博碩士論文 111223048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.22.216.188
姓名 汪聲瀚(Sheng-Han Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計與合成四苯乙烯鹽類及咔唑大環化合物之電洞傳輸材料並應用於反式鈣鈦礦太陽能電池
(Design and Synthesis of Tetraphenylethylene Salts and Carbazole-Based Macrocyclic Compounds as Hole Transporting Materials for Inverted Perovskite Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-5以後開放)
摘要(中) 本篇研究論文第一部份為合成含以四苯乙烯為主體,並接上吡啶化合物,外接上不同分子基團形成鹽類化合物,分別合成出TDP、TPE-PC8、TPE-PA、TPE-PN四種鹽類分子結構。鹽類分子可以鈣鈦礦層中未配位之鉛離子和鹵素離子結合,鈍化缺陷。其中TDP外接上三苯胺分子,形成D-A-D 型之分子結構。期望透過三苯胺分子及吡啶鹽之間形成良好的internal charge tranfer,提高載子遷移率。其餘三個鹽類化合物則在末端接上不同長碳鏈錨定基團,利用自主裝方式有序的吸附在層與層之間,能防止水氣進入,提升鈣鈦礦太陽能電池之穩定性。
  第二部份為大環分子之合成,我們選用咔唑為大環分子之中心核,並以Triazine分子當作橋梁,形成兩種不同大小D-A型之環分子。一方面,共軛環分子能形成環電流,增進電洞遷移率。另一方面,期望透過結構上氫鍵作用力形成有序堆疊之柱狀分子,提升晶粒尺寸,提升光電轉換效率。
摘要(英) The first part of this thesis focuses on the synthesis of salt compounds that contain tetraphenylethylene structures, connected with pyridine compounds. We designed four salt structures, TDP, TPE-PC8, TPE-PA, and TPE-PN. These salt molecules can bind to uncoordinated lead ions and halide ions in perovskite layers, thereby passivating defects. TDP connects with triphenylamine molecules, formed a D-A-D type molecular structure, hoping to enhance good internal charge transfer between triphenylamine molecules and pyridinium to enhance carrier mobility. The other three salt compounds are terminated with different anchoring groups of the carbon chain, adsorbing orderly between layers in terms of Self-Assembled Monolayers, preventing moisture and enhancing the stability of perovskite solar cells.
The second part involves the synthesis of macrocyclic molecules, with carbazole chosen as the central core and triazine molecules as bridges, forming two different-sized D-A type cyclic molecules. On one hand, conjugated cyclic molecules can generate ring currents, facilitating hole mobility. On the other hand, We expected that macrocyclic molecules order stacking of columnar molecules by hydrogen bonding interactions. By doing so, it gets the chance to increase grain size and enhance photovoltaic conversion efficiency.
關鍵字(中) ★ 四苯乙烯鹽類
★ 咔唑大環
★ 鈣鈦礦
關鍵字(英) ★ Tetraphenylethylene Salts
★ Carbazole-Based Macrocyclic Compounds
★ Perovskite
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
一、緒論 1
1-1 前言 1
1-2 太陽能電池發展 3
1-3 鈣鈦礦太陽能電池 4
1-3-1元件基本架構 6
1-3-2 鈣鈦礦太陽能電池作原理 11
1-3-3 太陽能電池光伏參數 12
1-4 鈣鈦礦太陽能電池元件製程 14
1-5 電動傳輸材料之文獻回顧 15
1-5-1 線型結構 (Linear-type) 15
1-5-2 星型結構 (Star-shape) 17
1-5-3 螺旋型結構 (Spiro-type) 20
1-5-4 不對稱型結構 (Asymmetric type) 22
二、結構設計概念及動機 24
2-1 Tetraphenylethylene Salts 24
2-2 Macrocyclic Compound 30
三、合成與討論 37
3-1 合成策略 37
3-1-1 Tetraphenylethylene Salts 37
3-1-2 Macrocyclic Compound 41
3-2 化合物之密度泛函理論計算 51
3-2-1 Tetraphenylethylene Salts 51
3-2-2 Macrocyclic Compound 52
3-3熱穩定性分析 60
3-3-1 Tetraphenylethylene Salts 60
3-3-2 Macrocyclic Compound 61
3-4 光學物理性質探討 62
3-4-1 Tetraphenylethylene Salts 62
3-4-2 Macrocyclic Compound 64
3-5 電化學性質 66
3-5-1 Tetraphenylethylene Salts 66
3-5-2 Macrocyclic Compound 70
四、結論與未來展望 74
4-1 Tetraphenylethylene Salts 74
4-2 Macrocyclic Compound 74
五、實驗合成與光譜數據 76
5-1實驗藥品 76
5-2 實驗儀器 76
5-3 實驗合成步驟 78
5-3-1 Tetraphenylethylene Salts 78
5-3-2 Macrocyclic Compound 87
參考文獻 99
附錄 104
參考文獻 [1]U.S. Energy Consumption Statistics,2023年9月6日,資料來源: https://www.rubyhome.com/blog/energy-consumption-stats/
[2]Vasylkovskyi, V.; Bespalova, I.; Slipchenko, M.; Slipchenko, O.; Zholudov, Y.; Chichkov, B. ‘‘Review: Electrochemiluminescence of Perovskite-Related Nanostructures.’’ Crystals 2023, 13, 455. 2023.
[3]Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. ‘‘Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.’’ J. Am. Chem. Soc. 2009, 131, 6050-6051.
[4]Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. ‘‘Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.’’ Sci. Rep. 2012, 2, 591.
[5] Best Research-Cell Efficiency Chart,2024年,資料來源: https://www.nrel.gov/pv/cell-efficiency.html
[6]Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., ‘‘Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.’’ Energy & Environmental Science 2015, 8 (5), 1602-1608.
[7] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. ‘‘Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.’’ Nano letters 2013, 13 (4), 1764-1769.
[8]Huang, Y.; Li, L.; Liu, Z.; Jiao, H.; He, Y.; Wang, X.; Zhu, R.; Wang, D.; Sun, J.; Chen, Q.; Zhou, H., ‘‘The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals.’’ Journal of Materials Chemistry A 2017, 5 (18), 8537-8544.
[9] Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. ‘‘Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.’’ Science 2018, 360 (6396), 1442-1446.
[10] Nasti, G.; Abate, A. ‘‘Tin halide perovskite (ASnX3) solar cells: a comprehensive guide toward the highest power conversion efficiency.’’ Advanced Energy Materials 2020, 10 (13), 1902467.
[11]Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. ‘‘A review of inorganic hole transport materials for perovskite solar cells.’’ Advanced Materials Interfaces 2018, 5 (22), 1800882.
[12]Li, S.; Cao, Y.-L.; Li, W.-H.; Bo, Z.-S. ‘‘A brief review of hole transporting materials commonly used in perovskite solar cells.’’Rare Metals 2021, 40 (10), 2712-2729.
[13]Duan, C.; Liu, Z.; Yuan, L.; Zhu, H.; Luo, H.; Yan, K. ‘‘PEDOT: PSS‐Metal Oxide Composite Electrode with Regulated Wettability and Work Function for High‐Performance Inverted Perovskite Solar Cells.’’ Advanced Optical Materials 2020, 8 (17), 2000216.
[14]Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. ‘‘Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.’’ Journal of photonics for energy 2016, 6 (2), 022001-022001.
[15] Wang, Y.-D.; Wang, Y.; Shao, J.-Y.; Lan, Y.; Lan, Z.-R.; Zhong, Y.-W.; Song, Y. ‘‘Defect Passivation by a D–A–D Type Hole-Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells.’’ ACS Energy Letters 2021, 6 (5), 2030-2037.
[16]Wang, Y.; Chen, Q.; Fu, J.; Liu, Z.; Sun, Z.; Zhang, S.; Zhu, Y.; Jia, X.; Zhang, J.; Yuan, N. ‘‘Annealing-and doping-free hole transport material for pin perovskite solar cells with efficiency achieving over 21%.’’ Chemical Engineering Journal 2022, 433, 133265.
[17]Li, X.-C.; Tu, Y.-G.; Meng, C.; Song, W.; Cheng, T.; Gong, Y.-T.; Min, J.; Zhu, R.; Lai, W.-Y.; Huang, W.‘‘Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells.’’ ACS Applied Materials & Interfaces 2019, 11 (49), 45717-45725.
[18]Urieta-Mora, J.; Zimmermann, I.; Arago, J.; Molina-Ontoria, A.; Orti, E.; Martín, N.; Nazeeruddin, M. K. ‘‘Dibenzoquinquethiophene-and dibenzosexithiophene-based hole-transporting materials for perovskite solar cells.’’ Chemistry of Materials 2018, 31 (17), 6435-6442.
[19]Chiu, Y.-L.; Li, C.-W.; Kang, Y.-H.; Lin, C.-W.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. ‘‘Dual-functional enantiomeric compounds as hole-transporting materials and interfacial layers in perovskite solar cells.’’ ACS Applied Materials & Interfaces 2022, 14 (22), 26135-26147.
[20]Qin, T.; Wu, F.; Ma, D.; Mu, Y.; Chen, X.; Yang, Z.; Zhu, L.; Zhang, Y.; Zhao, J.; Chi, Z. ‘‘Asymmetric sulfonyldibenzene-based hole-transporting materials for efficient perovskite solar cells: Inspiration from organic thermally-activated delayed fluorescence molecules.’’ ACS Materials Letters 2020, 2 (9), 1093-1100.
[21]Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G. ‘‘Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells.’’ Chemistry of Materials 2019, 31 (15), 5431-5441.
[22]Cheng, M.; Aitola, K.; Chen, C.; Zhang, F.; Liu, P.; Sveinbjörnsson, K.; Hua, Y.; Kloo, L.; Boschloo, G.; Sun, L. ‘‘Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells.’’ Nano Energy 2016, 30, 387-397.
[23]Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S. ‘‘Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite solar cells.’’ Advanced Functional Materials 2020, 30 (28), 2001460.
[24]Du, Y.; Wu, J.; Zhang, X.; Zhu, Q.; Zhang, M.; Liu, X.; Zou, Y.; Wang, S.; Sun, W. ‘‘Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells.’’ Journal of Energy Chemistry 2021, 52, 84-91.
[25]Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C. ‘‘Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH2) n-sulfonates: All-Round Improvement on the Solar Cell Performance.’’ JACS Au 2022, 2 (5), 1189-1199.
[26]Truong, M. A.; Funasaki, T.; Ueberricke, L.; Nojo, W.; Murdey, R.; Yamada, T.; Hu, S.; Akatsuka, A.; Sekiguchi, N.; Hira, S. ‘‘Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells.’’ Journal of the American Chemical Society 2023, 145 (13), 7528-7539.
[27]Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z. ‘‘Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement.’’ Journal of the American Chemical Society 2018, 140 (31), 10016-10024.
[28]Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P. M. ‘‘In situ synthesis of lead-free halide perovskite–COF nanocomposites as photocatalysts for photoinduced polymerization in both organic and aqueous phases.’’ ACS Materials Letters 2022, 4 (3), 464-471.
[29]Cao, J.; Liu, C.-K.; Piradi, V.; Loi, H.-L.; Wang, T.; Cheng, H.; Zhu, X.; Yan, F. ‘‘Ultrathin self-assembly two-dimensional metal–organic framework films as hole transport layers in ideal-bandgap perovskite solar cells.’’ ACS Energy Letters 2022, 7 (10), 3362-3369.
[30]Izumi, S.; Higginbotham, H. F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P. d.; Data, P.; Takeda, Y.; Minakata, S. ‘‘Thermally activated delayed fluorescent donor–acceptor–donor–acceptor π-conjugated macrocycle for organic light-emitting diodes.’’ Journal of the American Chemical Society 2020, 142 (3), 1482-1491.
[31]Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. ‘‘Host–Host Interactions Control Self‐assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co‐assembled with anti‐Electrostatic Bisulfate Dimers.’’ Chemistry–A European Journal 2018, 24 (39), 9841-9852.
[32]Wang, J.; Zheng, A.; Xiang, Y.; Liu, J. ‘‘BN-Embedded Cycloarenes: One-Pot Borylation Synthesis, Photoelectric Properties, and Application in Perovskite Solar Cells.’’ Journal of the American Chemical Society 2023, 145 (27), 14912-14921.
[33]Zhang, N.; Yang, L.; Li, W.; Zhu, J.; Chi, K.; Chang, D.; Qiao, Y.; Wang, T.; Zhao, Y.; Lu, X. ‘‘Alkyl-substituted N, S-embedded heterocycloarenes with a planar aromatic configuration for hosting fullerenes and organic field-effect transistors.’’ Journal of the American Chemical Society 2022, 144 (47), 21521-21529.
[34]Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L. ‘‘Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance.’’ ChemSusChem 2021, 14, 4354-4376.
指導教授 李文仁(Wen-Ren Li) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明