博碩士論文 111324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.118.20.77
姓名 林柏諺(Po-Yen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 建立耐氧光聚合連續流反應器
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料
★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響★ 基於動態鍵的多功能丙烯酸交聯劑
★ 連續微流道反應器中進行防污聚合物篩選★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層
★ 高度纏結的雙離子水凝膠★ Lubricant and Anti-fouling Coatings for Silicone Catheter
★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能★ 聚胜肽電解質材料合成及其性質研究分析
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 相較於傳統批次反應器,流動式反應器具備一些明顯的優勢,包括均勻混合、熱量與質量傳送效率高、易於控制停留時間、高再現性等。因此,流動反應器系統可通過選擇合適之反應參數,快速確定其最佳反應條件,並應用於大規模生產以增加生產效率。
因此在本研究中,我們使用聚全氟乙烯丙烯 (Fluorinated Ethylene Propylene) 透明管作為連續反應器,以綠色LED光作為光聚合的光源。此外,我們還利用泵控制器自動調整各種反應參數,如停留時間、單體濃度和光催化劑/單體比例,以及使用自動樣品收集器對產物進行分類。此外,由於其簡單的設計和低成本,這種管狀連續反應器適用於擴大生產和降低合成成本。它還可以用於高通量合成,以快速篩選共聚物組成,從而實現對各種聚合物的快速合成和分析。在本實驗中,丙烯醯胺表現出更好的反應活性和轉化率。因此,我們以磺基甜菜鹼丙烯醯胺(Sulfobetaine Acrylamide) 和丙烯醯甘氨(Acryloylglycine) 為基礎,合成了約為25,000 g/mol的共聚物。磺基甜菜鹼丙烯醯胺提供抗菌和抗污垢的效果。而丙烯酰甘氨則可以通過氫鍵修飾於316不鏽鋼基板上。通過核磁共振氫譜 (Nuclear Magnetic Resonance Spectroscopy) 譜學鑑定共聚物的結構和轉化率,然後使用凝膠滲透層析 (Gel Permeation Chromatography) 確認不同條件下的分子量。最後,我們通過將共聚物接枝到不銹鋼基板上進行表面修飾,並使用水接觸角測量儀確認其親水性。使用X射線光電子能譜儀 (X-ray photoelectron spectroscopy) 和衰減全反射傅立葉變換紅外光譜儀 (Attenuated Total Reflection-Fourier Transform Infrared Spectrometer) 驗證塗層的表面組成。進行細菌和蛋白質附著測試以評估塗層的抗污垢性能。
摘要(英) Compared to traditional batch reactors, flow reactors offer several notable advantages, including uniform mixing, high efficiency of heat and mass transfer, ease of controlling residence time, and high reproducibility. Therefore, flow reactor systems can rapidly determine optimal reaction conditions through appropriate selection of reaction parameters and can be applied to large-scale production to increase production efficiency.
In this study, a fluorinated ethylene propylene (FEP) transparent tubing was utilized as a continuous reactor, with green LED light serving as the light source for photopolymerization. Additionally, we utilized a pump controller to automatically adjust various reaction parameters, such as residence time, monomer concentration, and photocatalyst/monomer ratio, and an automatic sample collector to sort products. Furthermore, this tubular continuous reactor, due to its simple design and low cost, is suitable for scaling up production and reducing synthesis costs. It can also be used for high-throughput synthesis to screen copolymer compositions rapidly, thereby enabling the rapid synthesis and analysis of a wide range of polymers. In this experiment, acrylamide showed better reactivity and conversion. Therefore, we synthesized a copolymer with a molecular weight of approximately 25,000 g/mole based on sulfobetaine acrylamide (SBAA) and acryloylglycine (AG). Sulfobetaine acrylamide has the effect of antibacterial and antifouling. Acryloylglycine can be modified on the 316 stainless steel substrates through hydrogen bonding. The copolymers were identified using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine their structures and conversion rates, followed by gel permeation chromatography (GPC) to confirm molecular weights under different conditions. Finally, we modified stainless steel substrates by grafting the copolymers, and their hydrophilicity was confirmed using a water contact angle measurement instrument. The surface composition of the coatings was verified using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Bacterial and protein attachment tests were conducted to assess the anti-fouling properties of the coatings.
關鍵字(中) ★ 連續式反應器
★ 流動化學
★ 高通量
★ 可見光氧化還原劑
★ 光聚合
關鍵字(英) ★ Continuous Flow reactor
★ Flow chemistry
★ High throughput
★ Photoredox
★ Photopolymerization
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
化學品名詞簡稱 XII
共聚物名詞簡稱 XIII
一、 文獻回顧 1
1-1批次反應器 1
1-2連續式微反應器 2
1-2-1 管式微反應器 2
1-2-2聚全氟乙烯丙烯管 (FEP tube) 4
1-2-3 氧氣對光聚合反應之影響 5
1-2-4自動化控制 6
1-3高通量合成 8
1-3-1 製程分析技術 (Process Analytical Technology, PAT) 9
1-3-2 全因子設計 9
1-4光起始自由基聚合反應 10
1-4-1可逆加成-斷裂鏈轉移 (Reversible Addition-Fragmentation Chain Transfer, RAFT) 10
1-4-2光誘導能量轉移-可逆加成-斷裂鏈轉移 (Photoinduced Energy Transfer-Reversible Addition-Fragmentation Chain Transfer, PET-RAFT) 11
1-5 表面修飾 13
1-5-1 表面接枝 13
1-5-2 羧酸官能基接枝於金屬表面 13
1-6 抗吸附單體 14
1-6-1 雙離子材料 14
1-6-2 磺基甜菜鹼丙烯醯胺 (Sulfobetaine acrylamide, SBAA) 15
二、 研究目的 16
三、 實驗藥品及實驗方法 17
3-1實驗藥品與設備 17
3-1-1實驗藥品清單 17
3-1-2儀器設備清單 19
3-1-3連續式微流道光反應器設計 21
3-2材料製備 24
3-2-1 磺基甜菜鹼甲基丙烯酸 (Sulfobetaine methacrylate, SBMA) 24
3-2-2 磺基甜菜鹼丙烯酸酯 (Sulfobetaine acrylate, SBA) 24
3-2-3磺基甜菜鹼丙烯醯胺 (Sulfobetaine acrylamide, SBAA) 25
3-2-4丙烯醯胺基乙酸 (Acryloylglycine, AG) 25
3-2-5 合成PHEMA 26
3-2-6 合成PHEA 26
3-2-7 合成PSBMA 26
3-2-8 合成PSBA 26
3-2-9 合成PSBAA 27
3-2-10 合成Poly(SBAA-ran-AG)高分子 27
3-2-11 316不鏽鋼基材製備 27
3-3分析方法 28
3-3-1 液態核磁共振氫譜 (1H NMR) 28
3-3-2 凝膠滲透層析儀 (Gel Permeation Chromatogragh, GPC) 28
3-3-3 紫外光/可見光分光光譜儀 (Ultraviolet Visible Spectroscopy, UV-VIS) 29
3-3-4 Poly(SBAA-ran-AG)高分子修飾316不鏽鋼表面 29
3-3-5 衰減式全反射傅立葉轉換紅外線光譜儀 (Attenuated Total Reflectance-Fourier-Transform Infrared Sepectroscopy, ATR-FTIR) 29
3-3-6 薄膜厚度之量測 (Ellipsometry) 30
3-3-7 水接觸角量測 (Water Contact Angle) 30
3-3-8 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS)表面元素鑑定 30
3-3-9 細菌貼附測試 (Bacteria Attachment) 31
3-3-10 蛋白質貼附測試 (Protein Adhesion) 31
3-3-11統計學分析 32
四、 結果討論 33
4-1 光聚合反應 33
4-1-1 光聚合反應於聚全氟乙烯丙烯管 (FEP) 33
4-1-2 PET-RAFT光催化劑選擇 34
4-1-3 光反應器設計優化 37
4-2 高通量篩選 40
4-2-1 SBA單體結構鑑定 (1H NMR) 40
4-2-2 SBMA單體結構鑑定 (1H NMR) 41
4-2-3 SBAA單體結構鑑定 (1H NMR) 42
4-2-4 PET-RAFT於不同單體之適用性 43
4-2-5 Poly(SBAA-ran-AG) 高分子結構鑑定 (1H NMR) 46
4-2-6還原劑與光催化劑添加量對轉化率之影響 47
4-2-7 還原劑與光催化劑添加量對分子量之影響 49
4-2-8 單體濃度與滯留時間對轉化率之影響 50
4-2-9 單體濃度與滯留時間對分子量之影響 52
4-2-10 光照強度對轉化率之影響 54
4-2-11 光照強度對分子量之影響 56
4-2-12 分液收集連續圖譜 57
4-3 表面薄膜分析 59
4-3-1 不鏽鋼表面官能基分析 (ATR-FTIR) 59
4-3-2 表面元素鑑定 (XPS) 60
4-2-3 不鏽鋼表面薄膜厚度 (Ellipsometer) 62
4-3-4 不鏽鋼表面親水性能測試 (Water Contact Angle) 63
4-4 不鏽鋼表面抗吸附測試 65
4-4-1 抗細菌貼附測試 65
4-4-2 抗蛋白質沾黏測試 68
五、 結論 69
六、 未來展望 70
參考文獻 71
參考文獻 1. Bukhtiyarova, M. V., Nuzhdin, A. L., & Bukhtiyarova, G. A. (2023). Comparative Study of Batch and Continuous Flow Reactors in Selective Hydrogenation of Functional Groups in Organic Compounds: What Is More Effective? International Journal of Molecular Sciences, 24(18), 14136. doi: 10.3390/ijms241814136
2. Cambie, D., Bottecchia, C., Straathof, N. J., Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116(17), 10276-10341. doi: 10.1021/acs.chemrev.5b00707
3. Hafeez, S., Manos, G., Al-Salem, S. M., Aristodemou, E., & Constantinou, A. (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry & Engineering, 3(4), 414-432. doi: 10.1039/c8re00040a
4. Ilare, J., Sponchioni, M., Storti, G., & Moscatelli, D. (2020). From batch to continuous free-radical solution polymerization of acrylic acid using a stirred tank reactor. Reaction Chemistry & Engineering, 5(11), 2081-2090. doi: 10.1039/D0RE00252F
5. Di Filippo, M., Bracken, C., & Baumann, M. (2020). Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 25(2), 356. doi: 10.3390/molecules25020356
6. Steiner, A., Roth, P. M. C., Strauss, F. J., Gauron, G., Tekautz, G., Winter, M., Williams, J. D., & Kappe, C. O. (2020). Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Organic Process Research & Development, 24(10), 2208-2216. doi: 10.1021/acs.oprd.0c00239
7. Waldron, C., Pankajakshan, A., Quaglio, M., Cao, E., Galvanin, F., & Gavriilidis, A. (2020). Model-based design of transient flow experiments for the identification of kinetic parameters. Reaction Chemistry & Engineering, 5(1), 112-123. doi: 10.1039/C9RE00342H
8. Dong, Z., Wen, Z., Zhao, F., Kuhn, S., & Noël, T. (2021). Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 10, 100097. doi: 10.1016/j.cesx.2021.100097
9. Han, C., Deng, J., Wang, K., & Luo, G. (2021). Continuous-flow synthesis of polymethylsilsesquioxane spheres in a microreaction system. Powder Technology, 390, 521-528. doi: 10.1016/j.powtec.2021.05.086
10. Berton, M., Souza, J. M. d., Souza, J. M. d., Abdiaj, I., McQuade, D. T., & Snead, D. R. (2020). Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 10, 73-92. doi: 10.1007/s41981-019-00060-x
11. Su, Y., Song, Y., & Xiang, L. (2018). Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Topics in current chemistry, 376(6), 44. doi: 10.1007/s41061-018-0224-1
12. Watts, P., & Wiles, C. (2013). Microreactors in Organic Chemistry and Catalysis, Second Edition (pp. 133-149).
13. Nagaki, A., & Yoshida, J.-i. (2012). Controlled Polymerization in Flow Microreactor Systems (Vol. 259).
14. Cataldo, F. (2017). URIDINE AS PHOTOCHEMICAL ACTINOMETER: APPLICATION TO LED-UV FLOW REACTORS. European Chemical Bulletin, 6, 405-409. doi: 10.17628/ecb.2017.6.405-409
15. Galante, A. M. S., Galante, O. L., & Campos, L. L. (2010). Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1), 177-180. doi: 10.1016/j.nima.2009.10.103
16. Melker, A., Fors, B. P., Hawker, C. J., & Poelma, J. E. (2015). Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 53(23), 2693-2698. doi: 10.1002/pola.27765
17. O′Brien, A., & Bowman, C. (2006). Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure. Macromolecules, 39. doi: 10.1021/ma051863l
18. Fu, Q., Ruan, Q., McKenzie, T. G., Reyhani, A., Tang, J., & Qiao, G. G. (2017). Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C3N4). Macromolecules, 50, 7509-7516. doi: 10.1021/ACS.MACROMOL.7B01651
19. Nomeir, B., Fabre, O., & Ferji, K. (2019). Effect of Tertiary Amines on the Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization. Macromolecules, 52(18), 6898-6903. doi: 10.1021/acs.macromol.9b01493
20. Belon, C., Allonas, X., Croutxé-barghorn, C., & Lalevée, J. (2010). Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effect of triphenylphosphine. Journal of Polymer Science Part A: Polymer Chemistry, 48(11), 2462-2469. doi: 10.1002/pola.24017
21. Ligon, S. C., Husár, B., Wutzel, H., Holman, R., & Liska, R. (2014). Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chemical Reviews, 114(1), 557-589. doi: 10.1021/cr3005197
22. Lincoln Kotsuka da, S., Mauro Antonio da Silva Sá, R., Giovani Pissinati, M., & Marcia Marcondes Altimari, S. (2008). Reactor network synthesis for isothermal conditions. Acta Scientiarum. Technology, 30(2). doi: 10.4025/actascitechnol.v30i2.5494
23. Alcántara, R., Canoira, L., Conde, R., Fernández-Sánchez, J., & Navarro, A. (1994). Automation of a fixed-bed continuous–flow reactor. The Journal of automatic chemistry, 16, 187-193. doi: 10.1155/S1463924694000234
24. Hayes, R. E., & Mmbaga, J. P. (2012). Introduction to Chemical Reactor Analysis (pp. 564). Boca Raton: CRC Press.
25. Plutschack, M. B., Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). The Hitchhiker’s Guide to Flow Chemistry. Chemical Reviews, 117(18), 11796-11893. doi: 10.1021/acs.chemrev.7b00183
26. Gilman, J., Bourbigot, S., Shields, J., Nyden, M., Kashiwagi, T., Davis, R., Vanderhart, D., Demory, W., Wilkie, C., Morgan, A., Harris, J., & Lyon, R. (2003). High throughput methods for polymer nanocomposites research: Extrusion, NMR characterization and flammability property screening. Journal of Materials Science, 38, 4451-4460. doi: 10.1023/A:1027369115480
27. Morato, N. M., Le, M. T., Holden, D. T., & Graham Cooks, R. (2021). Automated High-Throughput System Combining Small-Scale Synthesis with Bioassays and Reaction Screening. SLAS Technology, 26(6), 555-571. doi: 10.1177/24726303211047839
28. Paula, D. A.-O., & Andow, D. A. (2023). DNA High-Throughput Sequencing for Arthropod Gut Content Analysis to Evaluate Effectiveness and Safety of Biological Control Agents. Neotropical entomology, 52(2), 302–332. doi: 10.1007/s13744-022-01011-3
29. Bensch, M., Selbach, B., & Hubbuch, J. (2007). High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous two-phase systems. Chemical Engineering Science, 62(7), 2011-2021. doi: 10.1016/j.ces.2006.12.053
30. Pacocha, N., Bogusławski, J., Horka, M., Makuch, K., Liżewski, K., Wojtkowski, M., & Garstecki, P. (2021). High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Analytical Chemistry, 93(2), 843-850. doi: 10.1021/acs.analchem.0c03408
31. Yu, J., Liu, J., Li, C., Huang, J., Zhu, Y., & You, H. (2024). Recent advances and applications in high-throughput continuous flow. Chemical Communications, 60(24), 3217-3225. doi: 10.1039/D3CC06180A
32. Zhou, G., & C.-y, C. (2012). 9.18 Industrial Applications of Process Analytical Technology to Asymmetric Synthesis (Vol. 9, pp. 457-482).
33. Clegg, I. (2020). Chapter 7 - Process analytical technology. In C. M. Riley, T. W. Rosanske, & G. Reid (Eds.), Specification of Drug Substances and Products (Second Edition) (pp. 149-173): Elsevier.
34. JMP. (2021). Introduction to Design of Experiments (DOE): Classic Screening Design and Full Factorial Design. from https://community.jmp.com/t5/JMP-Blog/%E5%AF%A6%E9%A9%97%E8%A8%AD%E8%A8%88-DOE-%E5%85%A5%E9%96%80-%E7%B6%93%E5%85%B8%E7%AF%A9%E9%81%B8%E8%A8%AD%E8%A8%88%E8%88%87%E5%85%A8%E5%9B%A0%E5%AD%90%E8%A8%AD%E8%A8%88/ba-p/423195
35. Croisant, M., Bretz, S., & Konkolewicz, D. (2019). Investigating Radical Reactivity and Structure–Property Relationships through Photopolymerization. Journal of Chemical Education, 96. doi: 10.1021/acs.jchemed.8b00506
36. Milton, L. A., Viglione, M. S., Ong, L. J. Y., Nordin, G. P., & Toh, Y.-C. (2023). Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications. Lab on a Chip, 23(16), 3537-3560. doi: 10.1039/D3LC00094J
37. LeValley, P. J., Noren, B., Kharkar, P. M., Kloxin, A. M., Gatlin, J. C., & Oakey, J. S. (2018). Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation. ACS Biomaterials Science & Engineering, 4(8), 3078-3087. doi: 10.1021/acsbiomaterials.8b00350
38. Perrier, S. (2017). 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules, 50(19), 7433-7447. doi: 10.1021/acs.macromol.7b00767
39. Tian, X., Ding, J., Zhang, B., Qiu, F., Zhuang, X., & Chen, Y. (2018). Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers, 10(3), 318. doi: 10.3390/polym10030318
40. Zaquen, N., Kadir, A. M. N. B. P. H. A., Iasa, A., Corrigan, N., Junkers, T., Zetterlund, P. B., & Boyer, C. (2019). Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 52(4), 1609-1619. doi: 10.1021/acs.macromol.8b02628
41. Lee, Y., Boyer, C., & Kwon, M. S. (2023). Photocontrolled RAFT polymerization: past, present, and future. Chemical Society Reviews, 52(9), 3035-3097. doi: 10.1039/D1CS00069A
42. Xu, J., Shanmugam, S., Duong, H. T., & Boyer, C. (2015). Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polymer Chemistry, 6(31), 5615-5624. doi: 10.1039/c4py01317d
43. Lu, H., Huang, Y., Zhang, E., Liu, Y., Lv, F., Liu, L., Ma, Y., & Wang, S. (2021). Photocontrolled RAFT Polymerization Catalyzed by Conjugated Polymers under Aerobic Aqueous Conditions. ACS Macro Letters, 10(8), 996-1001. doi: 10.1021/acsmacrolett.1c00416
44. Kaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science, 38(4), 951-955. doi: 10.1007/s12034-015-0949-1
45. Ngo, B. K. D., & Grunlan, M. A. (2017). Protein Resistant Polymeric Biomaterials. ACS Macro Letters, 6(9), 992-1000. doi: 10.1021/acsmacrolett.7b00448
46. Minko, S. (2008). Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods (pp. 215-234): Springer Berlin Heidelberg.
47. Yu, L. Y., Zhu, B., Cai, X., Wang, Y. W., Han, R. H., & Li, Y. W. (2016). Review of Polymer Surface Modification Method. Materials Science Forum, 852, 626-631. doi: 10.4028/www.scientific.net/MSF.852.626
48. Thery, S., Jacquet, D., & Mantel, M. (1996). A Study of Chemical Interactions at the Stainless Steel/Polymer Interface by Infrared Spectroscopy. Part 1: Interaction Mechanisms Between Succinic Anhydride and 304 Stainless Steel. The Journal of Adhesion, 56(1-4), 1-13. doi: 10.1080/00218469608010495
49. Pujari, S. P., Scheres, L., Marcelis, A. T. M., & Zuilhof, H. (2014). Covalent Surface Modification of Oxide Surfaces. Angewandte Chemie International Edition, 53(25), 6322-6356. doi: 10.1002/anie.201306709
50. Qu, Q., Geng, H., Peng, R., Cui, Q., Gu, X., Li, F., & Wang, M. (2010). Chemically Binding Carboxylic Acids onto TiO2 Nanoparticles with Adjustable Coverage by Solvothermal Strategy. Langmuir, 26(12), 9539-9546. doi: 10.1021/la100121n
51. Cao, B., Tang Q Fau - Cheng, G., & Cheng, G. (2014). Recent advances of zwitterionic carboxybetaine materials and their derivatives. Polymer edition, 25(14-15), 1502–1513. doi: 10.1080/09205063.2014.927300
52. Park, J., Nam, J., Won, N., Jin, H., Jung, S., Jung, S.-u., Cho, S.-H., & Kim, S. (2011). Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface: Specific Cell Interactions and Non‐Specific Adsorptions by the Surface Charges. Advanced Functional Materials, 21. doi: 10.1002/adfm.201001924
53. He, M., Gao, K., Zhou, L., Jiao, Z., Wu, M., Cao, J., You, X., Cai, Z., Su, Y., & Jiang, Z. (2016). Zwitterionic materials for antifouling membrane surface construction. Acta biomaterialia, 40, 142–152. doi: 10.1016/j.actbio.2016.03.038
54. Fischer, M., Maitz, M. F., & Werner, C. (2018). 7 - Coatings for biomaterials to improve hemocompatibility. In C. A. Siedlecki (Ed.), Hemocompatibility of Biomaterials for Clinical Applications (pp. 163-190): Woodhead Publishing.
55. Ishihara, K., Oshida H Fau - Endo, Y., Endo Y Fau - Ueda, T., Ueda T Fau - Watanabe, A., Watanabe A Fau - Nakabayashi, N., & Nakabayashi, N. (1992). Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of biomedical materials research, 26, 1543–1552. doi: 10.1002/jbm.820261202
56. Belanger, A., Decarmine, A., Jiang, S., Cook, K., & Amoako, K. A. (2019). Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. Langmuir, 35(5), 1984-1988. doi: 10.1021/acs.langmuir.8b03078
57. Yamamoto, M., Sakakibara, Y., Nishimura, K., Komeda, M., & Tabata, Y. (2003). Improved Therapeutic Efficacy in Cardiomyocyte Transplantation for Myocardial Infarction with Release System of Basic Fibroblast Growth Factor. Artificial Organs, 27(2), 181-184. doi: 10.1046/j.1525-1594.2003.06993.x
58. Smith, R. S., Zhang Z Fau - Bouchard, M., Bouchard M Fau - Li, J., Li J Fau - Lapp, H. S., Lapp Hs Fau - Brotske, G. R., Brotske Gr Fau - Lucchino, D. L., Lucchino Dl Fau - Weaver, D., Weaver D Fau - Roth, L. A., Roth La Fau - Coury, A., Coury A Fau - Biggerstaff, J., Biggerstaff J Fau - Sukavaneshvar, S., Sukavaneshvar S Fau - Langer, R., Langer R Fau - Loose, C., & Loose, C. (2012). Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Science translational medicine, 4(153), 153ra132. doi: 10.1126/scitranslmed.3004120
59. Ning, J., Kubota, K., Li, G., & Haraguchi, K. (2013). Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive & Functional Polymers, 73, 969-978. doi: 10.1016/J.REACTFUNCTPOLYM.2012.11.005
60. Racovita, S., Trofin, M.-A., Loghin, D. F., Zaharia, M.-M., Bucatariu, F., Mihai, M., & Vasiliu, S. (2021). Polybetaines in Biomedical Applications. International Journal of Molecular Sciences, 22(17), 9321. doi: 10.3390/ijms22179321
61. Kahsay, G., Song H Fau - Van Schepdael, A., Van Schepdael A Fau - Cabooter, D., Cabooter D Fau - Adams, E., & Adams, E. (2014). Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. Journal of pharmaceutical and biomedical analysis, 87, 142–154. doi: 10.1016/j.jpba.2013.04.015
62. Yang, Y., Boysen, R. I., & Hearn, M. T. W. (2009). Hydrophilic interaction chromatography coupled to electrospray mass spectrometry for the separation of peptides and protein digests. Journal of Chromatography A, 1216(29), 5518-5524. doi: 10.1016/j.chroma.2009.05.085
63. Yu, D., Guo, Z., Shen, A., Yan, J., Dong, X., Jin, G., Long, Z., Liang, L., & Liang, X. (2016). Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase. Talanta, 161, 860-866. doi: 10.1016/j.talanta.2016.09.003
64. Liu, Y., Chen, G., & Yue, J. (2020). Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. Journal of Flow Chemistry, 10(1), 103-121. doi: 10.1007/s41981-019-00062-9
65. Bates, A. (2013). The Inverse-Square Law with Data Loggers. The Physics Teacher, 51(5), 290-291. doi: 10.1119/1.4801357
66. Ringeard, J. M., Griesmar, P., Caplain, E., Michiel, M., Serfaty, S., Le Huerou, J.-Y., Marinkova, D., & Yotova, L. (2013). Design of poly(N-acryloylglycine) materials for incorporation of microorganisms. Journal of Applied Polymer Science, 130. doi: 10.1002/app.39242
67. Barbucci, R., Casolaro, M., Magnani, A., Roncolini, C., & Ferruti, P. (1989). Vinyl polymers containing amido and carboxylic groups as side substituents: I. Synthesis of N-acryloyl-glycine and N-acryloyl-6-caproic acid and their grafting on cellulose membranes. Polymer, 30(9), 1751-1757. doi: 10.1016/0032-3861(89)90341-8
68. Zaborniak, I., & Chmielarz, P. (2021). Riboflavin-mediated radical polymerization – Outlook for eco-friendly synthesis of functional materials. European Polymer Journal, 142, 110152. doi: 10.1016/j.eurpolymj.2020.110152
69. Orellana, B. U., Rufs, A. M., Encinas, M. V., Previtali, C. M., & Bertolotti, S. G. (1999). The Photoinitiation Mechanism of Vinyl Polymerization by Riboflavin/Triethanolamine in Aqueous Medium. Macromolecules, 32, 6570-6573. doi: 10.1021/MA990946X
70. Koschitzki, F., Wanka, R., Sobota, L., Gardner, H., Hunsucker, K. Z., Swain, G. W., & Rosenhahn, A. (2021). Amphiphilic Zwitterionic Acrylate/Methacrylate Copolymers for Marine Fouling-Release Coatings. Langmuir, 37(18), 5591-5600. doi: 10.1021/acs.langmuir.1c00428
71. Lacík, I., Chovancová, A., Uhelská, L., Preusser, C., Hutchinson, R. A., & Buback, M. (2016). PLP-SEC Studies into the Propagation Rate Coefficient of Acrylamide Radical Polymerization in Aqueous Solution. Macromolecules, 49(9), 3244-3253. doi: 10.1021/acs.macromol.6b00526
72. De Sterck, B., Vaneerdeweg, R., Du Prez, F., Waroquier, M., & Van Speybroeck, V. (2010). Solvent Effects on Free Radical Polymerization Reactions: The Influence of Water on the Propagation Rate of Acrylamide and Methacrylamide. Macromolecules, 43(2), 827-836. doi: 10.1021/ma9018747
73. Figg, C. A., Hickman, J. D., Scheutz, G. M., Shanmugam, S., Carmean, R. N., Tucker, B. S., Boyer, C., & Sumerlin, B. S. (2018). Color-Coding Visible Light Polymerizations To Elucidate the Activation of Trithiocarbonates Using Eosin Y. Macromolecules, 51(4), 1370-1376. doi: 10.1021/acs.macromol.7b02533
74. Wang, W., Xie, W.-Y., Wang, G.-X., Xu, W., & Liang, E. (2021). PET-RAFT copolymerization of vinyl acetate and acrylic acid. Iranian Polymer Journal, 30(1), 1-7. doi: 10.1007/s13726-020-00868-8
75. Kozhunova, E. Y., Plutalova, A. V., & Chernikova, E. V. (2022). RAFT Copolymerization of Vinyl Acetate and Acrylic Acid in the Selective Solvent. Polymers, 14(3), 555. doi: 10.3390/polym14030555
76. Lissi, E. A., & Moya, M. (1980). Influence of monomer activity coefficient upon polymerization rate. European Polymer Journal, 16, 543-545. doi: 10.1016/0014-3057(80)90139-1
77. Barner-Kowollik, C., Vana, P., & Davis, T. P. (2002). The Kinetics of Free-Radical Polymerization Handbook of Radical Polymerization (pp. 187-261).
78. Zheng, H., Liao, Y., Zheng, M., Zhu, C., Ji, F., Ma, J., & Fan, W. (2014). Photoinitiated polymerization of cationic acrylamide in aqueous solution: synthesis, characterization, and sludge dewatering performance. TheScientificWorldJournal, 2014, 465151. doi: 10.1155/2014/465151
79. Chen, J. (2022). Why Should the Reaction Order of a Bimolecular Reaction be 2.33 Instead of 2? The Journal of Physical Chemistry A, 126(51), 9719-9725. doi: 10.1021/acs.jpca.2c07500
80. Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N., & Feng, L. (2018). An Effective Flocculation Method to the Kaolin Wastewater Treatment by a Cationic Polyacrylamide (CPAM): Preparation, Characterization, and Flocculation Performance. International Journal of Polymer Science, 2018(1), 5294251. doi: 10.1155/2018/5294251
81. Wanek, E. (1986). Polyimides, synthesis, characterization, and applications, Volume 1. K. L. Mittal, Ed., Plenum, New York, 1984, 614 pp. Price: $89.50. Journal of Polymer Science Part C: Polymer Letters, 24(6), 295-296. doi: 10.1002/pol.1986.140240619
82. Lin, J. T., Liu, H. W., Chen, K. T., & Cheng, D. C. (2019). Modeling the Kinetics, Curing Depth, and Efficacy of Radical-Mediated Photopolymerization: The Role of Oxygen Inhibition, Viscosity, and Dynamic Light Intensity. Frontiers in chemistry, 7, 760. doi: 10.3389/fchem.2019.00760
83. Désilles, N., Gautrelet, C., Lecamp, L., Lebaudy, P., & Bunel, C. (2005). Effect of UV light scattering during photopolymerization on UV spectroscopy measurements. European Polymer Journal, 41(6), 1296-1303. doi: 10.1016/j.eurpolymj.2004.12.019
84. Abedin, F., Ye, Q., Camarda, K., & Spencer, P. (2016). Impact of light intensity on the polymerization kinetics and network structure of model hydrophobic and hydrophilic methacrylate based dental adhesive resin. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(8), 1666-1678. doi: 10.1002/jbm.b.33517
85. Wydra, J. W., Cramer, N. B., Stansbury, J. W., & Bowman, C. N. (2014). The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization. Dental materials : official publication of the Academy of Dental Materials, 30(6), 605–612. doi: 10.1016/j.dental.2014.02.021
86. Kim, Y.-W., Eom, G. T., Hong, J.-S., & Chung, K.-W. (2011). Fatty Acid Alkyl Esters as Feedstocks for the Enzymatic Synthesis of Alkyl Methacrylates and Polystyrene-co-alkyl Methacrylates for use as Cold Flow Improvers in Diesel Fuels. Journal of the American Oil Chemists′ Society, 88(11), 1727-1736. doi: 10.1007/s11746-011-1834-8
87. Jansen, R. J. J., & van Bekkum, H. (1995). XPS of nitrogen-containing functional groups on activated carbon. Carbon, 33, 1021-1027. doi: 10.1016/0008-6223(95)00030-H
88. Kehrer, M., Duchoslav, J., Hinterreiter, A., Cobet, M., Mehic, A., Stehrer, T., & Stifter, D. (2019). XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Processes and Polymers, 16(4), 1800160. doi: https://doi.org/10.1002/ppap.201800160
89. Perumal, S. A.-O. X., Atchudan, R. A.-O., & Lee, Y. R. (2022). Synthesis of Water-Dispersed Sulfobetaine Methacrylate-Iron Oxide Nanoparticle-Coated Graphene Composite by Free Radical Polymerization. Polymers, 14(18), 3885. doi: 10.3390/polym14183885
90. Macke, N., Hemmingsen, C. M., & Rowan, S. J. (2022). The effect of polymer grafting on the mechanical properties of PEG‐grafted cellulose nanocrystals in poly(lactic acid). Journal of Polymer Science, 60(24), 3318-3330. doi: 10.1002/pol.20220127
91. Guazzelli, E., Galli, G., & Martinelli, E. (2020). The Effect of Poly(ethylene glycol) (PEG) Length on the Wettability and Surface Chemistry of PEG-Fluoroalkyl-Modified Polystyrene Diblock Copolymers and Their Two-Layer Films with Elastomer Matrix. Polymers, 12(6), 1236. doi: 10.3390/polym12061236
92. Otsuka, H., Nagasaki, Y., & Kataoka, K. (2000). Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Science and Technology of Advanced Materials, 1(1), 21-29. doi: https://doi.org/10.1016/S1468-6996(99)00003-0
93. Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going. Annual review of biomedical engineering, 6, 41–75. doi: 10.1146/annurev.bioeng.6.040803.140027
94. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953. doi: 10.1016/j.biomaterials.2008.04.023
95. Cho, E. C., Kong, H., Oh, T. B., & Cho, K. (2012). Protein adhesion regulated by the nanoscale surface conformation. Soft Matter, 8(47), 11801-11808. doi: 10.1039/C2SM27204K
96. Yang, W., Xue, H., Li, W., Zhang, J., & Jiang, S. (2009). Pursuing “Zero” Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir, 25(19), 11911-11916. doi: 10.1021/la9015788
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明