參考文獻 |
七、參考文獻
1. Liu, Y., et al., Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Science of the Total Environment, 2022. 846: p. 157303.
2. Dreiss, C.A., Hydrogel design strategies for drug delivery. Current opinion in colloid & interface science, 2020. 48: p. 1-17.
3. Yuk, H., J. Wu, and X. Zhao, Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022. 7(12): p. 935-952.
4. Leduc, E.H. and S. Holt, Hydroxypropyl methacrylate, a new water-miscible embedding medium for electron microscopy. The Journal of cell biology, 1965. 26(1): p. 137-155.
5. Lewis, A.L., et al., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials, 2001. 22(2): p. 99-111.
6. Mrabet, B., et al., Anti-fouling poly (2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface science, 2009. 603(16): p. 2422-2429.
7. Yoshikawa, C., et al., Protein repellency of well-defined, concentrated poly (2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules, 2006. 39(6): p. 2284-2290.
8. Ma, H., et al., “Non‐fouling” oligo (ethylene glycol)‐functionalized polymer brushes synthesized by surface‐initiated atom transfer radical polymerization. Advanced Materials, 2004. 16(4): p. 338-341.
9. Zheng, J., et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical journal, 2005. 89(1): p. 158-166.
10. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir, 2000. 16(24): p. 9604-9608.
11. Ostuni, E., et al., A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir, 2001. 17(18): p. 5605-5620.
12. Shen, M., et al., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 2002. 13(4): p. 367-390.
13. Leckband, D., S. Sheth, and A. Halperin, Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
14. Zwaal, R.F. and A.J. Schroit, Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, The Journal of the American Society of Hematology, 1997. 89(4): p. 1121-1132.
15. Long, S., et al., Controlled biological response on blends of a phosphorylcholine-based copolymer with poly (butyl methacrylate). Biomaterials, 2003. 24(23): p. 4115-4121.
16. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polymer Journal, 1990. 22(5): p. 355-360.
17. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978. 35: p. 423-427.
18. Chang, Y., et al., Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 2006. 22(5): p. 2222-2226.
19. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer journal, 2014. 46(8): p. 436-443.
20. Laschewsky, A., Structures and synthesis of zwitterionic polymers. Polymers, 2014. 6(5): p. 1544-1601.
21. Ladd, J., et al., Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008. 9(5): p. 1357-1361.
22. Li, A., et al., Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly (carboxybetaine) versus poly (ethylene glycol) surface-grafted coatings. ACS nano, 2012. 6(10): p. 8970-8982.
23. Zheng, L., et al., Applications of zwitterionic polymers. Reactive and Functional Polymers, 2017. 118: p. 51-61.
24. Liu, S., et al., Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application. Gels, 2022. 8(1): p. 46.
25. Wang, Z., et al., Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels. Journal of materials chemistry B, 2019. 7(1): p. 24-29.
26. Yang, B. and W. Yuan, Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS applied materials & interfaces, 2019. 11(43): p. 40620-40628.
27. Fu, J., Hydrogel properties and applications. Journal of Materials Chemistry B, 2019. 7(10): p. 1523-1525.
28. Blöhbaum, J., et al., Influence of charged groups on the cross-linking efficiency and release of guest molecules from thiol–ene cross-linked poly (2-oxazoline) hydrogels. Journal of materials chemistry B, 2019. 7(10): p. 1782-1794.
29. Chen, F., et al., Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances. Journal of materials chemistry B, 2019. 7(10): p. 1708-1715.
30. Gan, D., et al., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Journal of Materials Chemistry B, 2019. 7(10): p. 1716-1725.
31. Miller, J., Interpenetrating polymer networks styrene-diving benzene copolymers with two and three interpenetrating networks and their sulphonates. J. Chem. Soc, 1960. 26(3): p. 1311-1317.
32. Sperling, L.H., Interpenetrating polymer networks and related materials. 2012: Springer Science & Business Media.
33. Gong, J.P., et al., Double‐network hydrogels with extremely high mechanical strength. Advanced materials, 2003. 15(14): p. 1155-1158.
34. Chen, Q., et al., Fundamentals of double network hydrogels. Journal of Materials Chemistry B, 2015. 3(18): p. 3654-3676.
35. Haraguchi, K. and T. Takehisa, Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties. Advanced materials, 2002. 14(16): p. 1120-1124.
36. Haraguchi, K., T. Takehisa, and S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules, 2002. 35(27): p. 10162-10171.
37. Haraguchi, K., Soft nanohybrid materials consisting of polymer–clay networks. Organic-Inorganic Hybrid Nanomaterials, 2015: p. 187-248.
38. Gaharwar, A.K., et al., Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta biomaterialia, 2011. 7(12): p. 4139-4148.
39. Okumura, Y. and K. Ito, The polyrotaxane gel: A topological gel by figure‐of‐eight cross‐links. Advanced materials, 2001. 13(7): p. 485-487.
40. Harada, A., J. Li, and M. Kamachi, The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 1992. 356(6367): p. 325-327.
41. Ito, K., Slide-ring materials using topological supramolecular architecture. Current Opinion in Solid State and Materials Science, 2010. 14(2): p. 28-34.
42. Kirchhof, S., A.M. Goepferich, and F.P. Brandl, Hydrogels in ophthalmic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 95: p. 227-238.
43. Muzzarelli, R.A., Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009. 77(1): p. 1-9.
44. Yang, J.-A., et al., In situ-forming injectable hydrogels for regenerative medicine. Progress in polymer science, 2014. 39(12): p. 1973-1986.
45. Zarembinski, T.I., et al., Thiolated hyaluronan-based hydrogels crosslinked using oxidized glutathione: An injectable matrix designed for ophthalmic applications. Acta biomaterialia, 2014. 10(1): p. 94-103.
46. You, H., et al., A model with contact maps at both polymer chain and network scales for tough hydrogels with chain entanglement, hidden length and unconventional network topology. International Journal of Mechanical Sciences, 2024. 262: p. 108713.
47. Zeng, D., S. Shen, and D. Fan, Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications. Chinese Journal of Chemical Engineering, 2021. 30: p. 308-320.
48. Hu, W., et al., Advances in crosslinking strategies of biomedical hydrogels. Biomaterials science, 2019. 7(3): p. 843-855.
49. Park, H., et al., One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles. Carbohydrate polymers, 2017. 157: p. 775-783.
50. Jiang, X., et al., Preparation and characterization of poly (vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydrate polymers, 2018. 186: p. 377-383.
51. Zhang, Y., et al., Preparation and properties of polyacrylamide/polyvinyl alcohol physical double network hydrogel. RSC advances, 2016. 6(113): p. 112468-112476.
52. Hofmeier, H., et al., High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. Journal of the American Chemical Society, 2005. 127(9): p. 2913-2921.
53. Guo, M., et al., Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. Journal of the American Chemical Society, 2014. 136(19): p. 6969-6977.
54. An, Y. and J.A. Hubbell, Intraarterial protein delivery via intimally-adherent bilayer hydrogels. Journal of Controlled Release, 2000. 64(1-3): p. 205-215.
55. Nuttelman, C.R., M.C. Tripodi, and K.S. Anseth, Synthetic hydrogel niches that promote hMSC viability. Matrix biology, 2005. 24(3): p. 208-218.
56. Sawhney, A.S., C.P. Pathak, and J.A. Hubbell, Interfacial photopolymerization of poly (ethylene glycol)-based hydrogels upon alginate-poly (l-lysine) microcapsules for enhanced biocompatibility. Biomaterials, 1993. 14(13): p. 1008-1016.
57. Nguyen, K.T. and J.L. West, Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
58. Li, B., et al., Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomaterialia, 2015. 22: p. 59-69.
59. Norioka, C., et al., A universal method to easily design tough and stretchable hydrogels. NPG Asia Materials, 2021. 13(1): p. 34.
60. Kavanagh, G.M. and S.B. Ross-Murphy, Rheological characterisation of polymer gels. Progress in Polymer Science, 1998. 23(3): p. 533-562.
61. Kim, J., et al., Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science, 2021. 374(6564): p. 212-216.
62. Noda, Y., Y. Hayashi, and K. Ito, From topological gels to slide‐ring materials. Journal of Applied Polymer Science, 2014. 131(15).
63. Gong, J.P., Why are double network hydrogels so tough? Soft Matter, 2010. 6(12): p. 2583-2590.
64. Nakajima, T., Generalization of the sacrificial bond principle for gel and elastomer toughening. Polymer journal, 2017. 49(6): p. 477-485.
65. Bin Imran, A., et al., Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature communications, 2014. 5(1): p. 5124.
66. Ducrot, E., et al., Toughening elastomers with sacrificial bonds and watching them break. Science, 2014. 344(6180): p. 186-189.
67. Filippidi, E., et al., Toughening elastomers using mussel-inspired iron-catechol complexes. Science, 2017. 358(6362): p. 502-505.
68. Gotoh, H., et al., Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Science advances, 2018. 4(10): p. eaat7629.
69. Ke, H., et al., Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nature Chemistry, 2019. 11(5): p. 470-477.
70. Matsuda, T., et al., Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019. 363(6426): p. 504-508.
71. Sun, G., et al., Super stretchable hydrogel achieved by non-aggregated spherulites with diameters< 5 nm. Nature communications, 2016. 7(1): p. 12095.
72. Sun, J.-Y., et al., Highly stretchable and tough hydrogels. Nature, 2012. 489(7414): p. 133-136.
73. Ning, J., et al., Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST. Reactive and Functional Polymers, 2013. 73(7): p. 969-978.
74. Díez-Pascual, A.M. and A.L. Díez-Vicente, Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules, 2015. 16(9): p. 2631-2644.
75. Norioka, C., A. Kawamura, and T. Miyata, Relatively homogeneous network structures of temperature-responsive gels synthesized via atom transfer radical polymerization. Soft Matter, 2023. 19(14): p. 2505-2513.
76. Hutter, J.L. and J. Bechhoefer, Calibration of atomic‐force microscope tips. Review of scientific instruments, 1993. 64(7): p. 1868-1873.
77. Gong, L., et al., Fundamentals and advances in the adhesion of polymer surfaces and thin films. Langmuir, 2019. 35(48): p. 15914-15936.
78. Vlassov, S., et al., Adhesion and mechanical properties of PDMS-based materials probed with AFM: A review. Reviews on Advanced Materials Science, 2018. 56(1): p. 62-78.
79. Gu, S., et al., The effect of methyl group on the mechanical properties of hydrophobic association hydrogel. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(22): p. 1505-1512.
80. Stevens, M.P., Polymer chemistry. Vol. 2. 1990: Oxford university press New York.
81. He, Y., H.-K. Tsao, and S. Jiang, Improved mechanical properties of zwitterionic hydrogels with hydroxyl groups. The Journal of Physical Chemistry B, 2012. 116(19): p. 5766-5770.
82. Wu, F., Y. Pang, and J. Liu, Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nature Communications, 2020. 11(1): p. 4502.
83. Patras, G., G.G. Qiao, and D.H. Solomon, Controlled formation of microheterogeneous polymer networks: Influence of monomer reactivity on gel structure. Macromolecules, 2001. 34(18): p. 6396-6401.
84. Buckingham, A., J. Del Bene, and S. McDowell, The hydrogen bond. Chemical Physics Letters, 2008. 463(1-3): p. 1-10.
85. Ramin, M.A., et al., Epoxy-terminated self-assembled monolayers containing internal urea or amide groups. Langmuir, 2015. 31(9): p. 2783-2789.
86. Horowitz, S. and R.C. Trievel, Carbon-oxygen hydrogen bonding in biological structure and function. Journal of Biological Chemistry, 2012. 287(50): p. 41576-41582.
87. Steiner, T., The hydrogen bond in the solid state. Angewandte Chemie International Edition, 2002. 41(1): p. 48-76.
88. Chavda, H. and C. Patel, Effect of crosslinker concentration on characteristics of superporous hydrogel. International journal of pharmaceutical investigation, 2011. 1(1): p. 17.
89. Xue, W., S. Champ, and M.B. Huglin, Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer, 2001. 42(8): p. 3665-3669.
90. Liu, X., et al., Underwater flexible mechanoreceptors constructed by anti-swelling self-healable hydrogel. Sci China Mater, 2021. 64: p. 3069-3078.
91. Lacík, I., et al., PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution. Macromolecules, 2016. 49(9): p. 3244-3253.
92. Brazel, C.S. and S.L. Rosen, Fundamental principles of polymeric materials. 2012: John Wiley & Sons.
93. Tosa, M., et al., Effect of network homogeneity on mechanical, thermal and electrochemical properties of solid polymer electrolytes prepared by homogeneous 4-arm poly (ethylene glycols). Soft Matter, 2020. 16(17): p. 4290-4298.
94. Gong, J.P., Friction and lubrication of hydrogels—its richness and complexity. Soft matter, 2006. 2(7): p. 544-552.
95. Pitenis, A.A., et al., Lubricity from entangled polymer networks on hydrogels. Journal of Tribology, 2016. 138(4): p. 042102.
96. Yang, H., Q. Zheng, and R. Cheng, New insight into “polyelectrolyte effect”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 407: p. 1-8.
97. Wang, F., J. Yang, and J. Zhao, Understanding anti‐polyelectrolyte behavior of a well‐defined polyzwitterion at the single‐chain level. Polymer international, 2015. 64(8): p. 999-1005.
98. Chen, K., et al., Entanglement-driven adhesion, self-healing, and high stretchability of double-network PEG-based hydrogels. ACS applied materials & interfaces, 2019. 11(40): p. 36458-36468.
99. Sun, Y., et al., High strength zwitterionic nano-micelle hydrogels with superior self-healing, adhesive and ion conductive properties. European Polymer Journal, 2020. 133: p. 109761.
100. Xu, T., et al., High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. Journal of Colloid and Interface Science, 2022. 620: p. 14-23.
101. Yang, W., et al., The effect of lightly crosslinked poly (carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945-7951.
102. Azzaroni, O., A.A. Brown, and W.T. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self‐association. Angewandte Chemie International Edition, 2006. 45(11): p. 1770-1774. |