參考文獻 |
[1] Our World in Data, Global CO2 emissions from fossil fuels, 2022; Available from: https://ourworldindata.org/grapher/annual-co2-emissions-per-country?country=~OWID_WRL
[2] The International Council on clean Transportation, 2020; Available from:https://theicct.org/growing-momentum-global-overview-of-government-targets-for-phasing-out-sales-of-new-internal-combustion-engine-vehicles/
[3] Precedence Research Energy Storage Systems Market (By Technology: Compressed Air, Pumped Hydro Storage, Lithium Ion, Sodium Sulphur, Lead Acid, Redox flow, Nickel Cadmium, Flywheel, By Application, Transportation, Grid Management; By End User: Residential, Non-Residential, Utilities) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2024 – 2033; Available from:https://www.precedenceresearch.com/energy-storage-systems-market
[4] Alem, A., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2022). A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, 159, 112213.
[5] Precedence Research, Lithium-ion-battery-market size, 2022; Available from :https://www.precedenceresearch.com/lithium-ion-battery-market
[6] Powertrain International Web, 2022; Available from:https://www.powertraininternationalweb.com/components/interact-analysis-which-ev-component-increased-price-the-most-in-2022/
[7] BloombergNEF, 2019; Available from: https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
[8] ARK Investment Management LLC, 2019; Available from: https://ark-invest.com/articles/analyst-research/ev-growth-outperforming-the-traditional-s-curve-dynamics/
[9] Julien, C. M., Mauger, A., Zaghib, K., & Groult, H. (2014). Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2, 132-154.
[10] Xu, C., Märker, K., Lee, J., Mahadevegowda, A., Reeves, P. J., Day, S. J., Groh, M. F., Emge, S. P., Ducati, C., Mehdi, B. L., Tang, C. C., & Grey, C. P. (2021). Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials, 20(1), 84–92.
[11] De Biasi, L., Schwarz, B., Brezesinski, T., Hartmann, P., Janek, J., & Ehrenberg, H. (2019). Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Advanced Materials, 31(26), 1900985.
[12] Lin, F., Nordlund, D., Markus, I., Weng, T.-C., Xin, H., & Doeff, M. (2014). Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries. Energy & Environmental Science, 7.
[13] Lin, F., Markus, I. M., Nordlund, D., Weng, T.-C., Asta, M. D., Xin, H. L., & Doeff, M. M. (2014). Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature Communications, 5(1), 3529.
[14] Xiao, P., Shi, T., Huang, W., & Ceder, G. (2019). Understanding surface densified phases in Ni-rich layered compounds. ACS Energy Letters, 4(4), 811-818.
[15] Rossouw, M. H., Liles, D. C., & Thackeray, M. M. (1993). Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. Journal of Solid State Chemistry, 104(2), 464-466.
[16] Karunawan, J., Abdillah, O., Floweri, O., Aji, M., Santosa, S., Sumboja, A., & Iskandar, F. (2022). Improving the structural ordering and particle-size homogeneity of Li-rich layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials through microwave irradiation solid-state synthesis. Batteries, 9, 31.
[17] Zhang, X., Hao, J., Wu, L., Guo, Z., Ji, Z., Luo, J., Chen, C., Shu, J., Long, H., Yang, F., & Volinsky, A. A. (2018). Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 283, 1203-1212.
[18] Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H., & Honma, I. (2007). Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129(23), 7444-7452.
[19] Zheng, J., Yan, P., Estevez, L., Wang, C., & Zhang, J.-G. (2018). Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy, 49, 538-548.
[20] Zheng, J., Xiao, J., & Zhang, J.-G. (2016). The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 11, 678−694.
[21] Bi, Y., Yang, W., Du, R., Zhou, J., Liu, M., Liu, Y., & Wang, D. (2015). Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery. Journal of Power Sources, 283, 211-218.
[22] Nayak, P., Yang, L., Pollok, K., Langenhorst, F., Aurbach, D., & Adelhelm, P. (2019). Investigation of Li1.17Ni0.20Mn0.53Co0.10O2 as an interesting Li and Mn-rich oxide cathode materials by electrochemical means, microscopy and in situ electrochemical dilatometry. ChemElectroChem, 6, 1-27.
[23] Manthiram, A. (2011). Materials challenges and opportunities of lithium ion batteries. The Journal of Physical Chemistry Letters, 2(3), 176-184.
[24] Tolganbek, N., Yerkinbekova, Y., Kalybekkyzy, S., Bakenov, Z., & Mentbayeva, A. (2021). Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. Journal of Alloys and Compounds, 882, 160774.
[25] Lee, H. G., Kim, S. Y., & Lee, J. S. (2022). Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles. npj Computational Materials, 8(1), 103.
[26] Lang, S.-Y., Shen, Z.-Z., Hu, X.-C., Shi, Y., Guo, Y.-G., Jia, F.-F., Wang, F.-Y., Wen, R., & Wan, L.-J. (2020). Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. Nano Energy, 75, 104967.
[27] Busche, M. R., Drossel, T., Leichtweiss, T., Weber, D. A., Falk, M., Schneider, M., Reich, M. L., Sommer, H., Adelhelm, P., & Janek, J. (2016). Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chemistry, 8(5), 426-434.
[28] Liu, B., Zhang, J. G., & Xu, W. (2018). Advancing lithium metal batteries. Joule, 2, 833-845.
[29] Lu, J., Chen, Z., Pan, F., Cui, Y., & Amine, K. (2018). High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 1(1), 35-53.
[30] Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
[31] Zheng, Y., Wu, X., Lan, X., & Hu, R. (2022). A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries. Processes, 10(1).
[32] Components 101 Battery Separators – Types and Importance in the Performance of Battery, 2019; Available from: https://components101.com/articles/battery-seperators-types-and-importance
[33] Yamada, M., Watanabe, T., Gunji, T., Wu, J., & Matsumoto, F. (2020). Review of the design of current collectors for improving the battery performance in lithium-ion and post-lithium-ion batteries. Electrochem, 1, 124-159.
[34] Kang, S.-H., Sun, Y. K., & Amine, K. (2003). Electrochemical and ex situ X-ray study of Li (Li0.2Ni0.2Mn0.6) O2 cathode material for Li secondary batteries. Electrochemical and Solid-State Letters, 6(9), A183.
[35] Toprakci, O., Toprakci, H. A. K., Li, Y., Ji, L. W., Xue, L. G., Lee, H., Zhang, S., & Zhang, X. W. (2013). Synthesis and characterization of xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 composite cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 241, 522-528.
[36] Nisar, U., Muralidharan, N., Essehli, R., Amin, R., & Belharouak, I. (2021). Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Materials, 38, 309-328.
[37] Liu, X., Su, Q., Zhang, C., Huang, T., & Yu, A. (2016). Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer. ACS Sustainable Chemistry & Engineering, 4, 255-263.
[38] Hwang, I., Lee, C. W., Kim, J. C., & Yoon, S. (2012). Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Materials Research Bulletin, 47, 73-78.
[39] Sun, G., & Yu, F.-D. (2019). Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nano Energy, 66, 104102.
[40] Liu, S., Wang, Z., Huang, Y., Ni, Z., Bai, J., Kang, S., Wang, Y., & Li, X. (2018). Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 731, 636-645.
[41] Kang, S., Li, B., Qin, H., et al. (2015). Simple solid-state method for synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 cathode material with improved electrochemical performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 19, 525–531.
[42] Chen, C., Wu, H., Zhou, D., Xu, D., Zhou, Y., & Guo, J. (2021). Sol-gel synthesis of nano Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials using DL-lactic acid as chelating agent. Ceramics International, 47, 6270-6278.
[43] Hou, X., Huang, Y., Ma, S., Zou, X., Hu, S., & Wu, Y. (2015). Facile hydrothermal method synthesis of coralline-like Li1.2Mn0.54Ni0.13Co0.13O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Materials Research Bulletin, 63, 256-264.
[44] Lengyel, M., Atlas, G., Elhassid, D., Luo, P. Y., Zhang, X., Belharouak, I., & Axelbaum, R. L. (2014). Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis. Journal of Power Sources, 262, 286-296.
[45] Hao, Z., Gou, X., Ma, H., Yang, Z., Hao, Z., Yang, G., Lu, Y., Zhao, Q., Jin, H., Zhang, Q., Yan, Z., & Chen, J. (2023). Boosting the cycle and rate performance of Li1.2Mn0.54Ni0.13Co0.13O2 via single-crystal structure design. Science China Materials, 66, 3424–3432.
[46] Dutt, S., Kumar, A., & Singh, S. (2023). Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technol., 5, 140-166.
[47] Oh, S. H., Chung, K. Y., Jeon, S. H., et al. (2009). Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M = Cr, Al, Zr) compound for 5V cathode material. Journal of Alloys and Compounds, 469, 244-250.
[48] Lin, Z.-J., Zheng, H.-Q., Chen, J., Zhuang, W.-E., Lin, Y.-X., Su, J.-W., Huang, Y.-B., & Cao, R. (2018). Encapsulation of phosphotungstic acid into metal–organic frameworks with tunable window sizes: Screening of PTA@MOF catalysts for efficient oxidative desulfurization. Inorganic Chemistry, 57(20), 13009-13019.
[49] Zhong, G. B., Wang, Y. Y., Yu, Y. Q., et al. (2012). Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5V cathode materials for lithium ion batteries. Journal of Power Sources, 205, 385-393.
[50] Boopathi, D., Swain, D., & Nayak, P. K. (2023). Improved charge storage performance of Fe-doped Li-rich Ni–Mn–Co oxide Li1.2Ni0.13Mn0.54Co0.13O2 in half- and full lithium-ion cells. Energy & Fuels, 37, 19266-19277.
[51] Sibille, R., Mesbah, A., Mazet, T., et al. (2012). Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4). Journal of Solid State Chemistry, 186, 134-141.
[52] Park, H. K., Kim, D. K., & Kim, C. H. (1997). Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4. Journal of the American Ceramic Society, 80(3), 743-749.
[53] Park, H. K., Moon, Y. T., Kim, D. K., & Kim, C. H. (1996). Formation of Monodisperse Spherical TiO2 Powders by Thermal Hydrolysis of Ti(SO4)2. Journal of the American Ceramic Society, 79(10), 2727-2732.
[54] Wang, Z., Liu, Y., Gao, C., Jiang, H., & Zhang, J. (2015). A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. Journal of Materials Chemistry A, 3(41), 20658-20663.
[55] He, S., Li, Z., Wang, J., et al. (2016). MOF-derived NixCo1−x(OH)2 composite microspheres for high-performance supercapacitors. RSC Advances, 6, 49478-49486.
[56] Bordiga, S., Lamberti, C., Bonino, F., Travert, A., & Thibault-Starzyk, F. (2015). Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 44(20), 7262-7341.
[57] Mao, J., Dai, K., Xuan, M., Shao, G., Qiao, R., Yang, W., Battaglia, V. S., & Liu, G. (2016). Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Applied Materials & Interfaces, 8(14), 9116–9124.
[58] Deng, H., Belharouak, I., & Sun, Y. K. (2009). LixNi0.25Mn0.75Oy (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries. Journal of Materials Chemistry, 19(26), 4510–4516.
[59] Jarvis, K. A., Deng, Z., & Allard, L. F. (2011). Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Journal of Materials Chemistry, 23(16), 3614–3621.
[60] Julien, C., Mauger, A., Zaghib, K., & Groult, H. (2016). Optimization of Layered Cathode Materials for Lithium-Ion Batteries. Materials, 9, 595.
[61] Alagar, S., Karuppiah, C., Madhuvilakku, R., Piraman, S., & Yang, C. C. (2019). Temperature-Controlled Synthesis of Li and Mn-Rich Li1.2Mn0.54Ni0.13Co0.13O2 Hollow Nano/Sub-Microsphere Electrodes for High-Performance Lithium-Ion Battery. ACS Omega, 4, 20285–20296.
[62] Duraisamy, S., Penki, T., Kishore, B., Barpanda, P., Nayak, P., Aurbach, D., & Munichandraiah, N. (2017). Porous, hollow Li₁.₂Mn₀.₅₃Ni₀.₁₃Co₀.₁₃O₂ microspheres as a positive electrode material for Li-ion batteries. Journal of Solid State Electrochemistry, 21.
[63] Zhang, Y., Li, X., Zhu, T., Ma, S., Li, H., & Sun, G. (2019). Facile Fabrication Hierarchical Pore Structure Li₁.₂Mn₀.₅₄Ni₀.₁₃Co₀.₁₃-xSrxO₂ Nanofiber for High-Performance Cathode Materials. ES Materials & Manufacturing, 3, 38–46.
[64] Huo, Y.-L., Gu, Y-J., Chen, Z.-L., Ma, X.-Y., Wu, F.-Z., & Dai, X.-Y. (2023). Improved electrochemical performance of spinel LiMn₂O₄ derived from manganese-based metal–organic frameworks by organic ligands. New Journal of Chemistry, 47(29), 14068-14077.
[65] Xu, H., Deng, S., & Chen, G. (2014). Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. Journal of Materials Chemistry A, 2(36), 15015-15021.
[66] Yi, T.-F., Fang, Z.-K., Xie, Y., Zhu, Y.-R., & Zang, L.-Y. (2014). Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 147, 250-256.
[67] Yi, T.-F., Li, Y.-M., Cai, X.-D., Yang, S.-Y., & Zhu, Y.-R. (2017). Fe-stabilized Li-rich layered Li1.2Mn0.56Ni0.16Co0.08O2 oxide as a high performance cathode for advanced lithium-ion batteries. Materials Today Energy, 4, 25-33.
[68] Hawari, N. H., Xie, H., Prayogi, A., Sumboja, A., & Ding, N. (2023). Understanding SEI evolution during the cycling test of anode-free lithium-metal batteries with LiDFOB salt. RSC Advances, 13(36), 25673-25680.
[69] Wang, L., Zhao, J., He, X., Gao, J., Li, J., Wan, C., & Jiang, C. (2012). Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. International Journal of Electrochemical Science, 7(1), 345-353.
[70] Gao, Z., Zhao, Jiayi, Pan, Xiaoliang, Liu, Lijun, Xie, Shikun, & Yuan, Huiling. (2021). Controllable preparation of one-dimensional Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for high-performance lithium-ion batteries. The Royal Society of Chemistry., 11(9), 4864-4872.
[71] Amalraj, F., Talianker, M., Markovsky, B., Burlaka, L., Leifer, N., Goobes, G., Erickson, E. M., Haik, O., Grinblat, J., Zinigrad, E., Aurbach, D., Lampert, J. K., Shin, J.-Y., Schulz-Dobrick, M., & Garsuch, A. (2013). Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating. Journal of The Electrochemical Society, 160(11), A2220.
[72] Nayak, P., Grinblat, J., Mikhael, L., Haik, O., Levi, E., Kim, S., Choi, J., & Aurbach, D. (2015). Multiphase LiNi0.33Mn0.54Co0.13O2 Cathode Material with High Capacity Retention for Li‐Ion Batteries. ChemElectroChem, 2.
[73] Nayak, P., & Levi, E. (2015). Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 19.
[74] Gan, Q., Qin, N., Li, Z. (2023). Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes. Nano Research, 16, 513–520.
[75] Mohanty, D., Sefat, A. S., Li, J., Meisner, R. A., Rondinone, A. J., Payzant, E. A., Abraham, D. P., Wood, D. L., Daniel, C., & Daniel, C. (2013). Correlating cation ordering and voltage fade in a lithium-manganese-rich lithium-ion battery cathode oxide: A joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics, 15(44), 19496-509.
[76] Hao, G., Lai, Q., & Zhang, H. (2021). Nanostructured Mn-based oxides as high-performance cathodes for next-generation Li-ion batteries. Journal of Energy Chemistry, 59, 547-571.
[77] Chou, T.-S., Pang, W. K., & Wu, S.-H. (2013). Effects of Preparing Process On the Properties of O-LiMnO2 Via Pechini’s Method.
[78] Liu, W.-W., Wang, D., Wang, Z., Deng, J., Lau, W.-M., & Zhang, Y. (2017). Influence of magnetic ordering and Jahn–Teller distortion on the lithiation process of LiMn2O4. Physical Chemistry Chemical Physics, 19(9), 6481-6486.
[79] Sun, W., Cao, F., Liu, Y., Zhao, X., Liu, X., & Yuan, J. (2012). Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries. Journal of Materials Chemistry, 22, 20952-20957.
[80] Li, X., Su, Z., & Wang, Y. (2018). Electrochemical properties of monoclinic and orthorhombic LiMnO2 synthesized by a one-step hydrothermal method. Journal of Alloys and Compounds, 735, 2182-2189.
[81] Reed, J., & Ceder, G. (2004). Role of Electronic Structure in the Susceptibility of Metastable Transition Metal Oxide Structures to Transformation. Chemical Reviews, 104, 4513-4534.
[82] Freitag, R., & Conradie, J. (2013). Understanding the Jahn–Teller Effect in Octahedral Transition-Metal Complexes: A Molecular Orbital View of the Mn(β-diketonato)3 Complex. Journal of Chemical Education, 90(12), 1692-1696.
[83] Tang, D., Ben, L., Sun, Y., Chen, B., Yang, Z., Gu, L., & Huang, X. (2014). Electrochemical Behavior And Surface Structural Change of LiMn2O4 Charged to 5.1 V. Journal of Materials Chemistry A, 2, 14519-14527.
[84] Zheng, F., Ou, X., Pan, Q., Xiong, X., Yang, C., & Liu, M. (2017). The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. Journal of Power Sources, 346, 31–39.
[85] Huang, L., Liu, L., Wu, H., Wang, Y., Liu, H., & Zhang, Y. (2019). Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries. Journal of Alloys and Compounds, 775, 921–930.
[86] Zhang, X., Hao, J., Wu, L., Guo, Z., Ji, Z., Luo, J., Chen, C., Shu, J., Long, H., Yang, F., & Volinsky, A. A. (2018). Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for li-ion batteries. Electrochimica Acta, 283, 1203–1212.
[87] Duraisamy, S., Penki, T. R., Kishore, B., et al. (2017). Porous, hollow Li1.2Mn0.53Ni0.13Co0.13O2 microspheres as a positive electrode material for Li-ion Batteries. Journal of Solid State Electrochemistry, 21, 437–445.
[88] Ma, D., Zhang, P., Li, Y., & Ren, X. (2015). Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathodes with improved stability and rate capability for Li-ion batteries. Scientific Reports, 5, No. 1268. |