參考文獻 |
[1] Y. Fang, G. H. Nunez, M. N. da Silva, D. A. Phillips, and P. R. Munoz, “A Review for
Southern Highbush Blueberry Alternative Production Systems,” Agronomy, vol. 10, no. 10,
Art. no. 10, Oct. 2020, doi: 10.3390/agronomy10101531.
[2] S. Nishiyama, M. Fujikawa, H. Yamane, K. Shirasawa, E. Babiker, and R. Tao,
“Genomic insight into the developmental history of southern highbush blueberry
populations,” Heredity, vol. 126, no. 1, pp. 194–205, Jan. 2021, doi: 10.1038/s41437-020
00362-0.
[3] N. Sivapragasam, N. Neelakandan, and H. P. V. Rupasinghe, “Potential health benefits of
fermented blueberry: A review of current scientific evidence,” Trends in Food Science &
Technology, vol. 132, pp. 103–120, Feb. 2023, doi: 10.1016/j.tifs.2023.01.002.
[4] E. Pojer, F. Mattivi, D. Johnson, and C. S. Stockley, “The Case for Anthocyanin
Consumption to Promote Human Health: A Review,” Comprehensive Reviews in Food
Science and Food Safety, vol. 12, no. 5, pp. 483–508, 2013, doi: 10.1111/1541-4337.12024.
[5] R. L. Prior, “Fruits and vegetables in the prevention of cellular oxidative damage234,”
The American Journal of Clinical Nutrition, vol. 78, no. 3, pp. 570S-578S, Sep. 2003, doi:
10.1093/ajcn/78.3.570S.
[6] A. J. Stull, K. C. Cash, W. D. Johnson, C. M. Champagne, and W. T. Cefalu, “Bioactives
in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women, , ,”
The Journal of Nutrition, vol. 140, no. 10, pp. 1764–1768, Oct. 2010, doi:
10.3945/jn.110.125336.
[7] S.-H. Kwon et al., “Anti-obesity and hypolipidemic effects of black soybean
anthocyanins,” J Med Food, vol. 10, no. 3, pp. 552–556, Sep. 2007, doi:
10.1089/jmf.2006.147.
[8] I. C. W. Arts and P. C. H. Hollman, “Polyphenols and disease risk in epidemiologic studies,” Am J Clin Nutr, vol. 81, no. 1 Suppl, pp. 317S-325S, Jan. 2005, doi:
10.1093/ajcn/81.1.317S.
[9] A. Michalska and G. Łysiak, “Bioactive Compounds of Blueberries: Post-Harvest
Factors Influencing the Nutritional Value of Products,” International Journal of Molecular
Sciences, vol. 16, no. 8, Art. no. 8, Aug. 2015, doi: 10.3390/ijms160818642.
[10] L. Ma, Z. Sun, Y. Zeng, M. Luo, and J. Yang, “Molecular Mechanism and Health Role of
Functional Ingredients in Blueberry for Chronic Disease in Human Beings,” International
Journal of Molecular Sciences, vol. 19, no. 9, Art. no. 9, Sep. 2018, doi:
10.3390/ijms19092785.
[11] D. Sarkar, W. Agustinah, F. Woods, E. Coneva, E. Vinson, and K. Shetty, “In vitro
screening and evaluation of phenolic antioxidant-linked anti-hyperglycemic functions of
rabbit-eye blueberry ( Vaccinium ashei) cultivars,” Journal of Berry Research, vol. 7, no. 3,
pp. 163–177, Jan. 2017, doi: 10.3233/JBR-170154.
[12] L. Bell, D. J. Lamport, L. T. Butler, and C. M. Williams, “A study of glycaemic effects
following acute anthocyanin-rich blueberry supplementation in healthy young adults,” Food
& Function, vol. 8, no. 9, pp. 3104–3110, 2017, doi: 10.1039/C7FO00724H.
[13] N. B. Samad, T. Debnath, M. Ye, Md. A. Hasnat, and B. O. Lim, “In vitro antioxidant
and anti–inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts,”
Asian Pacific Journal of Tropical Biomedicine, vol. 4, no. 10, pp. 807–815, Oct. 2014, doi:
10.12980/APJTB.4.2014C1008.
[14] B.-T. Oh, S.-Y. Jeong, P. Velmurugan, J.-H. Park, and D.-Y. Jeong, “Probiotic-mediated
blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for
augmented antibacterial and antioxidant activity,” Journal of Bioscience and Bioengineering,
vol. 124, no. 5, pp. 542–550, Nov. 2017, doi: 10.1016/j.jbiosc.2017.05.011.
[15] W.-Y. Huang et al., “Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells,” J. Agric. Food
Chem., vol. 66, no. 7, pp. 1638–1648, Feb. 2018, doi: 10.1021/acs.jafc.7b06135.
[16] X. Shen et al., “Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts
against the growth of Listeria monocytogenes and Salmonella Enteritidis,” Food Control, vol.
35, no. 1, pp. 159–165, Jan. 2014, doi: 10.1016/j.foodcont.2013.06.040.
[17] S. Silva, E. M. Costa, M. F. Pereira, M. R. Costa, and M. E. Pintado, “Evaluation of the
antimicrobial activity of aqueous extracts from dry Vaccinium corymbosum extracts upon food
microorganism,” Food Control, vol. 34, no. 2, pp. 645–650, Dec. 2013, doi:
10.1016/j.foodcont.2013.06.012.
[18] S. Silva et al., “Aqueous extracts of Vaccinium corymbosum as inhibitors of
Staphylococcus aureus,” Food Control, vol. 51, pp. 314–320, May 2015, doi:
10.1016/j.foodcont.2014.11.040.
[19] A. Bunea et al., “Anthocyanin determination in blueberry extracts from various cultivars
and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma
cells,” Phytochemistry, vol. 95, pp. 436–444, Nov. 2013, doi:
10.1016/j.phytochem.2013.06.018.
[20] X. ZU, Z. ZHANG, X. ZHANG, M. YOSHIOKA, Y. YANG, and J. LI, “Anthocyanins
extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on
DLD-1 and COLO205 cells,” Chinese Medical Journal, vol. 123, no. 19, pp. 2714–2719, Oct.
2010, doi: 10.3760/cma.j.issn.0366-6999.2010.19.018.
[21] W. Lin and Z. Li, “Blueberries inhibit cyclooxygenase-1 and cyclooxygenase-2 activity
in human epithelial ovarian cancer,” Oncol Lett, vol. 13, no. 6, pp. 4897–4904, Jun. 2017, doi:
10.3892/ol.2017.6094.
[22] A. Faria, D. Pestana, D. Teixeira, V. de Freitas, N. Mateus, and C. Calhau, “Blueberry
anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines,”Phytotherapy Research, vol. 24, no. 12, pp. 1862–1869, 2010, doi: 10.1002/ptr.3213.
[23] I.-C. Lee, D. Y. Kim, and B. Y. Choi, “Antioxidative Activity of Blueberry Leaf Extract
Prevents High-fat Diet-induced Obesity in C57BL/6 Mice,” J Cancer Prev, vol. 19, no. 3, pp.
209–215, Sep. 2014, doi: 10.15430/JCP.2014.19.3.209.
[24] S. S. Moghe, S. Juma, V. Imrhan, and P. Vijayagopal, “Effect of blueberry polyphenols
on 3T3-F442A preadipocyte differentiation,” J Med Food, vol. 15, no. 5, pp. 448–452, May
2012, doi: 10.1089/jmf.2011.0234.
[25] K. Papatheodorou, M. Banach, E. Bekiari, M. Rizzo, and M. Edmonds, “Complications
of Diabetes 2017,” Journal of Diabetes Research, vol. 2018, p. e3086167, Mar. 2018, doi:
10.1155/2018/3086167.
[26] G. Roglic, “WHO Global report on diabetes: A summary,” International Journal of
Noncommunicable Diseases, vol. 1, no. 1, p. 3, Jun. 2016, doi: 10.4103/2468-8827.184853.
[27] A. Katsarou et al., “Type 1 diabetes mellitus,” Nat Rev Dis Primers, vol. 3, no. 1, pp. 1
17, Mar. 2017, doi: 10.1038/nrdp.2017.16.
[28] American Diabetes Association, “2. Classification and Diagnosis of Diabetes: Standards
of Medical Care in Diabetes—2020,” Diabetes Care, vol. 43, no. Supplement_1, pp. S14
S31, Dec. 2019, doi: 10.2337/dc20-S002.
[29] N. Lascar, J. Brown, H. Pattison, A. H. Barnett, C. J. Bailey, and S. Bellary, “Type 2
diabetes in adolescents and young adults,” The Lancet Diabetes & Endocrinology, vol. 6, no.
1, pp. 69–80, Jan. 2018, doi: 10.1016/S2213-8587(17)30186-9.
[30] C. Kim, K. M. Newton, and R. H. Knopp, “Gestational Diabetes and the Incidence of
Type 2 Diabetes: A systematic review,” Diabetes Care, vol. 25, no. 10, pp. 1862–1868, Oct.
2002, doi: 10.2337/diacare.25.10.1862.
[31] B. B. Lowell and G. I. Shulman, “Mitochondrial Dysfunction and Type 2 Diabetes,”
Science, vol. 307, no. 5708, pp. 384–387, Jan. 2005, doi: 10.1126/science.1104343.
[32] M. Osterman, B. Hamilton, J. Martin, A. Driscoll, and C. Valenzuela, “Births: Final Data
for 2020,” National Center for Health Statistics (U.S.), Feb. 2021. doi: 10.15620/cdc:112078.
[33] A. H. Mokdad, M. K. Serdula, W. H. Dietz, B. A. Bowman, J. S. Marks, and J. P.
Koplan, “The Spread of the Obesity Epidemic in the United States, 1991-1998,” JAMA, vol.
282, no. 16, pp. 1519–1522, Oct. 1999, doi: 10.1001/jama.282.16.1519.
[34] L. Wang et al., “Trends in Prevalence of Diabetes and Control of Risk Factors in
Diabetes Among US Adults, 1999-2018,” JAMA, vol. 326, no. 8, pp. 704–716, Aug. 2021,
doi: 10.1001/jama.2021.9883.
[35] A. Ferrara, “Increasing Prevalence of Gestational Diabetes Mellitus: A public health
perspective,” Diabetes Care, vol. 30, pp. S141-6, Jul. 2007, doi: 10.2337/dc07-s206.
[36] “Factors predisposing to pre-eclampsia in women with gestatio... : Journal of
Hypertension.” Accessed: May 24, 2024. [Online]. Available:
https://journals.lww.com/jhypertension/abstract/2004/12000/factors_predisposing_to_pre_ecl
ampsia_in_women.20.aspx
[37] “A history of placental dysfunction and risk of placental abruption - Rasmussen - 1999 -
Paediatric and Perinatal Epidemiology - Wiley Online Library.” Accessed: May 24, 2024.
[Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365
3016.1999.00159.x?casa_token=gQgsSWje3hQAAAAA%3AwX6wph2ysnfqBmEOblM8PA
kp_XTIp6uCdrhDaUF3FmD48pKszAcCbNlzCvq5AjYeTOFNUnYXFPIQOQQ
[38] A. Usta et al., “Frequency of fetal macrosomia and the associated risk factors in
pregnancies without gestational diabetes mellitus,” Pan Afr Med J, vol. 26, p. 62, Feb. 2017,
doi: 10.11604/pamj.2017.26.62.11440.
[39] M. Shimizu et al., “Impact of the relationship between hemoglobin levels and renal
interstitial fibrosis on long-term outcomes in type 2 diabetes with biopsy-proven diabetic
nephropathy,” BMC Nephrol, vol. 22, no. 1, p. 319, Sep. 2021, doi: 10.1186/s12882-021-02510-y.
[40] “Clinical Care Guidelines for Cystic Fibrosis–Related Diabetes | Diabetes Care |
American Diabetes Association.” Accessed: May 25, 2024. [Online]. Available:
https://diabetesjournals.org/care/article/33/12/2697/39264/Clinical-Care-Guidelines-for
Cystic-Fibrosis
[41] J. K. DiStefano and R. M. Watanabe, “Pharmacogenetics of Anti-Diabetes Drugs,”
Pharmaceuticals, vol. 3, no. 8, Art. no. 8, Aug. 2010, doi: 10.3390/ph3082610.
[42] R. S. Hundal and S. E. Inzucchi, “Metformin,” Drugs, vol. 63, no. 18, pp. 1879–1894,
Sep. 2003, doi: 10.2165/00003495-200363180-00001.
[43] E. Diamanti-Kandarakis, C. D. Christakou, E. Kandaraki, and F. N. Economou,
“Metformin: an old medication of new fashion: evolving new molecular mechanisms and
clinical implications in polycystic ovary syndrome,” European Journal of Endocrinology, vol.
162, no. 2, pp. 193–212, Feb. 2010, doi: 10.1530/EJE-09-0733.
[44] “Mechanisms and Characteristics of Sulfonylureas and Glinides: Ingenta Connect.”
Accessed: May 26, 2024. [Online]. Available:
https://www.ingentaconnect.com/content/ben/ctmc/2020/00000020/00000001/art00005
[45] W. J. Malaisse, “Pharmacology of the Meglitinide Analogs,” Mol Diag Ther, vol. 2, no.
6, pp. 401–414, Dec. 2003, doi: 10.2165/00024677-200302060-00004.
[46] S. E. Inzucchi et al., “Management of Hyperglycemia in Type 2 Diabetes: A Patient
Centered Approach: Position Statement of the American Diabetes Association (ADA) and the
European Association for the Study of Diabetes (EASD),” Diabetes Spectrum, vol. 25, no. 3,
pp. 154–171, Aug. 2012, doi: 10.2337/diaspect.25.3.154.
[47] B. C. Lupsa and S. E. Inzucchi, “Use of SGLT2 inhibitors in type 2 diabetes: weighing
the risks and benefits,” Diabetologia, vol. 61, no. 10, pp. 2118–2125, Oct. 2018, doi: 10.1007/s00125-018-4663-6.
[48] G. Derosa and P. Maffioli, “α-Glucosidase inhibitors and their use in clinical practice,”
Arch Med Sci, vol. 8, no. 5, pp. 899–906, Nov. 2012, doi: 10.5114/aoms.2012.31621.
[49] S. R. Joshi, E. Standl, N. Tong, P. Shah, S. Kalra, and R. Rathod, “Therapeutic potential
of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review,” Expert
Opinion on Pharmacotherapy, vol. 16, no. 13, pp. 1959–1981, Sep. 2015, doi:
10.1517/14656566.2015.1070827.
[50] S. Dashko, N. Zhou, C. Compagno, and J. Piškur, “Why, when, and how did yeast evolve
alcoholic fermentation?,” FEMS Yeast Research, vol. 14, no. 6, pp. 826–832, Sep. 2014, doi:
10.1111/1567-1364.12161.
[51] G. M. Walker and G. G. Stewart, “Saccharomyces cerevisiae in the Production of
Fermented Beverages,” Beverages, vol. 2, no. 4, Art. no. 4, Dec. 2016, doi:
10.3390/beverages2040030.
[52] J.-M. Salmon, “Interactions between yeast, oxygen and polyphenols during alcoholic
fermentations: Practical implications,” LWT - Food Science and Technology, vol. 39, no. 9,
pp. 959–965, Nov. 2006, doi: 10.1016/j.lwt.2005.11.005.
[53] L. V. McFarland and P. Bernasconi, “Saccharomyces boulardii’. A Review of an
Innovative Biotherapeutic Agent,” Microbial Ecology in Health and Disease, vol. 6, no. 4, pp.
157–171, Jan. 1993, doi: 10.3109/08910609309141323.
[54] L. V. McFarland, “Systematic review and meta-analysis of Saccharomyces boulardii in
adult patients,” World J Gastroenterol, vol. 16, no. 18, pp. 2202–2222, May 2010, doi:
10.3748/wjg.v16.i18.2202.
[55] S. Sazawal, G. Hiremath, U. Dhingra, P. Malik, S. Deb, and R. E. Black, “Efficacy of
probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo
controlled trials,” The Lancet Infectious Diseases, vol. 6, no. 6, pp. 374–382, Jun. 2006, doi: 10.1016/S1473-3099(06)70495-9.
[56] D. Czerucka and P. Rampal, “Experimental effects of Saccharomyces boulardii on
diarrheal pathogens,” Microbes and Infection, vol. 4, no. 7, pp. 733–739, Jun. 2002, doi:
10.1016/S1286-4579(02)01592-7.
[57] D. Czerucka, T. Piche, and P. Rampal, “Review article: yeast as probiotics
Saccharomyces boulardii,” Alimentary Pharmacology & Therapeutics, vol. 26, no. 6, pp.
767–778, 2007, doi: 10.1111/j.1365-2036.2007.03442.x.
[58] M. BLISS, “The history of insulin,” Diabetes care, vol. 16, pp. 4–7, 1993.
[59] C. C. Quianzon and I. Cheikh, “History of insulin,” Journal of Community Hospital
Internal Medicine Perspectives, vol. 2, no. 2, p. 18701, Jan. 2012, doi:
10.3402/jchimp.v2i2.18701.
[60] V. Lang and P. E. Light, “The molecular mechanisms and pharmacotherapy of ATP
sensitive potassium channel gene mutations underlying neonatal diabetes,”
Pharmacogenomics and Personalized Medicine, vol. 3, pp. 145–161, Nov. 2010, doi:
10.2147/PGPM.S6969.
[61] G. Wilcox, “Insulin and Insulin Resistance,” Clin Biochem Rev, vol. 26, no. 2, pp. 19–39,
May 2005.
[62] “Regional differences of insulin action in adipose tissue: insights from in vivo and in
vitro studies - Giorgino - 2005 - Acta Physiologica Scandinavica - Wiley Online Library.”
Accessed: May 31, 2024. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365
201X.2004.01385.x?casa_token=BZH_eQH9geEAAAAA%3A21Mb7GVIYajP8IBcH2pb9lz-JiRQFAas3Zuv-svZaTX2PM-WJ6qbxU0pK1ts4K7ZNDgqWEswf_U9OTL2kg
[63] S. J. Hunter and W. T. Garvey, “Insulin action and insulin resistance: diseases involving
defects in insulin receptors, signal transduction, and the glucose transport effector system 1,”
The American Journal of Medicine, vol. 105, no. 4, pp. 331–345, Oct. 1998, doi: 10.1016/S0002-9343(98)00300-3.
[64] Y. Kido, J. Nakae, and D. Accili, “The Insulin Receptor and Its Cellular Targets1,” The
Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 3, pp. 972–979, Mar. 2001, doi:
10.1210/jcem.86.3.7306.
[65] S.-H. Lee, S.-Y. Park, and C. S. Choi, “Insulin Resistance: From Mechanisms to
Therapeutic Strategies,” Diabetes Metab J, vol. 46, no. 1, pp. 15–37, Jan. 2022, doi:
10.4093/dmj.2021.0280.
[66] R. A. DeFronzo and D. Tripathy, “Skeletal Muscle Insulin Resistance Is the Primary
Defect in Type 2 Diabetes,” Diabetes Care, vol. 32, no. Suppl 2, pp. S157–S163, Nov. 2009,
doi: 10.2337/dc09-S302.
[67] H. M. O’Neill et al., “AMP-activated protein kinase (AMPK) β1β2 muscle null mice
reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake
during exercise,” Proceedings of the National Academy of Sciences, vol. 108, no. 38, pp.
16092–16097, Sep. 2011, doi: 10.1073/pnas.1105062108.
[68] B. Ahmed, R. Sultana, and M. W. Greene, “Adipose tissue and insulin resistance in
obese,” Biomedicine & Pharmacotherapy, vol. 137, p. 111315, May 2021, doi:
10.1016/j.biopha.2021.111315.
[69] Y. Lin, W. Zhang, C. Li, K. Sakakibara, S. Tanaka, and H. Kong, “Factors affecting
ethanol fermentation using Saccharomyces cerevisiae BY4742,” Biomass and Bioenergy, vol.
47, pp. 395–401, Dec. 2012, doi: 10.1016/j.biombioe.2012.09.019.
[70] F. R. G, “Effect of environment on microbial activity,” Comprehensive biotechnology,
vol. 1, pp. 251–280, 1985.
[71] L. V. A. Reddy and O. V. S. Reddy, “Effect of fermentation conditions on yeast growth
and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice,”
Food and Bioproducts Processing, vol. 89, no. 4, pp. 487–491, Oct. 2011, doi: 10.1016/j.fbp.2010.11.007.
[72] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing
Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428, Mar. 1959, doi: 10.1021/ac60147a030.
[73] M. Massaro et al., “A synergic nanoantioxidant based on covalently modified halloysite
trolox nanotubes with intra-lumen loaded quercetin,” J. Mater. Chem. B, vol. 4, no. 13, pp.
2229–2241, Mar. 2016, doi: 10.1039/C6TB00126B.
[74] P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for
estimating antioxidant,” Songklanakarin Journal of Science and Technology (SJST), vol. 26,
no. 2, pp. 211–219, Mar. 2004.
[75] “[14] Analysis of total phenols and other oxidation substrates and antioxidants by means
of folin-ciocalteu reagent - ScienceDirect.” Accessed: May 08, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0076687999990171
[76] M. L. Way, J. E. Jones, D. S. Nichols, R. G. Dambergs, and N. D. Swarts, “A
Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider,”
Beverages, vol. 6, no. 3, Art. no. 3, Sep. 2020, doi: 10.3390/beverages6030055.
[77] S. J. Hossain, I. Tsujiyama, M. Takasugi, Md. A. Islam, R. S. Biswas, and H. Aoshima,
“Total Phenolic Content, Antioxidative, Anti-amylase, Anti-glucosidase, and Antihistamine
Release Activities of Bangladeshi Fruits,” Food Science and Technology Research, vol. 14,
no. 3, pp. 261–268, 2008, doi: 10.3136/fstr.14.261.
[78] X. Sun et al., “Antibacterial effect and mechanism of anthocyanin rich Chinese wild
blueberry extract on various foodborne pathogens,” Food Control, vol. 94, pp. 155–161, Dec.
2018, doi: 10.1016/j.foodcont.2018.07.012.
[79] S. Datta, D. J. Timson, and U. S. Annapure, “Antioxidant properties and global
metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii,” Journal
of the Science of Food and Agriculture, vol. 97, no. 9, pp. 3039–3049, 2017, doi: 10.1002/jsfa.8147.
[80] E. Apostolidis, Y.-I. Kwon, R. Ghaedian, and K. Shetty, “Fermentation of Milk and
Soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus Enhances Functionality
for Potential Dietary Management of Hyperglycemia and Hypertension,” Food
Biotechnology, vol. 21, no. 3, pp. 217–236, Sep. 2007, doi: 10.1080/08905430701534032.
[81] M. K. Roy, M. Koide, T. P. Rao, T. Okubo, Y. Ogasawara, and L. R. Juneja, “ORAC and
DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between
total polyphenol and individual catechin content,” International Journal of Food Sciences and
Nutrition, Mar. 2010, doi: 10.3109/09637480903292601.
[82] P. P. McCue and K. Shetty, “Phenolic antioxidant mobilization during yogurt production
from soymilk using Kefir cultures,” Process Biochemistry, vol. 40, no. 5, pp. 1791–1797, Apr.
2005, doi: 10.1016/j.procbio.2004.06.067.
[83] Ma. J. Torija, N. Rozès, M. Poblet, J. M. Guillamón, and A. Mas, “Effects of
fermentation temperature on the strain population of Saccharomyces cerevisiae,”
International Journal of Food Microbiology, vol. 80, no. 1, pp. 47–53, Jan. 2003, doi: 10.1016/S0168-1605(02)00144-7.
[84] L. P. Du, R. X. Hao, D. G. Xiao, L. L. Guo, and W. D. Gai, “Research on the Characteristics and Culture Conditions of Saccharomyces boulardii,” Advanced Materials
Research, vol. 343–344, pp. 594–598, 2012, doi: 10.4028/www.scientific.net/AMR.343-344.594. |