博碩士論文 110223072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.189.143.78
姓名 管瑋璿(Wei-Hsuan Kwan)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Cation-pi Interactions Catalyzed the Cope Rearrangement of Stig Cyclases)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-26以後開放)
摘要(中) Stig環化酶,如FamC1或HpiC1,能夠催化將(R)-3-geranyl 3-isocyanovinyl indolenine轉化為hapalindole型生物鹼。這些酶催化的過程涉及三個步驟:第一步是香葉基轉移,即Cope重排反應;第二步和第三步是環化的兩階段過程。其中,Cope重排反應是速率決定步驟,但Stig環化酶對於此催化反應的功能仍不明確。本研究中,我們通過分子動力學來平衡FamC1蛋白的結構,並進一步利用量子力學/分子動力學模擬研究Cope重排反應的催化機制。在Cope重排反應過程中,生成的陽離子中間物與苯丙胺酸88發生陽離子-π交互作用,影響了Cope重排反應的途徑和中間物的穩定性。此外,在酶的活性中心,我們觀察到酪胺酸101與反應物之間存在π-π交互作用。我們利用兩種不同方法更進一步地確立本文明確了苯丙胺酸88在Cope重排的重要性。這些關鍵胺基酸在酵素催化中的作用,為設計和開發新的hapalindole型生物鹼提供了重要的指導。
摘要(英) The Stig cyclases, including FamC1 and HpiC1, catalyze the conversion of (R)-3-geranyl-3-isocyanovinylindolenine into hapalindole-type alkaloids through a calcium-dependent enzymatic cascade. This process comprises three key reaction steps: an initial geranyl transfer, followed by a two-stage cyclization. The Cope rearrangement, the rate-determining step, involves the formation of a cationic intermediate. This study used molecular dynamics simulations to equilibrate the FamC1 protein structure, and quantum mechanics/molecular mechanics (QM/MM) simulations were employed to explore the Cope rearrangement mechanism. Our findings indicate that phenylalanine 88 plays a critical role in this step via cation-π interactions, influencing the reaction pathway and intermediate stability. Additionally, π-π interactions between tyrosine 101 and the substrate were observed within the enzyme′s active site. These interactions highlight the importance of specific amino acids in the catalytic function of Stig cyclases, offering insights for the design and development of new hapalindole-type alkaloids.
關鍵字(中) ★ 重排反應
★ 催化
★ 環化酶
★ 傘狀採樣
★ Hapalindole 生物鹼
★ 陽離子-π相互作用
關鍵字(英) ★ rearrangement
★ Catalysis
★ cyclase
★ Umbrella sampling
★ Hapalindole alkaloid
★ Cation–π interaction
論文目次 摘要 i
英文摘要 ii
目錄 iii
圖目錄 iv
一、 緒論 1
二、研究方法 7
2-1 傘型取樣 (Umbrella sampling) 7
2-2 基質(S)的構建 9
2-3 QM/MM MD 模擬 11
三、 結果與討論 13
3-1 FamC1中 (R)-3-geranyl-3-isocyanovinyl indolenine 重排反應的能量 13
3-2 Cope 重排的性質分析 17
3-3 QM 排除法與胺基酸替換法和原方法的比較 23
四、 結論 32
參考文獻 34
附錄 38
參考文獻 1. Richard E. Moore, C. C., and Gregory M. L. Patterson, Hapalindoles: New Alkaloids from the Blue-Green Alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 1984, 106, 6456-6457.
2. Bhat, V.; Dave, A.; MacKay, J. A.; Rawal, V. H., The Chemistry of Hapalindoles, Fischerindoles, Ambiguines, and Welwitindolinones. Alkaloids Chem Biol 2014, 73, 65-160.
3. Cagide, E.; Becher, P. G.; Louzao, M. C.; Espina, B.; Vieytes, M. R.; Juttner, F.; Botana, L. M., Hapalindoles from the cyanobacterium fischerella: potential sodium channel modulators. Chem Res Toxicol 2014, 27 (10), 1696-706.
4. Knoot, C. J.; Khatri, Y.; Hohlman, R. M.; Sherman, D. H.; Pakrasi, H. B., Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019, 8 (8), 1941-1951.
5. Khatri, Y.; Hohlman, R. M.; Mendoza, J.; Li, S.; Lowell, A. N.; Asahara, H.; Sherman, D. H., Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synth Biol 2020, 9 (6), 1349-1360.
6. Hohlman, R. M.; Newmister, S. A.; Sanders, J. N.; Khatri, Y.; Li, S.; Keramati, N. R.; Lowell, A. N.; Houk, K. N.; Sherman, D. H., Structural Diversification of Hapalindole and Fischerindole Natural Products via Cascade Biocatalysis. ACS Catalysis 2021, 11 (8), 4670-4681.
7. Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H., Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C-C Bond-Forming Cascade. J Am Chem Soc 2015, 137 (49), 15366-9.
8. Liu, X.; Hillwig, M. L.; Koharudin, L. M.; Gronenborn, A. M., Unified biogenesis of ambiguine, fischerindole, hapalindole and welwitindolinone: identification of a monogeranylated indolenine as a cryptic common biosynthetic intermediate by an unusual magnesium-dependent aromatic prenyltransferase. Chem Commun (Camb) 2016, 52 (8), 1737-40.
9. Newmister, S. A.; Li, S.; Garcia-Borras, M.; Sanders, J. N.; Yang, S.; Lowell, A. N.; Yu, F.; Smith, J. L.; Williams, R. M.; Houk, K. N.; Sherman, D. H., Structural basis of the Cope rearrangement and cyclization in hapalindole biogenesis. Nat Chem Biol 2018, 14 (4), 345-351.
10. Chen, C. C.; Hu, X.; Tang, X.; Yang, Y.; Ko, T. P.; Gao, J.; Zheng, Y.; Huang, J. W.; Yu, Z.; Li, L.; Han, S.; Cai, N.; Zhang, Y.; Liu, W.; Guo, R. T., The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018, 57 (46), 15060-15064.
11. Tang, X.; Xue, J.; Yang, Y.; Ko, T.-P.; Chen, C.-Y.; Dai, L.; Guo, R.-T.; Zhang, Y.; Chen, C.-C., Structural insights into the calcium dependence of Stig cyclases. RSC Advances 2019, 9 (23), 13182-13185.
12. Li, S.; Newmister, S. A.; Lowell, A. N.; Zi, J.; Chappell, C. R.; Yu, F.; Hohlman, R. M.; Orjala, J.; Williams, R. M.; Sherman, D. H., Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor-Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020, 59 (21), 8166-8172.
13. D. C. WIGFIELD: S. FEINER, G. M. a. K. T., INVESTIGATIONS ON THE QUESTION OF MULTIPLE MECHANISMS IN THE COPE REARRANGEMENT-’. 1974.
14. Reichardt, C., Solvent effects in organic chemistry. Verlag Chemie: Weinheim; New York, 1979.
15. FEINE, D. C. W. A. S., Solvent effects in the Cope rearrangement. 1969.
16. Mitsuhashi Tsutomu 1 , Y. G., Analysis of Solvent Effects on the Rate of the Cope Rearrangement: Evidence for Its Hydrogen-Bond-Insusceptible Nature. 1990.
17. LUTZ, R. P., Catalysis of the Cope and Claisen Rearrangements. Chem. Rev. 1984, 84.
18. Hiroyuki Nakamura, H. I., Masateru Ito, and Yoshinori Yamamoto*, Palladium(0)-Catalyzed Cope Rearrangement of Acyclic 1,5-Dienes. Bis(π-allyl)palladium(II) Intermediate. 1999.
19. Sommer, H.; Weissbrod, T.; Marek, I., A Tandem Iridium-Catalyzed "Chain-Walking"/Cope Rearrangement Sequence. ACS Catal 2019, 9 (3), 2400-2406.
20. Chollet, W. G. D. a. A., ACID CATALYZED COPE REARRANGEMENTS OF P-ACYL-1,5-DIENES. 1981.
21. Kaldre, D.; Gleason, J. L., An Organocatalytic Cope Rearrangement. Angew Chem Int Ed Engl 2016, 55 (38), 11557-61.
22. Paquette, L. A., RECENT APPLICATIONS OF ANIONIC OXY-COPE REARRANIT, EMENTS. 1997.
23. Tanner, M. E., Mechanistic studies on the indole prenyltransferases. Nat Prod Rep 2015, 32 (1), 88-101.
24. Zhu, Q.; Liu, X., Molecular and genetic basis for early stage structural diversifications in hapalindole-type alkaloid biogenesis. Chem Commun (Camb) 2017, 53 (19), 2826-2829.
25. P.Valleau, G. M. T., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974.
26. G.M.TorrieJ.P.Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977.
27. Parrinello, A. L. a. M., Escaping free-energy minima. Proceedings of the National Academy of Sciences 2002.
28. Darve, E.; Pohorille, A., Calculating free energies using average force. The Journal of Chemical Physics 2001, 115 (20), 9169-9183.
29. Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the efficiency of free energy calculation methods. J Chem Phys 2004, 120 (8), 3563-78.
30. Sgrignani, J.; Magistrato, A., QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catalysis 2015, 5 (6), 3864-3875.
31. Voice, A. T.; Tresadern, G.; Twidale, R. M.; van Vlijmen, H.; Mulholland, A. J., Mechanism of covalent binding of ibrutinib to Bruton′s tyrosine kinase revealed by QM/MM calculations. Chem Sci 2021, 12 (15), 5511-5516.
32. ROSENBERG, S. K. a. J. M., Mu1 t i dimensional Fr e e - Ene r gy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995.
33. Kästner, J., Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (6), 932-942.
34. Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V., H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012, 40 (Web Server issue), W537-41.
35. Alexander D. MacKerell, J., *,† Michael Feig,‡ and Charles L. Brooks, III, Improved Treatment of the Protein Backbone in Empirical Force Fields. 2004.
36. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., Jr., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010, 31 (4), 671-90.
37. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; Mackerell, A. D., Jr., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 2012, 8 (9), 3257-3273.
38. Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A. D., Jr., Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 2012, 33 (31), 2451-68.
39. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Henin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kale, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E., Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020, 153 (4), 044130.
40. Vanommeslaeghe, K.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 2012, 52 (12), 3144-54.
41. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 2012, 52 (12), 3155-68.
42. Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C., Rapid parameterization of small molecules using the Force Field Toolkit. J Comput Chem 2013, 34 (32), 2757-70.
43. William Humphrey, A. D., and Klaus Schulten, VMD: Visual Molecular Dynamics. Journal of Molecular Graphics 1996.
44. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
45. Neese, F., The ORCA program system. WIREs Computational Molecular Science 2011, 2 (1), 73-78.
46. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
47. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37 (2), 785-789.
48. AI-Laham, G. A. P. a. M. A., A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. 1991.
49. Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 2004, 25 (12), 1463-73.
50. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32 (7), 1456-65.
51. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16 (11), 1339-1350.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明