博碩士論文 109623602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.14.251.43
姓名 蒙馬林(Merlin Malonzo Mendoza)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱
(On the Motion of Solar Pores and its Manifestations on Observable Physical Quantities at the Photosphere)
相關論文
★ 日冕物質拋射運動性質分析★ 製作太陽全時影像以研究日冕洞隨時間的變化
★ Multi-Thermal analysis of Solar Dynamic Events Using Differential Emission Measure★ 日冕洞與開放磁場區的特性與差異以及長期觀測
★ 發展縮小像素以提高偏振光譜影像解析度之方法★ 利用Spectropolarimetry(分光偏振法)探討太陽大氣結構變化對輻射光譜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 太陽小黑斑是光球層中的小黑點,是具有集中的磁通量但沒有半影的小黑點。它們經常被觀察到在其整個生命週期中會展現水平運動。我們從 Spaceweather HMI Active Region Patches (SHARP)在 2011 年至 2018 年間的影像找到 61 個緊湊型太陽小黑斑,研究它們的水平運動與其可觀察到的物理量之間是否存在任何關係。我們的結果顯示,小黑斑運動的方向(ϕt)和最大正磁壓差的方向 (ϕdPo)通常是平行或反平行的、平行的情況比反平行的情況多。我們的分析也顯示,移動小黑斑前端的磁場比後方的磁場更傾斜,水平和徑向磁場比後方的更強。,而且小黑斑在外層(內層)的前(後)方平均較亮。研究19 對雙極性小黑斑的研究顯示,ϕdPo 在北(南)半球略微指向北(南)。同ㄧ對的前導和後導小黑斑的⟨∆Pmag⟩的符號總是相反,我們稱之為 ∆Pmag 規則。最後平行和反平行情況的相關係數都高於 0.74。儘管相關性很高,使用轉移熵(transfer entropy)進行的因果關係分析顯示,ϕt 與 ϕdPo 之間沒有因果關係。
摘要(英) Solar pores are small dark spots in the photosphere with concen-
trated magnetic flux and without a penumbra. They are often observed
to exhibit horizontal motions throughout their lifetime. We examine 61
compact solar pores identified from the Spaceweather HMI Active Re-
gion Patches (SHARP) from 2011 to 2018 to investigate whether any
relationships may exist between the pore movement and its observable
physical quantities. Our results show that the direction of movement
(ϕt) and the direction of maximum positive magnetic pressure differ-
ence (ϕdPo) of the solar pores are often either parallel or anti-parallel,
with more parallel cases than the anti-parallel cases. Our analysis also
indicates that the magnetic fields at the front side of the moving pores
are more likely to be more inclined with stronger horizontal and radial
fields than those at the back side, and that the pores are on average
brighter at the front (back) sides of their outer (inner) layer. An exam-
ination of 19 pairs of bipolar pores reveal that ϕdPo is slightly pointing
towards the north (south) in the northern (southern) hemisphere, and
the signs of ⟨∆Pmag⟩ for the leading and trailing pores of the pair are
always opposite, which we call the ∆Pmag rule. Finally, the correlation
coefficients between ϕt and ϕdPo are both higher than 0.74 for the par-
allel and anti-parallel cases. Despite the high correlation, the causality
analysis using transfer entropy reveal no causal relationships between ϕt
and ϕdPo
關鍵字(中) ★ solar physics
★ solar pores
★ solar magnetic fields
★ solar magnetic flux emergence
★ transfer entropy
★ causality analysis
關鍵字(英) ★ Solar physics
★ solar pores
★ solar magnetic fields
★ solar magnetic flux emergence
★ transfer entropy
★ causality analysis
論文目次 Table of Contents


Abstract..............................................................................................
i
Acknowledgements.............................................................................. iii
目錄 (Table of Contents) .................................................................... v
圖目錄 (Figures).................................................................................vii
表目錄 (Tables) ..................................................................................xxi
一、
Introduction.................................................................. 1
二、
Data and Methodology ................................................. 5
2.1
Data Source
. . . . . . . . . . . . . . . . . . . . . .
5
2.2
Selection of Pores
. . . . . . . . . . . . . . . . . . .
6
2.3
Trajectories of the Moving Pores . . . . . . . . . . . 10
2.4
Determination of the Outer and Inner Layers
. . . . 12
2.5
Front-Back Differences of the Physical Quantities . . 12
2.6
Maximum Positive Differences of Physical Quantities
14
2.7
Causality Investigation
. . . . . . . . . . . . . . . . 15
三、
Results .......................................................................... 19
3.1
Front-Back Differences of the Physical Quantities . . 19
3.1.1
Binary Histograms . . . . . . . . . . . . . . . . . . . 19
3.1.2
Fine-binned Histograms . . . . . . . . . . . . . . . . 25
3.2
Relationships Between Different Physical Quantities . 50
3.3
Relationships Between the Direction of Motion and
the Direction of Maximum Positive Differences of
the Physical Quantities
. . . . . . . . . . . . . . . . 52
3.3.1
All pores . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2
⟨∆Pmag⟩ Category . . . . . . . . . . . . . . . . . . . 58
3.3.3
Hemisphere Category
. . . . . . . . . . . . . . . . . 58
3.3.4
Magnetic Polarity Category . . . . . . . . . . . . . . 61
3.3.5
Bipolar Pairs Category and the ∆Pmag Rule . . . . . 68
v
3.4
Transfer Entropies Between ϕt vs. ϕdPo
. . . . . . . 69
四、
Discussion ..................................................................... 73
五、
Conclusion .................................................................... 77
六、
Future Work.................................................................. 79
Appendix ............................................................................................ 85
A.1
Identification of Pores . . . . . . . . . . . . . . . . . 85
A.2
Determination of the Outer and Inner Layers
. . . . 85
A.3
Transfer Entropy . . . . . . . . . . . . . . . . . . . . 88
A.4
Categories with Low Number of Temporal Points . . 93
A.5
Exceptions in Figure 3.36. . . . . . . . . . . . . . . . 111
A.6
Higher Inclination Angle at Front Side of the Moving
Pore . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
參考文獻 References (from Page 81 - 84)

[1] M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu,
K. Hayashi, G. Barnes, and K. D. Leka.
The Helioseismic and
Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs
- Space-Weather HMI Active Region Patches. , 289(9):3549–3578,
September 2014.
[2] P. N. Brandt, W. Schmidt, and M. Steinegger. On the Umbra /
Penumbra Area Ratio of Sunspots. , 129(1):191–194, September
1990.
[3] Robert John Bray and Ralph Edwin Loughhead. Sunspots. 1964.
[4] R. Cameron, M. Schüssler, A. Vögler, and V. Zakharov. Radiative
magnetohydrodynamic simulations of solar pores. , 474(1):261–272,
October 2007.
[5] M. C. M. Cheung, M. Rempel, A. M. Title, and M. Schüssler. Sim-
ulation of the Formation of a Solar Active Region. , 720(1):233–244,
September 2010.
[6] Dean-Yi Chou and Haimin Wang.
The Separation Velocity of
Emerging Magnetic Flux. , 110(1):81–99, March 1987.
[7] Yuhong Fan. Magnetic Fields in the Solar Convection Zone. Living
Reviews in Solar Physics, 6(1):4, December 2009.
[8] M. García-Rivas, J. Jurčák, and N. Bello González. Magnetic prop-
erties on the boundary of an evolving pore. , 649:A129, May 2021.
[9] George E. Hale and Seth B. Nicholson. The Law of Sun-Spot Po-
larity. , 62:270, November 1925.
81
[10] SL Keil, KS Balasubramaniam, LUIGI ANTONIO Smaldone, and
B Reger.
Velocities in solar pores.
The Astrophysical Journal,
510(1):422, 1999.
[11] R. Keppens. Sunspot Pores. In P. Murdin, editor, Encyclopedia of
Astronomy and Astrophysics, page 2043. 2000.
[12] Greg Kopp and Douglas Rabin. A Relation Between Magnetic Field
Strength and Temperature in Sunspots. , 141(2):253–265, October
1992.
[13] A. G. Kosovichev and J. O. Stenflo. Tilt of Emerging Bipolar Mag-
netic Regions on the Sun. , 688(2):L115, December 2008.
[14] Merlin M. Mendoza, Yu-Chi Chang, Alexei V. Dmitriev, Chia-Hsien
Lin, Lung-Chih Tsai, Yung-Hui Li, Mon-Chai Hsieh, Hao-Wei Hsu,
Guan-Han Huang, Yu-Ciang Lin, and Enkhtuya Tsogtbaatar. Re-
covery of ionospheric signals using fully convolutional densenet and
its challenges. Sensors, 21(19), September 2021.
[15] Merlin M Mendoza and Chia-Hsien Lin. Association between mag-
netic pressure difference and the movement of solar pores.
The
Astrophysical Journal, 946(1):9, 2023.
[16] Eugene N. Parker.
Hydromagnetic Dynamo Models.
, 122:293,
September 1955.
[17] V Martinez Pillet and M Vázquez. The continuum intensity mag-
netic field relation in sunspot umbrae. In International Astronom-
ical Union Colloquium, volume 141, pages 60–62. Cambridge Uni-
versity Press, 1993.
[18] M. Rempel and M. C. M. Cheung. Numerical Simulations of Active
Region Scale Flux Emergence: From Spot Formation to Decay. ,
785(2):90, April 2014.
[19] Matthias Rempel and Rolf Schlichenmaier.
Sunspot Modeling:
From Simplified Models to Radiative MHD Simulations.
Living
Reviews in Solar Physics, 8(1):3, December 2011.
82
[20] P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bog-
art, J. T. Hoeksema, Y. Liu, T. L. Duvall, J. Zhao, A. M. Title,
C. J. Schrijver, T. D. Tarbell, and S. Tomczyk. The Helioseismic
and Magnetic Imager (HMI) Investigation for the Solar Dynamics
Observatory (SDO). , 275(1-2):207–227, January 2012.
[21] H. U. Schmidt. Magnetohydrodynamics of an Active Region. In
Karl Otto Kiepenheuer, editor, Structure and Development of Solar
Active Regions, volume 35, page 95, January 1968.
[22] G. W. Simon and N. O. Weiss. On the Magnetic Field in Pores. ,
13(1):85–103, July 1970.
[23] M. Sobotka. Solar activity II: Sunspots and pores. Astronomische
Nachrichten, 324(4):369–373, January 2003.
[24] Sami K. Solanki. Sunspots: An overview. , 11(2-3):153–286, Jan-
uary 2003.
[25] N V Steshenko. Magnetic fields of small sunspots and pores. Izv.
Krym. Astrofiz. Observ., 37: 21-8(1967).
[26] Haimin Wang and Harold Zirin. Flows around sunspots and pores.
Solar physics, 140:41–54, 1992.
[27] Simon Wing, Jay R. Johnson, Enrico Camporeale, and Geoffrey D.
Reeves. Information theoretical approach to discovering solar wind
drivers of the outer radiation belt. Journal of Geophysical Research
(Space Physics), 121(10):9378–9399, October 2016.
[28] Simon Wing, Jay R. Johnson, and Angelos Vourlidas. Information
Theoretic Approach to Discovering Causalities in the Solar Cycle.
, 854(2):85, February 2018.
[29] Zhe Xu, Haisheng Ji, Junchao Hong, Kaifan Ji, and Jiayan Yang.
Magnetic field evolution around a fast-moving pore emerging from
the quiet Sun. , 660:A55, April 2022.
[30] Zhe Xu, Haisheng Ji, Kaifan Ji, Yi Bi, Bo Yang, Junchao Hong, and
Jiayan Yang. Localized Amplification of Magnetic Field in the Solar
83
Photosphere Associated with a Rapid Moving Pore. , 900(2):L17,
September 2020.
[31] Zhike Xue, Xiaoli Yan, Liheng Yang, Jie Chen, Jincheng Wang,
Qiaoling Li, and Li Zhao. Decay of Solar Pores Driven by Small-
scale Magnetic Reconnection Episodes. , 919(2):L29, October 2021.
指導教授 林佳賢(Chia-Hsien Lin) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明