 1
1-2 Introduction 1
1-3 Experimental section 3
1-3-1 Materials 3
1-3-2 Preparation procedure 4
1-3-3 Characterization of Car-DES inks and eutectogels of poly-Car-DESs 4
1-4 Results and discussion 6
1-4-1 Deep Eutectic Solvents (DESs) as a green and low-cost solvent 6
1-4-2 Rheological behavior of Car-DES ink 8
1-4-3 Mechanical characterization and ionic conductivity of poly-Car-DES eutectogels 10
1-4-4 Application as 3D-printed auxetic strain sensor 12
1-5 Conclusion 16
1-6 References 16
1-7 Supporting information 21
Chapter 2: Microgel-Induced Regulation of Crystalline Domains toward the One-step Fabrication of Physical Eutectogels with Excellent Recyclability 32
2-1 Abstract 32
2-2 Introduction 32
2-3 Experimental section 34
2-3-1 Materials 34
2-3-2 One-step fabrication of Car-PVA eutectogels 34
2-3-3 Material characterizations 35
2-4 Results and discussion 36
2-4-1 Characterization and microstructure of Car-PVA eutectogels 36
2-4-2 Mechanical properties and ionic conductivity of Car-PVA eutectogel 40
2-4-3 Strain sensing performance and recyclability 41
2-5 Conclusion 43
2-6 References 44
2-7 Supporting information 47
Chapter 3: One-step, Additive-free Fabrication of Highly Stretchable and Ultra-Tough Physical Eutectogels 53
3-1 Abstract 53
3-2 Introduction 53
3-3 Experimental section 55
3-3-1 Materials 55
3-3-2 One-step fabrication of PVA-based eutectogels using partially or fully hydrolyzed PVA 55
3-3-3 Material characterizations 55
3-4 Results and discussion 56
3-4-1 Characterization and microstructure of PVA-based eutectogels 56
3-4-2 Mechanical properties: ultra-high stretchability and toughness 59
3-4-3 Ionic conductivity and strain-sensing performance 61
3-5 Conclusion 63
3-6 References 64
3-7 Supporting information 68
Chapter 4: Functional Eutectogel Based on Ultrahigh-Molecular-Weight Polymers: Physical Entanglements in Deep Eutectic Solvents 74
4-1 Abstract 74
4-2 Introduction 74
4-3 Experimental section 76
4-3-1 Materials. 76
4-3-2 Fabrication process 76
4-3-3 Characterization of entangled eutectogels 76
4-3-4 Strain-sensing tests 78
4-4 Results and discussion 78
4-4-1 Entangled eutectogel: chemical and physical characterizations 78
4-4-2 Properties of entangled eutectogel: mechanical strength, ionic conductivity, and adhesiveness 81
4-4-3 Strain-sensing performance and self-healing properties of entangled eutectogels 84
4-5 Conclusion 86
4-6 References 87
4-7 Supporting information 90

List of Figures
Scheme 1-1. The fabrication process of the microgel-in-DES ink and auxetic sensor. 3
Figure 1-1. (a) DESs with different molar ratios of AA, ChCl, and EG. The poly-DES2:1:1 sample with (b) disk-like and (c) rectangular shapes. 7
Figure 1-2. (a) Solid-like behavior of Car-DES5. (b) Rheological behavior, and (c) viscosity of Car-DES ink with different weight percent of Carbopol. (d) The Car-DES5 phase transition from a solid-like at the low strain (γ = 1%) to a liquid-like state at the high strain (γ = 500%). 9
Figure 1-3. (a) The stress−strain curve, (b) Young’s modulus and toughness of poly-Car-DES with various Carbopol weight fractions. (c) Digital image of poly-Car-DES5 with a thickness of 0.5 cm. (d) Loading-unloading test at different strains. (e) The successive loading-unloading curves of the same eutectogel sample at different strains without resting between each cycles. (f) Cyclic loading-unloading tests of the eutectogel at 400% strain with different resting times. 11
Figure 1-4. The 3D-printed auxetic structure with strain-dependent resistance. Dimensional change (30% strain) in the re-entrant honeycomb structure with its vertical ribs (a) perpendicular or (b) parallel to the stretching direction. (c) Poisson’s ratios of auxetic structures at different strains. Relative resistance changes in the 3D-printed sensor (d) for 3 cycles of different strains and (e) for 300 cycles at 100% maximum strain. (f) The gauge factors from the linear fitting slopes as the strain varies from 0 to 100%, 100 to 200%, and 200 to 300%, respectively. 13
Figure 1-5. Strain sensor applications of 3D-printed structures. (a) Dimensional change of the auxetic structure upon elbow bending. (b) Changes in the relative resistance of the auxetic sensor at different bending angles of the elbow. (c) Relative resistance changes of the auxetic sensor attached to the knee during walking and jumping. (d) 3D-printed woodpile structure (scale bar of 5 mm). (e) Changes in the relative resistance of the woodpile structure upon pressing with different weights. 15
Figure 1S-1. Glue-like liquid form of poly-DES2:1:2, DES1:1:1, and DES1:1:2. The samples are soft and cannot be picked up. 21
Figure 1S-2. The ATR-FTIR spectra of (a) ChCl, EG, DES2:1:1, and AA and (b) DES2:1:1, poly-DES2:1:1, Carbopol, Car-DES5, and poly-Car-DES5. 22
Figure 1S-3. The rheological behavior (a) and viscosity (b) of DES2:1:1 with different gelatin concentrations. 23
Figure 1S-4. (a) The DES2:1:1 with 8 wt% of agar. (b) The comparison of the viscosity of Car-DES5 ink after 3 days at 25oC and 50% RH with the original result. The viscosity of our printing ink has been measured by sampling from various locations within the sample, and the resulting viscosities remain essentially unchanged. 23
Figure 1S-5. Multiple necking regions of poly-Car-DES3 and poly-Car-DES5 eutectogels. The blue arrows point out the necking positions. 24
Figure 1S-6. The ionic conductivity of the eutectogels with different weight fractions of Carbopol. 24
Figure 1S-7. The Nyquist plot of the poly-Car-DES5 eutectogel to determine the electric conductivity. 25
Figure 1S-8. The images of poly-Car-DES3 (left) and poly-Car-DES7 (right). 25
Figure 1S-9. The dissipated energy and total absorbed of the eutectogel at different strains. 26
Figure 1S-10. The cyclic loading-unloading tests of the eutectogel at 400% strain for 5 cycles without any resting time. 26
Figure 1S-11. (a) The two auxetic designs of the 3D-printed strain sensors. (b) The structural changes (12 and 21) associated with the auxetic designs upon loading. 27
Figure 1S-12. The gauge factors from the linear fitting slopes for the thin-film eutectogel as the strain varies from 0 to 100%, 100 to 200%, and 200 to 300%, respectively. 28
Figure 1S-13. The 3D-printed letters (GREEN) on glass. 28
Figure 1S-14. Photographs of the woodpile eutectogel adhering to (a) a glass beaker, (b) a PMP beaker, (c) a metal wrench, and (d) a PTFE block. 28
Figure 1S-15. Photograph of the skin after removing the woodpile sensor attached for 6 h. 29
Figure 1S-16. The variation of the mass ratio of the hydrogel and eutectogel over time. The mass ratio (g/g) is defined as the ratio of the sensor mass at a certain time to the initial mass, m(t)/m(t=0). The ionic conductivity of the eutectogel over time. All the experiments are performed at 25oC and relative humidity 50%. 29
Figure 1S-17. The stability of hydrogel and eutectogel below 0oC. (a) The hydrogel is observed to freeze and become hard due to the presence of water. (b) The eutectogel remains stable and stretchable. 30
Scheme 2-1. Fabrication of physical eutectogel using microgels. 37
Figure 2-1. (a) XRD patterns and (b-e) SEM images of the freeze-dried eutectogels (Car-PVA with different Carbopol contents). 38
Figure 2-2. The influence of microgels on the size and distribution of crystalline domains. 39
Figure 2-3. Mechanical properties and ionic conductivity of physical eutectogel. (a) The stress−strain curves of the eutectogel with different Carbopol weight percent. The cyclic tensile tests of Car0.4-PVA15 eutectogel (b) at different strains and (c) at 100% strain for different cycles without resting. (d) The relationship between ionic conductivity and toughness of the eutectogel. 41
Figure 2-4. (a) Resistance-strain curve of the strain sensor and (b) relative resistance change during cyclic tensile tests at different strains. Monitoring moving joints including (c) finger, (d) wrist, and (e) elbow through the response of resistance signals. (f) Durability test under stretching/releasing cycles at 100% strain for 200 cycles. A zoomed-in view is provided. 42
Figure 2-5. (a) Recycle process of Car-PVA eutectogel by heating, stirring, and molding. (b) The ionic conductivity and toughness of physical eutectogel after several recycling cycles. 43
Figure 2S-1. The final result of 15 wt% PVA in DES after cooling. The bottle is inverted for the photo. 47
Figure 2S-2. (a) The FTIR of DES, Gly and ChCl. The FTIR spectra of DES show peaks at approximately 1478 cm-1 (H-bending) and around 952 cm-1 (C-N peak) for ChCl, as well as peaks at 3000 cm-1 (O-H peak) and 1034 cm-1 (C-O stretching) for Gly. These confirm the presence of ChCl and Gly in the DES. The formation of hydrogen bonds between ChCl and Gly is evidenced by the shift in the O-H peak from 3286 cm-1 in Gly to 3300 cm-1 in DES. (b) The FTIR of DES, PVA, Carbopol, weak eutectogel (Car0-PVA15) and Car0.4-PVA15 eutectogel. 48
Figure 2S-3. The photograph of the dumbbell-shaped Car0.4-PVA15 eutectogel with the thickness of 0.2 mm. 49
Figure 2S-4. The Nyquist plot of the physical eutectogel with different Carbopol concentration to determine the electric conductivity. 49
Figure 2S-5. (a) The eutectogel placed at 0 °C for 24 h remained unfrozen. (b) The stretchability of the eutectogel after 24 h at 0 °C. (c) Resistance changes under repeated loading and unloading of 100% strain at 0oC. 50
Figure 2S-6. The stress-strain curves of the physical eutectogel after 5 cycles of recycling proceses. 51
Figure 2S-7. The response of resistance signals of the moving (a) wrist and (b) elbow using the recycled sensor after 5 recycling processes. 51
Scheme 3-1. Fabrication process of the physical eutectogel using fully or partially hydrolyzed PVA and the hydrogen bonding interactions between components. 57
Figure 3-1. (a) XRD patterns and (b-e) SEM images of the freeze-dried physical eutectogels with various PVA contents. 58
Figure 3-2. Mechanical properties of the PVA-based eutectogel. (a) The stress-strain curves of the eutectogel with different PVA content. (b) The loading–unloading tests of 45-PVA eutectogel at different strains. (c) Cyclic loading-unloading tests of the 45-PVA eutectogel at 100% strain without the resting time. (d) Recoverability of 45-PVA eutectogel after being twisted and crimped. 61
Figure 3-3. (a) The ionic conductivity of DES and PVA-based eutectogel with varying amounts of PVA. (b) Resistance-strain curve of the physical eutectogel. (c) Relative resistance change of the eutectogel during cyclic tensile tests at different strains. 62
Figure 3-4. Strain-sensing and durability tests. The response of resistance signals for (a) finger, (b) knee, and (c) wrist during human motions. (d) Resistance changes under 200 stretching/releasing cycles at 100% strain. A zoomed-in view is provided. 63
Figure 3S-1. Photographs of (a) 15-PVA-99 eutectogel. (b) The sample of 15 wt% poly(vinyl acetate) in DES and (c) 30 wt% PVA-99 in DES. 68
Figure 3S-2: (a) The ATR-FTIR results of DES (ethaline), pure fully hydrolyzed PVA (PVA-99) particles, 15-PVA-99 eutectogel, pure partially hydrolyzed PVA (PVA) particles, 15-PVA eutectotgel, and 45-PVA eutectogel. (b) XRD patterns of the pure PVA particles, pure PVA-99 particles, and the freeze-dried 15-PVA-99 eutectogel. (c) SEM image of freeze-dried 15-PVA-99 eutectogel (scale bar of 10 m). 68
Figure 3S-3. (a) Stress-strain curves of 15-PVA-99 and 15-PVA eutectogels. (b) Young’s modulus and toughness, and (c) tensile strength and elongation at break of the PVA eutectogel with various partially hydrolyzed PVA content. (d) SAXS profiles and (e) fitting results of the obtained SAXS patterns for 15-PVA and 45-PVA eutectogels. 69
Figure 3S-4. (a) The photograph shows 0.3 g of 45-PVA eutectogel lifting a 1.5 kg bottle filled with water. (b) The photograph shows the transparency of the 45-PVA eutectogel with dimensions of 20103 mm³. 70
Figure 3S-5. The calculated total energy (toughness), dissipated energy, and dissipated ratio of the 45-PVA eutectogel at different strains. 70
Figure 3S-6. (a) The weight loss of the physical eutectogel over time at different PVA concentrations. (b) Thermogravimetric analysis (TGA) curve of 45-PVA eutectogel from 40 to 800°C. The temperature at 5% mass loss (T5%) is 72°C. 71
Figure 3S-7. The Nyquist plot of DES and eutectogels with different PVA concentrations to determine the electric conductivity. 71
Figure 3S-8. (a) Differential scanning calorimetry (DSC) curves of 45-PVA eutectogel during the cooling process from 30 to -50°C. (b) The physical eutectogel at 0oC for 48 hours. (c) The relative resistance signal during stretching at 100 % strain at 0oC. 72
Figure 4-1. Physical changes in eutectogel sample. (a) Tube inversion flow test of DESs and eutectogels at different PVP conentet. (b) The solid-like (gel-like) behaviors and (c) tan δ ratios of eutectogel sample at various PVP concentrations. 79
Figure 4-2. Characteristics of entanglement in the eutectogel. (a) Frequency sweep test of the entangled eutectogel. (b) The variation of the entanglement molecular weight (Me) and the number of entanglements per polymer chain (Ne) with the PVP concentration. (c) Entangled polymer network changes induced by the number of entanglements. 81
Figure 4-3. Mechanical properties, loading-unloading cycles, and recoverability of the entangled eutectogel. (a) Stress-strain curves of entangled eutectogels at various PVP concentrations. (b) Loading-unloading tests of the 40-PVP eutectogel at different strains. (c) Calculated toughness, dissipated energy, and dissipation ratio of the 40-PVP eutectogel at different strains. (d) Hysteresis loops for the 40-PVP eutectogel at 100% strain, observed after five loading-unloading cycles and again after 5 minutes of resting time. 82
Figure 4-4. The adhesiveness of the entangled eutectogel. (a) Photographs of the eutectogel sticking and lifting various substrates. (b) Adhesive strength of the eutectogel on various substrates. (c) The robust adhesion and interfacial compliance of the eutectogel on skin. 83
Figure 4-5. Strain-sensing performance of the 40-PVP entangled eutectogel. (a) Resistance-strain curve up to 500% strain. (b) Relative resistance changes under cyclic strains ranging from 50% to 400%. (c) Reproducibility tests for 200 loading-unloading cycles at 100% strain. Real-time strain sensing by continuously monitoring moving joints of the body, including (d) finger, (e) wrist, and (f) elbow, each bent at a 90o angle. 85
Figure 4-6. The self-healing ability of the entangled eutectogel after healing for 24 hours at room temperature (25°C). (a) Self-healing of the scar of two joined pieces, captured by an optical microscope. (b) Stretchability of the self-healed eutectogel, formed by joining two pieces of different colors. (c) The stress-strain curve of the eutectogel after the self-healing process. 86
Figure 4S-1. (a) Amplitude sweep and (b) tan δ ratio of the DESs and eutectogels at various PVP concentrations. 90
Figure 4S-2. (a) ATR-FTIR spectra of DES, 40-PVP eutectogel, and pure PVP. (b) PXRD patterns of pure PVP and the freeze-dried 40-PVP eutectogel. 91
Figure 4S-3. The apparent viscosities of the solution of PVP in DES and the eutectogels. 91
Figure 4S-4. The SEM images of the freeze-dried eutectogels with various PVP concentrations. 91
Figure 4S-5. The toughness and hysteresis energy of the 40-PVP eutectogel at 100% strain, observed after five loading-unloading cycles and again after 5 minutes of resting time. 91
Figure 4S-6. The Nyquist plot and ionic conductivity of entangled eutectogels with varying concentrations of PVP. 91
Figure 4S-7. The weight changes in the eutectogel over several days under vacuum conditions. 91
Figure 4S-8. Relative resistance changes corresponding to cyclic finger bending at 90° for self-healing eutectogels. 91

List of Tables
Table 1S-1: Comparison of high-cost materials, fabrication processes, and mechanical properties among various auxetic sensors 30
Table 2S-1. The composition of the Car-PVA eutectogel with the total weight of 10 (g) 51
Table 2S-2. Comparison of the Car-PVA physical sensor with previously reported PVA-based sensors in terms of material, solvent, fabrication process, cost, elongation at break, and recyclability Note that only a few PVA-based eutectogels have been reported so far. 52
Table 3S-1. Comparison of the as-prepared physical sensor with previously reported PVA-based sensors in terms of used materials, fabrication process, tensile strength, stretchability, and toughness 72
參考文獻 1-6 References
[1] Truby, R. L.; Lewis, J. A. Printing Soft Matter in Three Dimensions. Nature 2016, 540 (7633), 371-378.
[2] Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117 (15), 10212-10290.
[3] agliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Materials Advances 2021, 2 (2), 540-563.
[4] Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34 (28), 2108855.
[5] Lewis, J. A.; Gratson, G. M. Direct Writing in Three Dimensions. Materials Today 2004, 7 (7), 32-39.
(6) Li, J.; Wu, C.; Chu, P. K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng.: R: Rep. 2020, 140, 100543.
[7] Gong, J.; Schuurmans, C. C. L.; van Genderen, A. M.; Cao, X.; Li, W.; Cheng, F.; He, J. J.; López, A.; Huerta, V.; Manríquez, J.; Li, R.; Li, H.; Delavaux, C.; Sebastian, S.; Capendale, P. E.; Wang, H.; Xie, J.; Yu, M.; Masereeuw, R.; Vermonden, T.; Zhang, Y. S. Complexation-Induced Resolution Enhancement of 3D-Printed Hydrogel Constructs. Nat. Commun. 2020, 11 (1), 1267.
[8] Placone, J. K.; Engler, A. J. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv. Healthc. Mater. 2018, 7 (8), 1701161.
[9] Cheng, Y.; Chan, K. H.; Wang, X.-Q.; Ding, T.; Li, T.; Lu, X.; Ho, G. W. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano 2019, 13 (11), 13176-13184.
[10] Nulwala, H.; Mirjafari, A.; Zhou, X. Ionic Liquids and Poly(ionic liquid)s for 3D Printing – A Focused Mini-Review. Eur. Polym. J. 2018, 108, 390-398.
[11] Luque, G. C.; Picchio, M. L.; Martins, A. P. S.; Dominguez-Alfaro, A.; Ramos, N.; del Agua, I.; Marchiori, B.; Mecerreyes, D.; Minari, R. J.; Tomé, L. C. 3D Printable and Biocompatible Iongels for Body Sensor Applications. Adv. Electron. Mater. 2021, 7 (8), 2100178.
[12] Engel, K. E.; Kilmartin, P. A.; Diegel, O. Recent Advances in The 3D Printing of Ionic Electroactive Polymers and Core Ionomeric Materials. Polym. Chem. 2022, 13 (4), 456-473.
[13] MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A. Energy Applications of Ionic Liquids. Energy Environ. Sci. 2014, 7 (1), 232-250.
[14] Mecerreyes, D. Polymeric Ionic Liquids: Broadening The Properties and Applications of Polyelectrolytes. Prog. Polym. Sci. 2011, 36 (12), 1629-1648.
[15] Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121 (3), 1232-1285.
[16] Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-11082.
[17] Garralaga, M. P.; Lomba, L.; Leal-Duaso, A.; Gracia-Barberán, S.; Pires, E.; Giner, B. Ecotoxicological Study of Bio-based Deep Eutectic Solvents Formed by Glycerol Derivatives in Two Aquatic Biomodels. Green Chem. 2022, 24 (13), 5228-5241.
[18] Li, X.; Liu, J.; Guo, Q.; Zhang, X.; Tian, M. Polymerizable Deep Eutectic Solvent-Based Skin-Like Elastomers with Dynamic Schemochrome and Self-Healing Ability. Small 2022, 18 (19), 2201012.
[19] Li, R. a.; Fan, T.; Chen, G.; Zhang, K.; Su, B.; Tian, J.; He, M. Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chem. Mater. 2020, 32 (2), 874-881.
[20] Li, R. a.; Chen, G.; He, M.; Tian, J.; Su, B. Patternable Transparent and Conductive Elastomers towards Flexible Tactile/Strain Sensors. J. Mater. Chem. C 2017, 5 (33), 8475-8481.
[21] Li, R. a.; Fan, T.; Chen, G.; Xie, H.; Su, B.; He, M. Highly Transparent, Self-healing Conductive Elastomers Enabled by Synergistic Hydrogen Bonding Interactions. J. Chem. Eng. 2020, 393, 124685.
[22] Li, R. a.; Zhang, K.; Chen, G.; Su, B.; He, M. Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions. Chem. Mater. 2021, 33 (13), 5189-5196.
[23] Li, G.; Deng, Z.; Cai, M.; Huang, K.; Guo, M.; Zhang, P.; Hou, X.; Zhang, Y.; Wang, Y.; Wang, Y.; et al. A Stretchable and Adhesive Ionic Conductor Based on Polyacrylic Acid and Deep Eutectic Solvents. npj Flex. Electron. 2021, 5 (1), 23.
[24] Fan, K.; Wei, W.; Zhang, Z.; Liu, B.; Feng, W.; Ma, Y.; Zhang, X. Highly Stretchable, Self-healing, and Adhesive Polymeric Eutectogel Enabled by Hydrogen-Bond Networks for Wearable Strain Sensor. J. Chem. Eng. 2022, 449, 137878.
[25] Fan, K.; Wang, L.; Wei, W.; Wen, F.; Xu, Y.; Zhang, X.; Guan, X. Multifunctional Self-Healing Eutectogels Induced by Supramolecular Assembly for Smart Conductive Materials, Interface Lubrication and Dye Adsorption. J. Chem. Eng. 2022, 441, 136026.
[26] Ge, G.; Mandal, K.; Haghniaz, R.; Li, M.; Xiao, X.; Carlson, L.; Jucaud, V.; Dokmeci, M. R.; Ho, G. W.; Khademhosseini, A. Deep Eutectic Solvents-Based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. Adv. Funct. Mater. 2023, 33 (9), 2207388.
[27] Lai, C.-W.; Yu, S.-S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
[28] Pal, S.; Su, Y.-Z.; Chen, Y.-W.; Yu, C.-H.; Kung, C.-W.; Yu, S.-S. 3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl. Mater. Interfaces 2022, 14 (24), 28247-28257.
[29] Cai, L.; Chen, G.; Su, B.; He, M. 3D Printing of Ultra-tough, Self-Healing Transparent Conductive Elastomeric Sensors. J. Chem. Eng. 2021, 426, 130545.
[30] Sheikhi, M.; Rafiemanzelat, F.; Ghodsi, S.; Moroni, L.; Setayeshmehr, M. 3D Printing of Jammed Self-Supporting Microgels with Alternative Mechanism for Shape Fidelity, Crosslinking and Conductivity. Addit. Manuf. 2022, 58, 102997.
[31] Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Cheng, J.; Shang, Q.; Hu, Y.; Liu, C.; Zhang, M.; Hu, L.; Zhou, Y. Self-Healing, Antibacterial, and 3D-Printable Polymerizable Deep Eutectic Solvents Derived from Tannic Acid. ACS Sustain. Chem. Eng. 2022, 10 (24), 7954-7964.
[32] Su, J.; Li, S.; Chen, Y.; Cui, Y.; He, M. 3D Photoprintable Antistatic Materials with Polymerizable Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2021, 60 (49), 17797-17803.
(33) Highley, C. B.; Song, K. H.; Daly, A. C.; Burdick, J. A. Jammed Microgel Inks for 3D Printing Applications. Adv. Sci. 2019, 6 (1), 1801076.
[34] Song, K.; Compaan, A. M.; Chai, W.; Huang, Y. Injectable Gelatin Microgel-Based Composite Ink for 3D Bioprinting in Air. ACS Appl. Mater. Interfaces 2020, 12 (20), 22453-22466.
[35] Zhao, D.; Liu, Y.; Liu, B.; Chen, Z.; Nian, G.; Qu, S.; Yang, W. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. ACS Appl. Mater. Interfaces 2021, 13 (11), 13714-13723.
[36] Hirsch, M.; Charlet, A.; Amstad, E. 3D Printing of Strong and Tough Double Network Granular Hydrogels. Adv. Funct. Mater. 2021, 31 (5), 2005929.
[37] Funke, W.; Okay, O.; Joos-Müller, B. Microgels-intramolecularly crosslinked macromolecules with a globular structure. Adv. Polym. Sci. 1998, 136, 139−234.
[38] Ketz, R. J.; Prud′homme, R. K.; Graessley, W. W. Rheology of Concentrated Microgel Solutions. Rheol. Acta 1988, 27 (5), 531-539.
[39] Cates, M. E.; Wittmer, J. P.; Bouchaud, J. P.; Claudin, P. Jamming, Force Chains, and Fragile Matter. Phys. Rev. Lett. 1998, 81 (9), 1841-1844.
[40] Liu, A. J.; Nagel, S. R. Jamming is not just cool any more. Nature 1998, 396 (6706), 21-22.
[41] Menut, P.; Seiffert, S.; Sprakel, J.; Weitz, D. A. Does Size Matter? Elasticity of Compressed Suspensions of Colloidal- and Granular-Scale Microgels. Soft Matter 2012, 8 (1), 156-164.
[42] Hu, S.-W.; Sung, P.-J.; Nguyen, T. P.; Sheng, Y.-J.; Tsao, H.-K. UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing. ACS Appl. Mater. Interfaces 2020, 12 (21), 24450-24457.
[43] Qin, H.; Owyeung, R. E.; Sonkusale, S. R.; Panzer, M. J. Highly Stretchable and Nonvolatile Gelatin-Supported Deep Eutectic Solvent Gel Electrolyte-Based Ionic Skins for Strain and Pressure Sensing. J. Mater. Chem. C 2019, 7 (3), 601-608.
[44] Jia, Y.; Sciutto, G.; Botteon, A.; Conti, C.; Focarete, M. L.; Gualandi, C.; Samorì, C.; Prati, S.; Mazzeo, R. Deep Eutectic Solvent and Agar: A New Green Gel to Remove Proteinaceous-Based Varnishes from Paintings. J. Cult. Herit. 2021, 51, 138-144.
[45] Contreras, M. D.; Sanchez, R. Application of a Factorial Design to the Study of the Flow Behavior, Spreadability and Transparency of a Carbopol ETD 2020 gel. Part II. Int. J. Pharm. 2002, 234 (1), 149-157.
[46] Maciel, B. R.; Wang, K.; Müller, M.; Oelschlaeger, C.; Willenbacher, N. Targeted Micro-Phase Separation–A Generic Design Concept to Control the Elasticity of Extrudable Hydrogels. Mater. Des. 2023, 227, 111803.
[47] Jaworski, Z.; Spychaj, T.; Story, A.; Story, G. Carbomer Microgels as Model Yield-Stress Fluids. Rev. Chem. Eng. 2022, 38 (7), 881-919.
[48] Peng, E.; Zhang, D.; Ding, J. Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Adv. Mater. 2018, 30 (47), 1802404.
[49] Kazem, N.; Bartlett, M. D.; Majidi, C. Extreme Toughening of Soft Materials with Liquid Metal. Adv. Mater. 2018, 30 (22), 1706594.
[50] Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W. R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; et al. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30 (12), 1706589.
[51] Mao, L.; Pan, T.; Ke, Y.; Yan, Z.; Huang, S.; Guo, D.; Gao, N.; Huang, W.; Yao, G.; Gao, M.; Lin, Y. Configurable Direction Sensitivity of Skin-Mounted Microfluidic Strain Sensor with Auxetic Metamaterial. Lab Chip 2022, 22 (8), 1630-1639.
[52] Wang, Z.; Luan, C.; Liao, G.; Liu, J.; Yao, X.; Fu, J. High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13 (19), 23038-23048.
[53] Lee, Y.-J.; Lim, S.-M.; Yi, S.-M.; Lee, J.-H.; Kang, S.-g.; Choi, G.-M.; Han, H. N.; Sun, J.-Y.; Choi, I.-S.; Joo, Y.-C. Auxetic Elastomers: Mechanically Programmable Meta-Elastomers with An Unusual Poisson’s ratio Overcome the Gauge Limit of A Capacitive Type Strain Sensor. Extreme Mech. Lett. 2019, 31, 100516.
[54] Kapnisi, M.; Mansfield, C.; Marijon, C.; Guex, A. G.; Perbellini, F.; Bardi, I.; Humphrey, E. J.; Puetzer, J. F.; Mawad, D.; Koutsogeorgis, D. C.; Stuckey, D. J.; Terracciano, C. M.; Harding, S. E.; Stevens, M. M. Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Adv. Funct. Mater. 2018, 28 (21), 1800618.
[55] Sun, X.; Zhu, Y.; Zhu, J.; Le, K.; Servati, P.; Jiang, F. Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Adv. Funct. Mater. 2022, 32 (29), 2202533.
[56] Wang, M.; Lai, Z.; Jin, X.; Sun, T.; Liu, H.; Qi, H. Multifunctional Liquid-Free Ionic Conductive Elastomer Fabricated by Liquid Metal Induced Polymerization. Adv. Funct. Mater. 2021, 31 (32), 2101957.
References of Supporting information
[1] Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W. R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; et al. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30 (12), 1706589.
[2] Wang, Z.; Luan, C.; Liao, G.; Liu, J.; Yao, X.; Fu, J. High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Appl. Mater. Interfaces 2021, 13 (19), 23038-23048.
[3] Mao, L.; Pan, T.; Ke, Y.; Yan, Z.; Huang, S.; Guo, D.; Gao, N.; Huang, W.; Yao, G.; Gao, M.; et al. Configurable Direction Sensitivity of Skin-Mounted Microfluidic Strain Sensor with Auxetic Metamaterial. Lab Chip 2022, 22 (8), 1630-1639.
[4] Shintake, J.; Nagai, T.; Ogishima, K. Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Front. Robot. AI 2019, 6.
[5] Lee, Y.-J.; Lim, S.-M.; Yi, S.-M.; Lee, J.-H.; Kang, S.-g.; Choi, G.-M.; Han, H. N.; Sun, J.-Y.; Choi, I.-S.; Joo, Y.-C. Auxetic Elastomers: Mechanically Programmable Meta-Elastomers with an Unusual Poisson’s ratio Overcome the Gauge Limit of a Capacitive Type Strain Sensor. Extreme Mech. Lett. 2019, 31, 100516.
[6] Taherkhani, B.; Azizkhani, M. B.; Kadkhodapour, J.; Anaraki, A. P.; Rastgordani, S. Highly Sensitive, Piezoresistive, Silicone/Carbon Fiber-Based Auxetic Sensor for Low Strain Values. Sens. Actuator A Phys. 2020, 305, 111939.
[7] Wong, J.; Gong, A. T.; Defnet, P. A.; Meabe, L.; Beauchamp, B.; Sweet, R. M.; Sardon, H.; Cobb, C. L.; Nelson, A. 3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors. Adv. Mater. Technol. 2019, 4 (9), 1900452.
[8] Lai, C.-W.; Yu, S.-S. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12 (30), 34235-34244.
[9] Pal, S.; Su, Y.-Z.; Chen, Y.-W.; Yu, C.-H.; Kung, C.-W.; Yu, S.-S. 3D Printing of Metal–Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl. Mater. Interfaces 2022, 14 (24), 28247-28257.

2-6 References
[1] Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels, Science 356 (6337) (2017) eaaf3627.
[2] C. Yang, Z. Suo, Hydrogel ionotronics, Nat. Rev. Mater. 3 (6) (2018) 125-142.
[3] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3 (21) (2022) 7709-7725.
[4] Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu, J. Wang, Ionic liquid-based gels for biomedical applications, J. Chem. Eng. 452 (2023) 139248.
[5] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: Advantages, challenges, and applications, Adv. Funct. Mater. 33 (27) (2023) 2301421.
[6] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: A review of fundamentals and applications, Chem. Rev. 121 (3) (2021) 1232-1285.
[7] A. Azzouz, M. Hayyan, Potential applications of deep eutectic solvents in nanotechnology: Part II, J. Chem. Eng. 468 (2023) 143563.
[8] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (21) (2014) 11060-11082.
[9] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents - Solvents for the 21st century, ACS Sustain. Chem. Eng. 2 (5) (2014) 1063-1071.
[10] Q. Zaib, M.J. Eckelman, Y. Yang, D. Kyung, Are deep eutectic solvents really green?: A life-cycle perspective, Green Chem. 24 (20) (2022) 7924-7930.
[11] J. Wang, S. Zhang, Z. Ma, L. Yan, Deep eutectic solvents eutectogels: progress and challenges, Green Chem. Eng. 2(4) (2021) 359-367.
[12] K. Fan, W. Wei, Z. Zhang, B. Liu, W. Feng, Y. Ma, X. Zhang, Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, J. Chem. Eng. 449 (2022) 137878.
[13] C. Chai, L. Ma, Y. Chu, W. Li, Y. Qian, J. Hao, Extreme-environment-adapted eutectogel mediated by heterostructure for epidermic sensor and underwater communication, J. Colloid Interface Sci. 638 (2023) 439-448.
[14] Y. Wu, L. Yang, J. Wang, S. Li, X. Zhang, D. Chen, Y. Ma, W. Yang, Degradable supramolecular eutectogel-based ionic skin with antibacterial, adhesive, and self-healable capabilities, ACS Appl. Mater. Interfaces. 15 (30) (2023) 36759-36770.
[15] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent polymers with synergetic hydrogen bonding interactions, Chem. Mater. 33 (13) (2021) 5189-5196.
[16] R.a. Li, T. Fan, G. Chen, H. Xie, B. Su, M. He, Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions, J. Chem. Eng. 393 (2020) 124685.
[17] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9 (8) (2021) 4890-4897.
[18] J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials, Prog. Polym. Sci. 78 (2018) 139-153.
[19] K. Ajino, A. Torii, H. Ogawa, H. Mori, Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea, Polymer 204 (2020) 122803.
[20] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled gels formed in deep eutectic solvents: Supramolecular eutectogels with high ionic conductivity, Angew. Chem., Int. Ed. Engl. 58 (13) (2019) 4173-4178.
[21] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/gelatin-based eutectogels for the sensitive strain sensor with recyclability and multienvironmental suitability, ACS Appl. Polym. Mater. 4 (5) (2022) 3982-3993.
[22] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater. 4 (3) (2022) 2057-2064.
[23] O. Alonso-López, S. López-Ibáñez, R. Beiras, Assessment of toxicity and biodegradability of poly(vinyl alcohol)-based materials in marine water, Polymers 13 (21) (2021) 3742.
[24] S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges, J. Energy Storage 27 (2020) 101072.
[25] L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels, Adv. Mater. 32 (52) (2020) 2004579.
[26] L. Zheng, H. Hua, Z. Zhang, Y. Zhu, L. Wang, Y. Li, PVA/ChCl deep eutectic polymer blends for transparent strain sensors with antifreeze, flexible, and recyclable properties, ACS Appl. Mater. Interfaces. 14 (43) (2022) 49212-49223.
[27] X. Sun, C. Luo, F. Luo, Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength, Eur. Polym. J. 124 (2020) 109465.
[28] H. Adelnia, R. Ensandoost, S. Shebbrin Moonshi, J.N. Gavgani, E.I. Vasafi, H.T. Ta, Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future, Eur. Polym. J. 164 (2022) 110974.
[29] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater. 32 (41) (2022) 2206305.
[30] Y. Wang, J. Wang, Z. Ma, L. Yan, A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation, ACS Appl. Mater. Interfaces. 13 (45) (2021) 54409-54416.
[31] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydrate Polymers 255 (2021) 117443.
[32] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed microgels in deep eutectic solvents as a green and low-cost ink for 3D printing of reliable auxetic strain sensors, ACS Appl. Mater. Interfaces. 15 (27) (2023) 33109-33118.
References of supporting information
[1] Y. Wang, J. Wang, Z. Ma, L. Yan, A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation, ACS Appl. Mater. Interfaces. 13 (45) (2021) 54409-54416.
[2] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and tough physical eutectogels regulated by the spatiotemporal expression of non-covalent interactions, Adv. Funct. Mater. 32 (41) (2022) 2206305.
[3] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydrate Polymers 255 (2021) 117443.
[4] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/gelatin-based eutectogels for the sensitive strain sensor with recyclability and multienvironmental suitability, ACS Appl. Polym. Mater. 4 (5) (2022) 3982-3993.
[5] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-resistant, conductive, and robust eutectogels of metal salt-based deep eutectic solvents with poly(vinyl alcohol), ACS Appl. Polym. Mater. 4 (3) (2022) 2057-2064.

3-6 References
[1] C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, Transparent, Ionic Conductors, Science 341(6149) (2013) 984-987.
[2] X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu, G. Parada, Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties, Chem. Rev. 121(8) (2021) 4309-4372.
[3] S. Correa, A.K. Grosskopf, H. Lopez Hernandez, D. Chan, A.C. Yu, L.M. Stapleton, E.A. Appel, Translational Applications of Hydrogels, Chem. Rev. 121(18) (2021) 11385-11457.
[4] Y. Gao, W. Zhang, L. Li, Z. Wang, Y. Shu, J. Wang, Ionic liquid-based gels for biomedical applications, Chem. Eng. J. 452 (2023) 139248. https://doi.org/10.1016/j.cej.2022.139248.
[5] M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus Hydrogels: Advantages, Challenges, and Applications, Adv. Funct. Mater. 33(27) (2023) 2301421.
[6] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chem. Rev. 121(3) (2021) 1232-1285.
[7] A. Azzouz, M. Hayyan, Potential applications of deep eutectic solvents in nanotechnology: Part II, Chem. Eng. J. 468 (2023) 143563.
[8] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural Deep Eutectic Solvents – Solvents for the 21st Century, ACS Sustain. Chem. Eng. 2(5) (2014) 1063-1071.
[9] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3(21) (2022) 7709-7725.
[10] L.C. Tomé, D. Mecerreyes, Emerging Ionic Soft Materials Based on Deep Eutectic Solvents, J. Phys. Chem. B. 124(39) (2020) 8465-8478.
[11] J. Wang, S. Zhang, Z. Ma, L. Yan, Deep eutectic solvents eutectogels: progress and challenges, Green Chem. Eng. 2(4) (2021) 359-367.
[12] X. Sun, Y. Zhu, J. Zhu, K. Le, P. Servati, F. Jiang, Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers, Adv. Funct. Mater. 32(29) (2022) 2202533.
[13] X. Zhang, Y. Rong, H. Li, J. Fei, X. Huang, Q. Bao, J. An, High tensile properties, wide temperature tolerance, and DLP-printable eutectogels for microarrays wearable strain sensors, Chem. Eng. J. 481 (2024) 149004.
[14] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors, ACS Appl. Mater. Interfaces 15(27) (2023) 33109-33118.
[15] C. Gu, M. Wang, K. Zhang, J. Li, Y.-L. Lu, Y. Cui, Y. Zhang, C.-S. Liu, A Full-Device Autonomous Self-Healing Stretchable Soft Battery from Self-Bonded Eutectogels, Adv. Mater. 35(6) (2023) 2208392.
[16] J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials, Prog. Polym. Sci. 78 (2018) 139-153.
[17] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9(8) (2021) 4890-4897.
[18] D. Du, J. Zhou, T. Kaneko, W. Dong, M. Chen, D. Shi, Stretchable and hydrophobic eutectogel for underwater human health monitoring based on hierarchical dynamic interactions, Chem. Eng. J. 474 (2023) 145704.
[19] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions, Chem. Mater. 33(13) (2021) 5189-5196.
[20] L. Fang, C. Zhang, W. Ge, M. Rong, F. Chen, Z. Chen, X. Wang, Z. Zheng, Q. Huang, Facile spinning of tough and conductive eutectogel fibers via Li+-induced dense hydrogen-bond networks, Chem. Eng. J. 478 (2023) 147405.
[21] K. Ajino, A. Torii, H. Ogawa, H. Mori, Synthesis of ion-conductive polymers by radical polymerization of deep eutectic monomers bearing quaternary ammonium groups with urea, Polymer 204 (2020) 122803.
[22] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity, Angew. Chem. Int. Ed. 58(13) (2019) 4173-4178.
[23] K. Fan, L. Wang, W. Wei, F. Wen, Y. Xu, X. Zhang, X. Guan, Multifunctional self-healing eutectogels induced by supramolecular assembly for smart conductive materials, interface lubrication and dye adsorption, Chem. Eng. J. 441 (2022) 136026.
[24] H. Qin, R.E. Owyeung, S.R. Sonkusale, M.J. Panzer, Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing, J. Mater. Chem. C 7(3) (2019) 601-608.
[25] M.B. Bianchi, C. Zhang, E. Catlin, G. Sandri, M. Calderón, E. Larrañeta, R.F. Donnelly, M.L. Picchio, A.J. Paredes, Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues, Mater. Today Bio 17 (2022) 100471.
[26] O. Alonso-López, S. López-Ibáñez, R. Beiras, Assessment of Toxicity and Biodegradability of Poly(vinyl alcohol)-Based Materials in Marine Water, Polymers 13(21) (2021) 3742.
[27] J. Yang, Y. Feng, B. Wang, J. Miao, S. Wei, H. Li, L. Mo, Z. Qin, Tough, multifunctional, and green double-network binary solvent eutectogel with in-situ generation of lignin nanoparticles based on one-step dual phase separations for wearable flexible strain sensors, Chem. Eng. J. 474 (2023) 145544.
[28] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[29] S. Chen, J. Feng, Facile Solvent Regulation for Highly Strong and Tough Physical Eutectogels with Remarkable Strain Sensitivity, ACS Appl. Mater. Interfaces 15(38) (2023) 44752-44762.
[30] Y. Wang, Y. Wang, L. Yan, Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors, Langmuir 38(40) (2022) 12189-12197.
[31] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.
[32] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[33] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces 13(45) (2021) 54409-54416.
[34] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[35] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[36] B. Briscoe, P. Luckham, S. Zhu, The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions, Polymer 41(10) (2000) 3851-3860.
[37] L. Wang, Y. Yu, X. Zhao, Z. Zhang, X. Yuan, J. Cao, W. Meng, L. Ye, W. Lin, G. Wang, A Biocompatible Self-Powered Piezoelectric Poly(vinyl alcohol)-Based Hydrogel for Diabetic Wound Repair, ACS Appl. Mater. Interfaces 14(41) (2022) 46273-46289.
References of supporting information
[1] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces 13(45) (2021) 54409-54416.
[2] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[3] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[4] H. Wang, J. Li, X. Yu, G. Yan, X. Tang, Y. Sun, X. Zeng, L. Lin, Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion, Carbohydr. Polym. 255 (2021) 117443.
[5] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[6] B. Huang, W. Liu, Y. Lan, Y. Huang, L. Fu, B. Lin, C. Xu, Highly ion-conducting, robust and environmentally stable poly(vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors, Chem. Eng. J. 480 (2024) 147888.
[7] J. Yang, Y. Feng, B. Wang, J. Miao, S. Wei, H. Li, L. Mo, Z. Qin, Tough, multifunctional, and green double-network binary solvent eutectogel with in-situ generation of lignin nanoparticles based on one-step dual phase separations for wearable flexible strain sensors, Chem. Eng. J. 474 (2023) 145544.
[8] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[9] S. Chen, J. Feng, Facile Solvent Regulation for Highly Strong and Tough Physical Eutectogels with Remarkable Strain Sensitivity, ACS Appl. Mater. Interfaces 15(38) (2023) 44752-44762.
[10] Y. Wang, Y. Wang, L. Yan, Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of PVA Chains for Tough and Reprocessable Eutectogels for Sensors, Langmuir 38(40) (2022) 12189-12197.
[11] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.

4-6 References
[1] S. Chaterji, I.K. Kwon, K. Park, Smart polymeric gels: Redefining the limits of biomedical devices, Prog. Polym. Sci. 32(8) (2007) 1083-1122.
[2] Y. Sun, X. Le, S. Zhou, T. Chen, Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting, Adv. Mater. 34(41) (2022) 2201262.
[3] H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics, Chem. Soc. Rev. 48(6) (2019) 1642-1667.
[4] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep Eutectic Solvents: A Review of Fundamentals and Applications, Chem. Rev. 121(3) (2021) 1232-1285.
[5] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114(21) (2014) 11060-11082.
[6] Z. Yang, Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents, Deep Eutectic Solvents2019, pp. 43-60.
[7] Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren, C. Shao, R. Sun, Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing, Nano Energy 98 (2022) 107284.
[8] Y. Zhang, Y. Wang, Y. Guan, Y. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions, Nat. Commun. 13(1) (2022) 6671.
[9] Y. Liu, X. Zhang, B. Li, H. Chen, H. Li, J. Chen, H. Dong, Super stable, highly ion-conductive and transparent eutecto-/hydro-gel promotes wearable electronic and visual strain sensing, J. Chem. Eng. 461 (2023) 141965.
[10] L.C. Tomé, D. Mecerreyes, Emerging Ionic Soft Materials Based on Deep Eutectic Solvents, J. Phys. Chem. B 124(39) (2020) 8465-8478.
[11] M.J. Panzer, Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels, Mater. Adv. 3(21) (2022) 7709-7725.
[12] T.H. Vo, P.K. Lam, Y.-J. Sheng, H.-K. Tsao, Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors, ACS Appl. Mater. Interfaces. 15(27) (2023) 33109-33118.
[13] Y. Xu, J. Cui, B. Guo, Z. Li, W. Wang, W. Li, Cellulose-based eutectogel electrolyte with high ionic conductivity for solid-state lithium-ion batteries, J. Chem. Eng. (2024) 151783.
[14] T.H. Vo, P.K. Lam, T.-F. Hsiao, C.-J.M. Chin, Y.-J. Sheng, H.-K. Tsao, One-step Fabrication of Physical Eutectogel with Recyclability: Crystalline Domain Regulation Induced by Microgels, J. Colloid Interface Sci. 659 (2024) 495-502.
[15] K. Fan, W. Wei, Z. Zhang, B. Liu, W. Feng, Y. Ma, X. Zhang, Highly stretchable, self-healing, and adhesive polymeric eutectogel enabled by hydrogen-bond networks for wearable strain sensor, J. Chem. Eng. 449 (2022) 137878.
[16] K. Zhang, R.a. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. A 9(8) (2021) 4890-4897.
[17] X. Sun, Y. Zhu, J. Zhu, K. Le, P. Servati, F. Jiang, Tough and Ultrastretchable Liquid-Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers, Adv. Funct. Mater. 32(29) (2022) 2202533.
[18] M. Isik, F. Ruiperez, H. Sardon, A. Gonzalez, S. Zulfiqar, D. Mecerreyes, Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers, Macromol. Rapid Commun. 37(14) (2016) 1135-1142.
[19] R.a. Li, T. Fan, G. Chen, K. Zhang, B. Su, J. Tian, M. He, Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers, Chem. Mater. 32(2) (2020) 874-881.
[20] R.a. Li, K. Zhang, G. Chen, B. Su, M. He, Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions, Chem. Mater. 33(13) (2021) 5189-5196.
[21] R.a. Li, T. Fan, G. Chen, H. Xie, B. Su, M. He, Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions, J. Chem. Eng. 393 (2020) 124685.
[22] J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-Assembled Gels Formed in Deep Eutectic Solvents: Supramolecular Eutectogels with High Ionic Conductivity, Angew. Chem., Int. Ed. Engl. 58(13) (2019) 4173-4178.
[23] T. Chen, X. Mai, L. Ma, Z. Li, J. Wang, S. Yang, Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability, ACS Appl. Polym. Mater. 4(5) (2022) 3982-3993.
[24] J. Wang, B. Zhan, S. Zhang, Y. Wang, L. Yan, Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol), ACS Appl. Polym. Mater. 4(3) (2022) 2057-2064.
[25] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Appl. Mater. Interfaces. 13(45) (2021) 54409-54416.
[26] N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels, Adv. Mater. 36(6) (2024) 2309576.
[27] H. Zhang, N. Tang, X. Yu, M.-H. Li, J. Hu, Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions, Adv. Funct. Mater. 32(41) (2022) 2206305.
[28] Y. Jia, G. Sciutto, A. Botteon, C. Conti, M.L. Focarete, C. Gualandi, C. Samorì, S. Prati, R. Mazzeo, Deep eutectic solvent and agar: a new green gel to remove proteinaceous-based varnishes from paintings, J. Cult. Herit. 51 (2021) 138-144.
[29] H. Qin, R.E. Owyeung, S.R. Sonkusale, M.J. Panzer, Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing, J. Mater. Chem. C 7(3) (2019) 601-608.
[30] J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links, Science 374(6564) (2021) 212-216.
[31] G. Nian, J. Kim, X. Bao, Z. Suo, Making Highly Elastic and Tough Hydrogels from Doughs, Adv. Mater. 34(50) (2022) 2206577.
[32] H. Ye, B. Wu, S. Sun, P. Wu, Self-compliant ionic skin by leveraging hierarchical hydrogen bond association, Nat. Commun. 15(1) (2024) 885.
[33] Y. Kamiyama, R. Tamate, T. Hiroi, S. Samitsu, K. Fujii, T. Ueki, Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers, Sci. Adv. 8(42) (2022) eadd0226.
[34] Y. Li, X. Feng, C. Sui, J. Xu, W. Zhao, S. Yan, Highly entangled elastomer with ultra-fast self-healing capability and high mechanical strength, J. Chem. Eng. 479 (2024) 147689.
[35] Y. Kamiyama, R. Tamate, K. Fujii, T. Ueki, Controlling mechanical properties of ultrahigh molecular weight ion gels by chemical structure of ionic liquids and monomers, Soft Matter 18(45) (2022) 8582-8590.
[36] Y.-C. Chiu, T.H. Vo, Y.-J. Sheng, H.-K. Tsao, Spontaneous Formation of Microgels for a 3D Printing Supporting Medium, ACS Appl. Polym. Mater. 5(1) (2023) 764-774.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明