參考文獻 |
1. Bukhtiyarova, M. V., Nuzhdin, A. L., & Bukhtiyarova, G. A. (2023). Comparative Study of Batch and Continuous Flow Reactors in Selective Hydrogenation of Functional Groups in Organic Compounds: What Is More Effective? International Journal of Molecular Sciences, 24(18), 14136. doi: 10.3390/ijms241814136
2. Cambie, D., Bottecchia, C., Straathof, N. J., Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116(17), 10276-10341. doi: 10.1021/acs.chemrev.5b00707
3. Hafeez, S., Manos, G., Al-Salem, S. M., Aristodemou, E., & Constantinou, A. (2018). Liquid fuel synthesis in microreactors. Reaction Chemistry & Engineering, 3(4), 414-432. doi: 10.1039/c8re00040a
4. Ilare, J., Sponchioni, M., Storti, G., & Moscatelli, D. (2020). From batch to continuous free-radical solution polymerization of acrylic acid using a stirred tank reactor. Reaction Chemistry & Engineering, 5(11), 2081-2090. doi: 10.1039/D0RE00252F
5. Di Filippo, M., Bracken, C., & Baumann, M. (2020). Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 25(2), 356. doi: 10.3390/molecules25020356
6. Steiner, A., Roth, P. M. C., Strauss, F. J., Gauron, G., Tekautz, G., Winter, M., Williams, J. D., & Kappe, C. O. (2020). Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Organic Process Research & Development, 24(10), 2208-2216. doi: 10.1021/acs.oprd.0c00239
7. Waldron, C., Pankajakshan, A., Quaglio, M., Cao, E., Galvanin, F., & Gavriilidis, A. (2020). Model-based design of transient flow experiments for the identification of kinetic parameters. Reaction Chemistry & Engineering, 5(1), 112-123. doi: 10.1039/C9RE00342H
8. Dong, Z., Wen, Z., Zhao, F., Kuhn, S., & Noël, T. (2021). Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 10, 100097. doi: 10.1016/j.cesx.2021.100097
9. Han, C., Deng, J., Wang, K., & Luo, G. (2021). Continuous-flow synthesis of polymethylsilsesquioxane spheres in a microreaction system. Powder Technology, 390, 521-528. doi: 10.1016/j.powtec.2021.05.086
10. Berton, M., Souza, J. M. d., Souza, J. M. d., Abdiaj, I., McQuade, D. T., & Snead, D. R. (2020). Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 10, 73-92. doi: 10.1007/s41981-019-00060-x
11. Su, Y., Song, Y., & Xiang, L. (2018). Continuous-Flow Microreactors for Polymer Synthesis: Engineering Principles and Applications. Topics in current chemistry, 376(6), 44. doi: 10.1007/s41061-018-0224-1
12. Watts, P., & Wiles, C. (2013). Microreactors in Organic Chemistry and Catalysis, Second Edition (pp. 133-149).
13. Nagaki, A., & Yoshida, J.-i. (2012). Controlled Polymerization in Flow Microreactor Systems (Vol. 259).
14. Cataldo, F. (2017). URIDINE AS PHOTOCHEMICAL ACTINOMETER: APPLICATION TO LED-UV FLOW REACTORS. European Chemical Bulletin, 6, 405-409. doi: 10.17628/ecb.2017.6.405-409
15. Galante, A. M. S., Galante, O. L., & Campos, L. L. (2010). Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1), 177-180. doi: 10.1016/j.nima.2009.10.103
16. Melker, A., Fors, B. P., Hawker, C. J., & Poelma, J. E. (2015). Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 53(23), 2693-2698. doi: 10.1002/pola.27765
17. O′Brien, A., & Bowman, C. (2006). Impact of Oxygen on Photopolymerization Kinetics and Polymer Structure. Macromolecules, 39. doi: 10.1021/ma051863l
18. Fu, Q., Ruan, Q., McKenzie, T. G., Reyhani, A., Tang, J., & Qiao, G. G. (2017). Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C3N4). Macromolecules, 50, 7509-7516. doi: 10.1021/ACS.MACROMOL.7B01651
19. Nomeir, B., Fabre, O., & Ferji, K. (2019). Effect of Tertiary Amines on the Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) Polymerization. Macromolecules, 52(18), 6898-6903. doi: 10.1021/acs.macromol.9b01493
20. Belon, C., Allonas, X., Croutxé-barghorn, C., & Lalevée, J. (2010). Overcoming the oxygen inhibition in the photopolymerization of acrylates: A study of the beneficial effect of triphenylphosphine. Journal of Polymer Science Part A: Polymer Chemistry, 48(11), 2462-2469. doi: 10.1002/pola.24017
21. Ligon, S. C., Husár, B., Wutzel, H., Holman, R., & Liska, R. (2014). Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chemical Reviews, 114(1), 557-589. doi: 10.1021/cr3005197
22. Lincoln Kotsuka da, S., Mauro Antonio da Silva Sá, R., Giovani Pissinati, M., & Marcia Marcondes Altimari, S. (2008). Reactor network synthesis for isothermal conditions. Acta Scientiarum. Technology, 30(2). doi: 10.4025/actascitechnol.v30i2.5494
23. Alcántara, R., Canoira, L., Conde, R., Fernández-Sánchez, J., & Navarro, A. (1994). Automation of a fixed-bed continuous–flow reactor. The Journal of automatic chemistry, 16, 187-193. doi: 10.1155/S1463924694000234
24. Hayes, R. E., & Mmbaga, J. P. (2012). Introduction to Chemical Reactor Analysis (pp. 564). Boca Raton: CRC Press.
25. Plutschack, M. B., Pieber, B., Gilmore, K., & Seeberger, P. H. (2017). The Hitchhiker’s Guide to Flow Chemistry. Chemical Reviews, 117(18), 11796-11893. doi: 10.1021/acs.chemrev.7b00183
26. Gilman, J., Bourbigot, S., Shields, J., Nyden, M., Kashiwagi, T., Davis, R., Vanderhart, D., Demory, W., Wilkie, C., Morgan, A., Harris, J., & Lyon, R. (2003). High throughput methods for polymer nanocomposites research: Extrusion, NMR characterization and flammability property screening. Journal of Materials Science, 38, 4451-4460. doi: 10.1023/A:1027369115480
27. Morato, N. M., Le, M. T., Holden, D. T., & Graham Cooks, R. (2021). Automated High-Throughput System Combining Small-Scale Synthesis with Bioassays and Reaction Screening. SLAS Technology, 26(6), 555-571. doi: 10.1177/24726303211047839
28. Paula, D. A.-O., & Andow, D. A. (2023). DNA High-Throughput Sequencing for Arthropod Gut Content Analysis to Evaluate Effectiveness and Safety of Biological Control Agents. Neotropical entomology, 52(2), 302–332. doi: 10.1007/s13744-022-01011-3
29. Bensch, M., Selbach, B., & Hubbuch, J. (2007). High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous two-phase systems. Chemical Engineering Science, 62(7), 2011-2021. doi: 10.1016/j.ces.2006.12.053
30. Pacocha, N., Bogusławski, J., Horka, M., Makuch, K., Liżewski, K., Wojtkowski, M., & Garstecki, P. (2021). High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria. Analytical Chemistry, 93(2), 843-850. doi: 10.1021/acs.analchem.0c03408
31. Yu, J., Liu, J., Li, C., Huang, J., Zhu, Y., & You, H. (2024). Recent advances and applications in high-throughput continuous flow. Chemical Communications, 60(24), 3217-3225. doi: 10.1039/D3CC06180A
32. Zhou, G., & C.-y, C. (2012). 9.18 Industrial Applications of Process Analytical Technology to Asymmetric Synthesis (Vol. 9, pp. 457-482).
33. Clegg, I. (2020). Chapter 7 - Process analytical technology. In C. M. Riley, T. W. Rosanske, & G. Reid (Eds.), Specification of Drug Substances and Products (Second Edition) (pp. 149-173): Elsevier.
34. JMP. (2021). Introduction to Design of Experiments (DOE): Classic Screening Design and Full Factorial Design. from https://community.jmp.com/t5/JMP-Blog/%E5%AF%A6%E9%A9%97%E8%A8%AD%E8%A8%88-DOE-%E5%85%A5%E9%96%80-%E7%B6%93%E5%85%B8%E7%AF%A9%E9%81%B8%E8%A8%AD%E8%A8%88%E8%88%87%E5%85%A8%E5%9B%A0%E5%AD%90%E8%A8%AD%E8%A8%88/ba-p/423195
35. Croisant, M., Bretz, S., & Konkolewicz, D. (2019). Investigating Radical Reactivity and Structure–Property Relationships through Photopolymerization. Journal of Chemical Education, 96. doi: 10.1021/acs.jchemed.8b00506
36. Milton, L. A., Viglione, M. S., Ong, L. J. Y., Nordin, G. P., & Toh, Y.-C. (2023). Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications. Lab on a Chip, 23(16), 3537-3560. doi: 10.1039/D3LC00094J
37. LeValley, P. J., Noren, B., Kharkar, P. M., Kloxin, A. M., Gatlin, J. C., & Oakey, J. S. (2018). Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation. ACS Biomaterials Science & Engineering, 4(8), 3078-3087. doi: 10.1021/acsbiomaterials.8b00350
38. Perrier, S. (2017). 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules, 50(19), 7433-7447. doi: 10.1021/acs.macromol.7b00767
39. Tian, X., Ding, J., Zhang, B., Qiu, F., Zhuang, X., & Chen, Y. (2018). Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers, 10(3), 318. doi: 10.3390/polym10030318
40. Zaquen, N., Kadir, A. M. N. B. P. H. A., Iasa, A., Corrigan, N., Junkers, T., Zetterlund, P. B., & Boyer, C. (2019). Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 52(4), 1609-1619. doi: 10.1021/acs.macromol.8b02628
41. Lee, Y., Boyer, C., & Kwon, M. S. (2023). Photocontrolled RAFT polymerization: past, present, and future. Chemical Society Reviews, 52(9), 3035-3097. doi: 10.1039/D1CS00069A
42. Xu, J., Shanmugam, S., Duong, H. T., & Boyer, C. (2015). Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polymer Chemistry, 6(31), 5615-5624. doi: 10.1039/c4py01317d
43. Lu, H., Huang, Y., Zhang, E., Liu, Y., Lv, F., Liu, L., Ma, Y., & Wang, S. (2021). Photocontrolled RAFT Polymerization Catalyzed by Conjugated Polymers under Aerobic Aqueous Conditions. ACS Macro Letters, 10(8), 996-1001. doi: 10.1021/acsmacrolett.1c00416
44. Kaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science, 38(4), 951-955. doi: 10.1007/s12034-015-0949-1
45. Ngo, B. K. D., & Grunlan, M. A. (2017). Protein Resistant Polymeric Biomaterials. ACS Macro Letters, 6(9), 992-1000. doi: 10.1021/acsmacrolett.7b00448
46. Minko, S. (2008). Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods (pp. 215-234): Springer Berlin Heidelberg.
47. Yu, L. Y., Zhu, B., Cai, X., Wang, Y. W., Han, R. H., & Li, Y. W. (2016). Review of Polymer Surface Modification Method. Materials Science Forum, 852, 626-631. doi: 10.4028/www.scientific.net/MSF.852.626
48. Thery, S., Jacquet, D., & Mantel, M. (1996). A Study of Chemical Interactions at the Stainless Steel/Polymer Interface by Infrared Spectroscopy. Part 1: Interaction Mechanisms Between Succinic Anhydride and 304 Stainless Steel. The Journal of Adhesion, 56(1-4), 1-13. doi: 10.1080/00218469608010495
49. Pujari, S. P., Scheres, L., Marcelis, A. T. M., & Zuilhof, H. (2014). Covalent Surface Modification of Oxide Surfaces. Angewandte Chemie International Edition, 53(25), 6322-6356. doi: 10.1002/anie.201306709
50. Qu, Q., Geng, H., Peng, R., Cui, Q., Gu, X., Li, F., & Wang, M. (2010). Chemically Binding Carboxylic Acids onto TiO2 Nanoparticles with Adjustable Coverage by Solvothermal Strategy. Langmuir, 26(12), 9539-9546. doi: 10.1021/la100121n
51. Cao, B., Tang Q Fau - Cheng, G., & Cheng, G. (2014). Recent advances of zwitterionic carboxybetaine materials and their derivatives. Polymer edition, 25(14-15), 1502–1513. doi: 10.1080/09205063.2014.927300
52. Park, J., Nam, J., Won, N., Jin, H., Jung, S., Jung, S.-u., Cho, S.-H., & Kim, S. (2011). Compact and Stable Quantum Dots with Positive, Negative, or Zwitterionic Surface: Specific Cell Interactions and Non‐Specific Adsorptions by the Surface Charges. Advanced Functional Materials, 21. doi: 10.1002/adfm.201001924
53. He, M., Gao, K., Zhou, L., Jiao, Z., Wu, M., Cao, J., You, X., Cai, Z., Su, Y., & Jiang, Z. (2016). Zwitterionic materials for antifouling membrane surface construction. Acta biomaterialia, 40, 142–152. doi: 10.1016/j.actbio.2016.03.038
54. Fischer, M., Maitz, M. F., & Werner, C. (2018). 7 - Coatings for biomaterials to improve hemocompatibility. In C. A. Siedlecki (Ed.), Hemocompatibility of Biomaterials for Clinical Applications (pp. 163-190): Woodhead Publishing.
55. Ishihara, K., Oshida H Fau - Endo, Y., Endo Y Fau - Ueda, T., Ueda T Fau - Watanabe, A., Watanabe A Fau - Nakabayashi, N., & Nakabayashi, N. (1992). Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of biomedical materials research, 26, 1543–1552. doi: 10.1002/jbm.820261202
56. Belanger, A., Decarmine, A., Jiang, S., Cook, K., & Amoako, K. A. (2019). Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. Langmuir, 35(5), 1984-1988. doi: 10.1021/acs.langmuir.8b03078
57. Yamamoto, M., Sakakibara, Y., Nishimura, K., Komeda, M., & Tabata, Y. (2003). Improved Therapeutic Efficacy in Cardiomyocyte Transplantation for Myocardial Infarction with Release System of Basic Fibroblast Growth Factor. Artificial Organs, 27(2), 181-184. doi: 10.1046/j.1525-1594.2003.06993.x
58. Smith, R. S., Zhang Z Fau - Bouchard, M., Bouchard M Fau - Li, J., Li J Fau - Lapp, H. S., Lapp Hs Fau - Brotske, G. R., Brotske Gr Fau - Lucchino, D. L., Lucchino Dl Fau - Weaver, D., Weaver D Fau - Roth, L. A., Roth La Fau - Coury, A., Coury A Fau - Biggerstaff, J., Biggerstaff J Fau - Sukavaneshvar, S., Sukavaneshvar S Fau - Langer, R., Langer R Fau - Loose, C., & Loose, C. (2012). Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Science translational medicine, 4(153), 153ra132. doi: 10.1126/scitranslmed.3004120
59. Ning, J., Kubota, K., Li, G., & Haraguchi, K. (2013). Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive & Functional Polymers, 73, 969-978. doi: 10.1016/J.REACTFUNCTPOLYM.2012.11.005
60. Racovita, S., Trofin, M.-A., Loghin, D. F., Zaharia, M.-M., Bucatariu, F., Mihai, M., & Vasiliu, S. (2021). Polybetaines in Biomedical Applications. International Journal of Molecular Sciences, 22(17), 9321. doi: 10.3390/ijms22179321
61. Kahsay, G., Song H Fau - Van Schepdael, A., Van Schepdael A Fau - Cabooter, D., Cabooter D Fau - Adams, E., & Adams, E. (2014). Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. Journal of pharmaceutical and biomedical analysis, 87, 142–154. doi: 10.1016/j.jpba.2013.04.015
62. Yang, Y., Boysen, R. I., & Hearn, M. T. W. (2009). Hydrophilic interaction chromatography coupled to electrospray mass spectrometry for the separation of peptides and protein digests. Journal of Chromatography A, 1216(29), 5518-5524. doi: 10.1016/j.chroma.2009.05.085
63. Yu, D., Guo, Z., Shen, A., Yan, J., Dong, X., Jin, G., Long, Z., Liang, L., & Liang, X. (2016). Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase. Talanta, 161, 860-866. doi: 10.1016/j.talanta.2016.09.003
64. Liu, Y., Chen, G., & Yue, J. (2020). Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. Journal of Flow Chemistry, 10(1), 103-121. doi: 10.1007/s41981-019-00062-9
65. Bates, A. (2013). The Inverse-Square Law with Data Loggers. The Physics Teacher, 51(5), 290-291. doi: 10.1119/1.4801357
66. Ringeard, J. M., Griesmar, P., Caplain, E., Michiel, M., Serfaty, S., Le Huerou, J.-Y., Marinkova, D., & Yotova, L. (2013). Design of poly(N-acryloylglycine) materials for incorporation of microorganisms. Journal of Applied Polymer Science, 130. doi: 10.1002/app.39242
67. Barbucci, R., Casolaro, M., Magnani, A., Roncolini, C., & Ferruti, P. (1989). Vinyl polymers containing amido and carboxylic groups as side substituents: I. Synthesis of N-acryloyl-glycine and N-acryloyl-6-caproic acid and their grafting on cellulose membranes. Polymer, 30(9), 1751-1757. doi: 10.1016/0032-3861(89)90341-8
68. Zaborniak, I., & Chmielarz, P. (2021). Riboflavin-mediated radical polymerization – Outlook for eco-friendly synthesis of functional materials. European Polymer Journal, 142, 110152. doi: 10.1016/j.eurpolymj.2020.110152
69. Orellana, B. U., Rufs, A. M., Encinas, M. V., Previtali, C. M., & Bertolotti, S. G. (1999). The Photoinitiation Mechanism of Vinyl Polymerization by Riboflavin/Triethanolamine in Aqueous Medium. Macromolecules, 32, 6570-6573. doi: 10.1021/MA990946X
70. Koschitzki, F., Wanka, R., Sobota, L., Gardner, H., Hunsucker, K. Z., Swain, G. W., & Rosenhahn, A. (2021). Amphiphilic Zwitterionic Acrylate/Methacrylate Copolymers for Marine Fouling-Release Coatings. Langmuir, 37(18), 5591-5600. doi: 10.1021/acs.langmuir.1c00428
71. Lacík, I., Chovancová, A., Uhelská, L., Preusser, C., Hutchinson, R. A., & Buback, M. (2016). PLP-SEC Studies into the Propagation Rate Coefficient of Acrylamide Radical Polymerization in Aqueous Solution. Macromolecules, 49(9), 3244-3253. doi: 10.1021/acs.macromol.6b00526
72. De Sterck, B., Vaneerdeweg, R., Du Prez, F., Waroquier, M., & Van Speybroeck, V. (2010). Solvent Effects on Free Radical Polymerization Reactions: The Influence of Water on the Propagation Rate of Acrylamide and Methacrylamide. Macromolecules, 43(2), 827-836. doi: 10.1021/ma9018747
73. Figg, C. A., Hickman, J. D., Scheutz, G. M., Shanmugam, S., Carmean, R. N., Tucker, B. S., Boyer, C., & Sumerlin, B. S. (2018). Color-Coding Visible Light Polymerizations To Elucidate the Activation of Trithiocarbonates Using Eosin Y. Macromolecules, 51(4), 1370-1376. doi: 10.1021/acs.macromol.7b02533
74. Wang, W., Xie, W.-Y., Wang, G.-X., Xu, W., & Liang, E. (2021). PET-RAFT copolymerization of vinyl acetate and acrylic acid. Iranian Polymer Journal, 30(1), 1-7. doi: 10.1007/s13726-020-00868-8
75. Kozhunova, E. Y., Plutalova, A. V., & Chernikova, E. V. (2022). RAFT Copolymerization of Vinyl Acetate and Acrylic Acid in the Selective Solvent. Polymers, 14(3), 555. doi: 10.3390/polym14030555
76. Lissi, E. A., & Moya, M. (1980). Influence of monomer activity coefficient upon polymerization rate. European Polymer Journal, 16, 543-545. doi: 10.1016/0014-3057(80)90139-1
77. Barner-Kowollik, C., Vana, P., & Davis, T. P. (2002). The Kinetics of Free-Radical Polymerization Handbook of Radical Polymerization (pp. 187-261).
78. Zheng, H., Liao, Y., Zheng, M., Zhu, C., Ji, F., Ma, J., & Fan, W. (2014). Photoinitiated polymerization of cationic acrylamide in aqueous solution: synthesis, characterization, and sludge dewatering performance. TheScientificWorldJournal, 2014, 465151. doi: 10.1155/2014/465151
79. Chen, J. (2022). Why Should the Reaction Order of a Bimolecular Reaction be 2.33 Instead of 2? The Journal of Physical Chemistry A, 126(51), 9719-9725. doi: 10.1021/acs.jpca.2c07500
80. Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N., & Feng, L. (2018). An Effective Flocculation Method to the Kaolin Wastewater Treatment by a Cationic Polyacrylamide (CPAM): Preparation, Characterization, and Flocculation Performance. International Journal of Polymer Science, 2018(1), 5294251. doi: 10.1155/2018/5294251
81. Wanek, E. (1986). Polyimides, synthesis, characterization, and applications, Volume 1. K. L. Mittal, Ed., Plenum, New York, 1984, 614 pp. Price: $89.50. Journal of Polymer Science Part C: Polymer Letters, 24(6), 295-296. doi: 10.1002/pol.1986.140240619
82. Lin, J. T., Liu, H. W., Chen, K. T., & Cheng, D. C. (2019). Modeling the Kinetics, Curing Depth, and Efficacy of Radical-Mediated Photopolymerization: The Role of Oxygen Inhibition, Viscosity, and Dynamic Light Intensity. Frontiers in chemistry, 7, 760. doi: 10.3389/fchem.2019.00760
83. Désilles, N., Gautrelet, C., Lecamp, L., Lebaudy, P., & Bunel, C. (2005). Effect of UV light scattering during photopolymerization on UV spectroscopy measurements. European Polymer Journal, 41(6), 1296-1303. doi: 10.1016/j.eurpolymj.2004.12.019
84. Abedin, F., Ye, Q., Camarda, K., & Spencer, P. (2016). Impact of light intensity on the polymerization kinetics and network structure of model hydrophobic and hydrophilic methacrylate based dental adhesive resin. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(8), 1666-1678. doi: 10.1002/jbm.b.33517
85. Wydra, J. W., Cramer, N. B., Stansbury, J. W., & Bowman, C. N. (2014). The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization. Dental materials : official publication of the Academy of Dental Materials, 30(6), 605–612. doi: 10.1016/j.dental.2014.02.021
86. Kim, Y.-W., Eom, G. T., Hong, J.-S., & Chung, K.-W. (2011). Fatty Acid Alkyl Esters as Feedstocks for the Enzymatic Synthesis of Alkyl Methacrylates and Polystyrene-co-alkyl Methacrylates for use as Cold Flow Improvers in Diesel Fuels. Journal of the American Oil Chemists′ Society, 88(11), 1727-1736. doi: 10.1007/s11746-011-1834-8
87. Jansen, R. J. J., & van Bekkum, H. (1995). XPS of nitrogen-containing functional groups on activated carbon. Carbon, 33, 1021-1027. doi: 10.1016/0008-6223(95)00030-H
88. Kehrer, M., Duchoslav, J., Hinterreiter, A., Cobet, M., Mehic, A., Stehrer, T., & Stifter, D. (2019). XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Processes and Polymers, 16(4), 1800160. doi: https://doi.org/10.1002/ppap.201800160
89. Perumal, S. A.-O. X., Atchudan, R. A.-O., & Lee, Y. R. (2022). Synthesis of Water-Dispersed Sulfobetaine Methacrylate-Iron Oxide Nanoparticle-Coated Graphene Composite by Free Radical Polymerization. Polymers, 14(18), 3885. doi: 10.3390/polym14183885
90. Macke, N., Hemmingsen, C. M., & Rowan, S. J. (2022). The effect of polymer grafting on the mechanical properties of PEG‐grafted cellulose nanocrystals in poly(lactic acid). Journal of Polymer Science, 60(24), 3318-3330. doi: 10.1002/pol.20220127
91. Guazzelli, E., Galli, G., & Martinelli, E. (2020). The Effect of Poly(ethylene glycol) (PEG) Length on the Wettability and Surface Chemistry of PEG-Fluoroalkyl-Modified Polystyrene Diblock Copolymers and Their Two-Layer Films with Elastomer Matrix. Polymers, 12(6), 1236. doi: 10.3390/polym12061236
92. Otsuka, H., Nagasaki, Y., & Kataoka, K. (2000). Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde-ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer. Science and Technology of Advanced Materials, 1(1), 21-29. doi: https://doi.org/10.1016/S1468-6996(99)00003-0
93. Ratner, B. D., & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going. Annual review of biomedical engineering, 6, 41–75. doi: 10.1146/annurev.bioeng.6.040803.140027
94. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941-2953. doi: 10.1016/j.biomaterials.2008.04.023
95. Cho, E. C., Kong, H., Oh, T. B., & Cho, K. (2012). Protein adhesion regulated by the nanoscale surface conformation. Soft Matter, 8(47), 11801-11808. doi: 10.1039/C2SM27204K
96. Yang, W., Xue, H., Li, W., Zhang, J., & Jiang, S. (2009). Pursuing “Zero” Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir, 25(19), 11911-11916. doi: 10.1021/la9015788 |