博碩士論文 111223011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.129.25.7
姓名 葉寶琳(Bao-Lin Yeh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 有機合成含有β-二酮及吡唑基團之有機小分子電洞傳輸材料並探討其共軛結構與誘導效應對於反式鈣鈦礦太陽能電池的影響
(Synthesis of β-diketone and pyrazole based hole-transport materials and investigation of their conjugation and inductive effects on the performance of the inverted perovskite solar cells.)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-5以後開放)
摘要(中) 隨著經濟高度發展,能源需求與日俱增,石化燃料的使用造成碳排放量大增,隨之產生的溫室氣體造成環境極大負擔,而全球環保意識的崛起,讓永續發展成為刻不容緩的議題,因此近年來替代能源的研究逐漸受到重視,太陽能電池是其中一大發展方向,但現今常見的矽晶太陽能電池有著成本昂貴、原料來源有限等缺點,因此出現許多新型太陽能電池。其中,鈣鈦礦太陽能電池,近10年來有著顯著的發展,由美國國家再生能源組織(NREL)研究統計指出,近10年鈣鈦礦太陽能電池的PCE上升超過10%,已然成為新興太陽能電池中最具發展潛力的電池種類。而在眾多影響效率表現的因素中,電子傳輸層及電洞傳輸層的性質扮演著至關重要的角色。
本篇研究主要以有機合成的方式合成兩個不同系列的有機小子電洞傳輸材料(HTM)。第一個DK系列,為共軛供體-受體(Donor-Acceptor) 的結構組成,以β-diketone作為HTM的π共軛結構中心,連接上具有不同的推拉電子基團的苯環及無共軛的結構作為Acceptor,探討分子對稱性與共軛長度及誘導效應對電洞傳輸材料的性質影響。第二個DKZN系列為DK系列的衍生,為共軛供體-受體(Donor-Acceptor) 的結構組成,以Pyrazole(吡唑)作為HTM的π共軛結構中心,連接上具有不同的推拉電子基團的苯環作為Acceptor,探討誘導效應及Pyrazole結構對於電洞傳輸材料的光電性質影響。
摘要(英) As the economy develops rapidly, the demand for energy continues to rise, leading to a significant increase in carbon emissions from the use of petrochemical fuels. The resulting greenhouse gases pose a tremendous burden on the environment. The rise of global environmental awareness has made sustainable development an urgent issue. Consequently, research on alternative energy sources has been increasingly emphasized in recent years, with solar energy being one of the major directions. However, conventional silicon solar cells suffer from drawbacks such as high costs and limited raw material sources, prompting the exploration of new types of solar cells. Among them, perovskite solar cells have seen significant development in the past decade, with their power conversion efficiency (PCE) increasing by over 10%, making them the most promising type of emerging solar cells. This study focuses on synthesizing two different series of organic small molecule hole-transporting materials (HTMs). The first series, DK series, consists of β-diketone as the π-conjugated structure center. Various electron-withdrawing and electron-donating groups are attached to the benzene ring as acceptors, investigating the effects of inductive effect and molecular symmetry on the properties of hole-transporting materials. The second series, DKZN series, is a derivative of the DK series, featuring Pyrazole as the π-conjugated structure center. Different electron-withdrawing groups are attached to the the benzene ring as acceptors, exploring the effects of inductive effect and the pyrazole structure on the optoelectronic properties of the hole-transporting materials.
關鍵字(中) ★ 鈣鈦礦
★ 反式鈣鈦礦太陽能電池
★ 電洞傳輸材料
★ 有機小分子電洞傳輸材料
關鍵字(英) ★ perovskite
★ inverted perovskite solar cells
★ hole-transport materials
★ organic small molecule hole-transport materials
論文目次 摘要 VI
ABSTRACT VII
誌 謝 VIII
目錄 X
圖目錄 XIII
表目錄 XVI
一、緒論 1
1-1前言 1
1-2太陽能電池 3
1-3鈣鈦礦太陽能電池 5
1-4電池元件基本結構 7
1-5鈣鈦礦太陽能電池工作原理 11
1-6太陽能電池光伏參數 12
1-7電洞傳輸層文獻回顧 14
1-7-1 線型結構 (Linear‒type) 14
1-7-2星型結構 (Star‒shape) 17
1-7-3螺旋型結構 (Spiro‒type) 19
1-7-4不對稱型結構 (Asymmetric type) 21
1-8自組裝單層膜 (SELF-ASSEMBLED MONOLAYERS, SAMS) 22
1-9自組裝單層膜(SAMS)文獻回顧 23
二、結構設計概念及動機 24
2-1 DK SERIES 24
2-2 DKZN SERIES 29
三、結果與討論 33
3-1 DK SERIES 33
3-1-1 DK series合成策略 33
3-1-2密度泛函理論計算 (Density Functional Theory, DFT) 35
3-1-3物理性質及光學分析 44
3-1-3-1熱穩定性分析TGA 44
3-1-3-2 UV-VIS 紫外-可見光吸收光譜 45
3-1-3-3 CV 電化學性質分析 48
3-2 DKZN SERIES 54
3-2-1 DKZN series合成策略 54
3-2-2密度泛函理論計算 (Density Functional Theory, DFT) 55
3-2-3物理性質與光學及電化學分析 60
3-2-3-1熱穩定性分析TGA 60
3-2-3-2 UV-VIS 紫外-可見光吸收光譜 61
3-2-3-3 CV 電化學性質分析 62
3-3 DK系列化合物之電洞傳輸能力 66
3-3-1薄膜態 光致發光光譜Photoluminescence spectra (PL film) 66
3-3-2電洞遷移率Hole-mobility (ITO/HTM/Ag) 67
3-4 DK 系列化合物之元件穩定性分析 69
3-4-1接觸角測試Contact Angles 69
3-4-2元件長期穩定性測試Long-term stability 71
3-5反式鈣鈦礦太陽能電池元件初步效率 73
3-5-1 DK 系列 73
3-5-2 DKZN 系列 74
3-6電洞傳輸材料之成本計算 75
3-6-1 DK Series 75
3-6-2 DKZN Series 79
四、結論及未來發展方向 80
4-1 DK SERIES 80
4-2 DKZN SERIES 81
五、實驗藥品、儀器及合成與光譜數據 83
5-1實驗藥品 83
5-2實驗儀器 83
5-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 83
5-2-2超高解析質譜儀 (High Mass Spectrometry) 84
5-2-3電化學分析儀 (Electrochemical Analyzer) 84
5-2-4紫外光-可見光光譜儀 (UV-Vis Spectrophotometer) 84
5-2-5 熱重分析儀 (Thermogravimetric Analyzer) 85
5-2-6 光致發光光譜(Photoluminescence Spectrophotometer) 85
5-2-7 元件長期穩定性及電洞遷移率量測所使用之相關儀器 85
5-2-8接觸角量測所使用之相關儀器 85
5-3 DK SERIES合成步驟及光譜數據 86
5-4 DKZN SERIES合成步驟及光譜數據 92
參考文獻 94
附錄 98
參考文獻 〔1〕 Energy Institute - Statistical Review of World Energy (2023).
From: https://ourworldindata.org/energy-production-consumption
〔2〕REN 21, 2023. Renewables 2023 Global Status Report.
From: https://www.ren21.net/gsr-2023/
〔3〕 (經濟部能源局,2023a) ,台大風險中心製圖。
取自:https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1767-2022-open-energy-review.html
〔4〕 Best Research-Cell Efficiency Chart.
From: https://www.nrel.gov/pv/cell-efficiency.html
〔5〕 Luo, S.; Daoud, W. A., “Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design.” Journal of Materials Chemistry A 2015, 3 (17), 8992-9010.
〔6〕 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” J. Am. Chem. Soc. 2009, 131, 6050-6051.
〔7〕 Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific reports 2012, 2 (1), 591.
〔8〕 Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔9〕 Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., “Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.” Energy & Environmental Science 2015, 8 (5), 1602-08.
〔10〕 Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., “Recent progress in electron transport layers for efficient perovskite solar cells.” Journal of Materials Chemistry A 2016, 4 (11), 3970-90.
〔11〕 Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J., “Influence of blend microstructure on bulk heterojunction organic photovoltaic performance.” Chemical Society Reviews 2011, 40 (3), 1185-99.
〔12〕 Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔13〕 Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., “Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting.” Angewandte Chemie International Edition 2014, 53 (12), 3151-57.
〔14〕 Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., “CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm.” The journal of physical chemistry letters 2014, 5 (6), 1004-11.
〔15〕Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y., “Architecture of pin Sn-based perovskite solar cells: characteristics, advances, and perspectives.” ACS Energy Letters 2021, 6 (8), 2863-75.
〔16〕 Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.” Energy & environmental science 2016, 9 (6), 1989-97.
〔17〕 Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.” Science 2016, 354 (6309), 206-09.
〔18〕 Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P., “A review of inorganic hole transport materials for perovskite solar cells.” Advanced Materials Interfaces 2018, 5 (22), 1800882.
〔19〕 Kim, G.-W.; Kang, G.; Kim, J.; Lee, G.-Y.; Kim, H. I.; Pyeon, L.; Lee, J.; Park, T., “Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells.” Energy & Environmental Science 2016, 9 (7), 2326-33.
〔20〕 Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M. K., “Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material.” Journal of the American Chemical Society 2014, 136 (24), 8516-19.
〔21〕 Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; Ball, J. M.; Docampo, P.; McPherson, I., “Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells.” Physical Chemistry Chemical Physics 2013, 15 (7), 2572-79.
〔22〕 Leijtens, T.; Lim, J.; Teuscher, J.; Park, T.; Snaith, H. J., “Charge density dependent mobility of organic hole-transporters and mesoporous TiO₂ determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells.” Advanced Materials (Deerfield Beach, Fla.) 2013, 25 (23), 3227-33.
〔23〕 Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S. R.; Chen, M.; Baranwal, A. K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D., “Tin–lead perovskite solar cells fabricated on hole selective monolayers.” ACS Energy Letters 2022, 7 (3), 966-74.
〔24〕 Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F., “Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability.” Nature Energy 2019, 4 (11), 939-47.
〔25〕 Li, X.; Yu, H.; Liu, Z.; Huang, J.; Ma, X.; Liu, Y.; Sun, Q.; Dai, L.; Ahmad, S.; Shen, Y., “Progress and challenges toward effective flexible perovskite solar cells.” Nano-Micro Letters 2023, 15 (1), 206.
〔26〕 Uddin, M. G. “Development of Simplified In Situ Processing Routes for Rear-Side Patterning of Silicon Heterojunction Interdigitated Back Contact (SHJ-IBC) Solar Cells.” Itä-Suomen yliopisto, 2018.
〔27〕 Wright, M.; Uddin, A. “Organic—inorganic hybrid solar cells: A comparative
review.” Sol. Energy Mater Sol. Cells 2012, 107, 87-111. 〔28〕 Arora, N.; Wetzel, C.; Dar, M. I.; Mishra, A.; Yadav, P.; Steck, C.; Zakeeruddin, S. M.; Bäuerle, P.; Grätzel, M., “Donor–acceptor-type S, N-heteroacene-based hole-transporting materials for efficient perovskite solar cells.” ACS applied materials & interfaces 2017, 9 (51), 44423-28.
〔29〕Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y., “D–A–D-typed hole transport materials for efficient perovskite solar cells: tuning photovoltaic properties via the acceptor group.” ACS applied materials & interfaces 2018, 10 (23), 19697-703.
〔30〕 Joseph, V.; Xia, J.; Sutanto, A. A.; Jankauskas, V.; Momblona, C.; Ding, B.; Rakstys, K.; Balasaravanan, R.; Pan, C.-H.; Ni, J.-S., “Triarylamine-functionalized imidazolyl-capped bithiophene hole transporting material for cost-effective perovskite solar cells.” ACS Applied Materials & Interfaces 2022, 14 (19), 22053-60.
〔31〕 Zhang, X.; Ghadari, R.; Liu, X.; Wang, W.; Ding, Y.; Cai, M.; Pan, J. H.; Dai, S., “Heteroatom effect on linear-shaped dopant-free hole transporting materials for perovskite solar cells.” Solar Energy 2021, 221, 323-31.
〔32〕 Duan, L.; Chen, Y.; Jia, J.; Zong, X.; Sun, Z.; Wu, Q.; Xue, S., “Dopant-free hole-transport materials based on 2, 4, 6-triarylpyridine for inverted planar perovskite solar cells.” ACS Applied Energy Materials 2020, 3 (2), 1672-83.
〔33〕 Zhang, X.; Ma, S.; Wu, G.; Liu, X.; Mateen, M.; Ghadari, R.; Wu, Y.; Ding, Y.; Cai, M.; Dai, S., “Fused tetraphenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells.” Chemical communications 2020, 56 (21), 3159-62.
〔34〕 Onozawa-Komatsuzaki, N.; Tsuchiya, D.; Inoue, S.; Kogo, A.; Funaki, T.; Chikamatsu, M.; Ueno, T.; Murakami, T. N., “Highly efficient dopant-free cyano-substituted spiro-type hole-transporting materials for perovskite solar cells.” ACS Applied Energy Materials 2022, 5 (6), 6633-41.
〔35〕Qin, T.; Wu, F.; Ma, D.; Mu, Y.; Chen, X.; Yang, Z.; Zhu, L.; Zhang, Y.; Zhao, J.; Chi, Z., “Asymmetric sulfonyldibenzene-based hole-transporting materials for efficient perovskite solar cells: Inspiration from organic thermally-activated delayed fluorescence molecules.” ACS Materials Letters 2020, 2 (9), 1093-100.
〔36〕 Wang, S.; Guo, H.; Wu, Y., “Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells.” Materials Futures 2023, 2 (1), 012105.
〔37〕 Aktas, E.; Phung, N.; Köbler, H.; González, D. A.; Méndez, M.; Kafedjiska, I.; Turren-Cruz, S.-H.; Wenisch, R.; Lauermann, I.; Abate, A., “Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells.” Energy & Environmental Science 2021, 14 (7), 3976-85.
〔38〕 Wang, J.; Liu, Y.; Xiao, X.; Bi, Z.; Lu, Y.; Sheng, G.; Cai, X.; Zhu, Y.; Xu, X.; Xu, G., “An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells.” Solar Energy 2021, 216, 7-13.
〔39〕 Wang, R.; Gao, H.; Yu, R.; Jia, H.; Ma, Z.; He, Z.; Zhang, Y.; Yang, J.; Zhang, L.; Tan, Z. a., “β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells.” The Journal of Physical Chemistry Letters 2021, 12 (49), 11772-78.
〔40〕 Yuan, Y.; Wang, H.; Xu, L.; Zhang, H.; Liu, Y.; Lin, P.; Wang, P.; Wu, X.; Yu, X.; Cui, C., “Imidazole as an Amphoteric Lewis Acid–Base Additive for Efficient CsPbI3 Inorganic Perovskite Solar Cells.” ACS Applied Energy Materials 2023, 6 (21), 10996-1004.
〔41〕 Li, Z.; Jo, B. H.; Hwang, S. J.; Kim, T. H.; Somasundaram, S.; Kamaraj, E.; Bang, J.; Ahn, T. K.; Park, S.; Park, H. J., “Bifacial passivation of organic hole transport interlayer for NiOx‐based p‐i‐n perovskite solar cells.” Advanced Science 2019, 6 (6), 1802163.
〔42〕 Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z., “Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance.” Advanced Functional Materials 2016, 26 (17), 2950-58.
〔43〕 Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L., “Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer.” Organic Electronics 2020, 78, 105573.
〔44〕 Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C.
“ Electrochemical Considerations for Determining Absolute Frontier
Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications.” Adv. Mater. 2011, 23, 2367-2371.
〔45〕 Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R., “New pyridinium ylide dyes for dye sensitized solar cell applications.” Organic letters 2016, 18 (14), 3386-89.
〔46〕 Costa, R. G. d.; Farias, F. R.; Maqueira, L.; Castanho, C.; Carneiro, L. S.; Almeida, J. M.; Buarque, C. D.; Aucélio, R. Q.; Limberger, J., “Synthesis, photophysical and electrochemical properties of novel D-π-D and D-π-A triphenylamino-chalcones and β-arylchalcones.” Journal of the Brazilian Chemical Society 2019, 30 (1), 81-89.
指導教授 李文仁(Wen-Ren Li) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明