參考文獻 |
1. Peterson, G.W. and G.W. Wagner, Detoxification of chemical warfare agents by CuBTC. Journal of Porous Materials, 2014. 21(2): p. 121-126.
2. Rose, S.P.R., D. Pavett, and B.P. Library, CBW: Chemical and Biological Warfare. 1969: Beacon Press.
3. Kim, K., et al., Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 2011. 111(9): p. 5345-5403.
4. Munro, N., Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection. Environmental Health Perspectives, 1994. 102(1): p. 18-37.
5. Costanzi, S., J.-H. Machado, and M. Mitchell, Nerve Agents: What They Are, How They Work, How to Counter Them. ACS Chemical Neuroscience, 2018. 9(5): p. 873-885.
6. Das, M.K., et al., Fluorometric detection of a chemical warfare agent mimic (DCP) using a simple hydroxybenzothiazole–diaminomaleonitrile based chemodosimeter. New Journal of Chemistry, 2023. 47(1): p. 250-257.
7. Saxena, A., et al., Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants. Carbon letters, 2005. 6: p. 158-165.
8. Maji, A., et al., A chemodosimetric approach for the visual detection of nerve agent simulant diethyl chlorophosphate (DCP) in liquid and vapour phase. Analytical Methods, 2023. 15(46): p. 6417-6424.
9. Agrawal, M., et al., How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior? The Journal of Physical Chemistry C, 2018. 122(45): p. 26061-26069.
10. Patil, L.A., et al., Sensing of 2-chloroethyl ethyl sulfide (2-CEES) – a CWA simulant – using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique. Sensors and Actuators B: Chemical, 2011. 160(1): p. 234-243.
11. Tuccitto, N., et al., Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano Materials, 2020. 3(8): p. 8182-8191.
12. Patil, L.A., et al., Improved 2-CEES sensing performance of spray pyrolized Ru-CdSnO3 nanostructured thin films. Sensors and Actuators B: Chemical, 2014. 191: p. 130-136.
13. Tomchenko, A.A., G.P. Harmer, and B.T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors. Sensors and Actuators B: Chemical, 2005. 108(1): p. 41-55.
14. Ramirez-Cedeno, M.L., et al., Remote Detection of Hazardous Liquids Concealed in Glass and Plastic Containers. IEEE Sensors Journal, 2010. 10(3): p. 693-698.
15. Mondloch, J.E., et al., Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015. 14(5): p. 512-516.
16. Giannakoudakis, D.A., J.K. Mitchell, and T.J. Bandosz, Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. Journal of Materials Chemistry A, 2016. 4(3): p. 1008-1019.
17. Verma, M., R. Chandra, and V.K. Gupta, Synthesis of magnetron sputtered WO3 nanoparticles-degradation of 2-chloroethyl ethyl sulfide and dimethyl methyl phosphonate. Journal of Colloid and Interface Science, 2015. 453: p. 60-68.
18. López-Maya, E., et al., Textile/Metal–Organic-Framework Composites as Self-Detoxifying Filters for Chemical-Warfare Agents. Angewandte Chemie International Edition, 2015. 54(23): p. 6790-6794.
19. Vernekar, A.A., T. Das, and G. Mugesh, Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angewandte Chemie International Edition, 2016. 55(4): p. 1412-1416.
20. Sun, B., A.V. Vorontsov, and P.G. Smirniotis, Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2. Journal of Hazardous Materials, 2011. 186(2): p. 1147-1153.
21. Asha, P., M. Sinha, and S. Mandal, Effective removal of chemical warfare agent simulants using water stable metal–organic frameworks: mechanistic study and structure–property correlation. RSC Advances, 2017. 7(11): p. 6691-6696.
22. Rowsell, J.L.C. and O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004. 73(1): p. 3-14.
23. Maurin, G., et al., The new age of MOFs and of their porous-related solids. Chemical Society Reviews, 2017. 46(11): p. 3104-3107.
24. Zhou, L., et al., Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous and Mesoporous Materials, 2019. 290.
25. Yuan, S., et al., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018. 30(37): p. 1704303.
26. Liu, Y., et al., Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017. 346: p. 101-111.
27. Kalaj, M., et al., Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chemical Communications, 2019. 55(37): p. 5367-5370.
28. Ji, P., et al., Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. Journal of the American Chemical Society, 2017. 139(20): p. 7004-7011.
29. Ermer, M., et al., Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor. Dalton Trans, 2018. 47(41): p. 14426-14430.
30. Kubowicz, S. and A.M. Booth, Biodegradability of Plastics: Challenges and Misconceptions. Environmental Science & Technology, 2017. 51(21): p. 12058-12060.
31. Ragon, F., et al., In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorganic Chemistry, 2014. 53(5): p. 2491-2500.
32. Okumura, T., et al., The Tokyo subway sarin attack—lessons learned. Toxicology and Applied Pharmacology, 2005. 207(2, Supplement): p. 471-476.
33. Roy, A., et al., Degradation of sarin, DEClP and DECNP over Cu-BTC metal organic framework. Journal of Porous Materials, 2013. 20(5): p. 1103-1109.
34. Liang, H., et al., Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters. ACS Appl Mater Interfaces, 2018. 10(24): p. 20396-20403.
35. Roy, A., et al., Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework. Dalton Transactions, 2012. 41(40): p. 12346-12348.
36. Wu, S., et al., Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. Journal of Chemical Research, 2022. 46(6): p. 17475198221138061.
37. Dhakshinamoorthy, A., et al., Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019. 11(3): p. 899-923.
38. Biswas, S. and P. Van Der Voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. European Journal of Inorganic Chemistry, 2013. 2013(12): p. 2154-2160.
39. Gibbons, B., et al., Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorganic Chemistry, 2021. 60(21): p. 16378-16387.
40. Van Le, D., et al., Synthesis of a UiO-66/g-C3N4 composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon. RSC Advances, 2022. 12(35): p. 22367-22376.
41. Cliffe, M.J., et al., Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework. Journal of the American Chemical Society, 2017. 139(15): p. 5397-5404.
42. Senthil Raja, D., et al., Synthesis of mixed ligand and pillared paddlewheel MOFs using waste polyethylene terephthalate material as sustainable ligand source. Microporous and Mesoporous Materials, 2016. 231: p. 186-191.
43. Ubaidullah, M., et al., Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. Journal of Energy Storage, 2021. 33: p. 102125.
44. Lo, S.-H., et al., Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016. 45(23): p. 9565-9573.
45. Wang, Y., et al., Green Synthesis of CoZn-Based Metal–Organic Framework (CoZn-MOF) from Waste Polyethylene Terephthalate Plastic As a High-Performance Anode for Lithium-Ion Battery Applications. ACS Applied Materials & Interfaces, 2024. 16(1): p. 819-832.
46. Dyosiba, X., et al., Feasibility of Varied Polyethylene Terephthalate Wastes as a Linker Source in Metal–Organic Framework UiO-66(Zr) Synthesis. Industrial & Engineering Chemistry Research, 2019. 58(36): p. 17010-17016.
47. Chen, X., et al., Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis, 2020. 10(5): p. 2906-2914.
48. Joly, F., et al., Optimization of the synthesis of UiO-66(Zr) in ionic liquids. Microporous and Mesoporous Materials, 2019. 288.
49. Moll, B., et al., Modulated synthesis of thiol-functionalized fcu and hcp UiO-66(Zr) for the removal of silver(i) ions from water. Materials Advances, 2021. 2(2): p. 804-812.
50. Lee, J., et al., Mixed-matrix membrane reactors for the destruction of toxic chemicals. Journal of Membrane Science, 2020. 605: p. 118112.
51. Zhao, J., et al., Ultra-Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie International Edition, 2016. 55(42): p. 13224-13228.
52. Fang, X., et al., High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms. Applied Surface Science, 2020. 518.
53. Peh, S.B., et al., Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr(12) metal-organic frameworks. Dalton Trans, 2019. 48(21): p. 7069-7073.
54. Clark, C.A., et al., Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. ACS Sustainable Chemistry & Engineering, 2019. 7(7): p. 6619-6628.
55. Sun, X., et al., Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chemical Engineering Journal, 2014. 239: p. 226-232.
56. Zeleňák, V., et al., Layer-pillared zinc(II) metal–organic framework built from 4,4′-azo(bis)pyridine and 1,4-BDC. Microporous and Mesoporous Materials, 2010. 129(3): p. 354-359.
57. Nakamoto, K., Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. 2009: John Wiley & Sons.
58. Han, Y., et al., Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015. 17(33): p. 6434-6440.
59. Ermer, M., et al., UiO‐66 and hcp UiO‐66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. ChemistryOpen, 2020. 10(2): p. 233-242.
60. Shearer, G.C., et al., Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
61. Slater, B., et al., Missing Linker Defects in a Homochiral Metal–Organic Framework: Tuning the Chiral Separation Capacity. Journal of the American Chemical Society, 2017. 139(50): p. 18322-18327.
62. Shearer, G.C., et al., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
63. Willems, T.F., et al., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials, 2012. 149(1): p. 134-141.
64. Sava Gallis, D.F., et al., Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments. Journal of Materials Chemistry A, 2018. 6(7): p. 3038-3045.
65. Alam, T.M., et al., Sub-Equimolar Hydrolysis and Condensation of Organophosphates. ChemistrySelect, 2016. 1(11): p. 2698-2705.
66. Chen, R., et al., Layer-by-Layer Fabrication of Core–Shell Fe3O4@UiO-66-NH2 with High Catalytic Reactivity toward the Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2019. 11(46): p. 43156-43165.
67. Mahato, T.H., et al., Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide. Microporous and Mesoporous Materials, 2010. 132(1): p. 15-21. |