博碩士論文 111324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.144.244.117
姓名 洪兆俞(Zhao-Yu Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 通用人類誘導多能幹細胞在多胜肽接枝水凝膠上的培養和分化
(Proliferation and Differentiation of Universal Human Induced Pluripotent Stem Cells on Hydrogels Grafted with Mixed ECM-derived Peptides)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-20以後開放)
摘要(中) 幹細胞是應用於細胞治療中重要的細胞來源。 胚胎幹細胞(ESC)和人類誘導多能幹細胞(hiPSC)都屬於人類多能幹細胞(hPSC)的範疇內,而這些幹細胞皆具有分化為內胚層、中胚層和外胚層, 這些胚胎層的能力。 Matrigel是含異種基質材料的細胞外基質 (ECM) 用來培育和分化 hPSC 最常用的外基質之一。 Matrigel是一種從 Engelbreth-Holm-Swarm (EHS) 小鼠肉瘤中提取的溶解基底膜萃取物,由多種分子組成其中包含有膠原蛋白IV、層粘連蛋白-111等組成的。大多數研究中,在接枝ECM衍生的胜肽水凝膠已可以用於PSC的培育和分化。 而有鑑於Matrigel由多種成分組成,我設計了接枝多種 ECM 混和衍生的胜肽水凝膠。 我利用NHS和EDC 這兩種藥品並使用的化學方法來製備聚乙烯醇-衣康酸、PVA-IA、來接枝有玻連蛋白衍生胜肽 (VN2CK) 和層黏連蛋白β4 衍生胜肽 (LB2CK) 的水凝膠,經過測試後這水凝膠能控制在25.3kPa的彈性應力。 與單一胜肽接枝水凝膠相比,人類 PSC在混合的胜肽上接枝水凝膠有更高的效益。 接枝混合的胜肽 (1000 : 1000μg/mL) 水凝膠可以更有效率的促進 hPSC 的黏附並幫助其多能性的維持。我還在胜肽的第一個位置上添加了氨基酸(賴氨酸,K)。 在氨基酸添加後,及為KKLB2CK的氨基,比未添加的LB2CK表現出更高的反應活性。從中發現,在胜肽的第一個位置上插入的帶正電氨基酸 (K) 顯著增強了胜肽接枝水凝膠的表面接枝密度,並且還增加了水凝膠的zeta電位。 在這項研究中,我展示了由三種來自不同人體的人類羊水中並在沒有基因編輯的情況下衍生出的通用 hiPSCs。 這種通用 hiPSC 在有混合玻連蛋白和層黏連蛋白 β4 衍生胜肽的水凝膠上進行培育和分化,且最後用人類週邊血單核細胞 (hPBMCs)來共同培養並驗證hiPSCs的免疫原性。
摘要(英) Stem cells are attractive source of cells for cell therapy. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and human induced pluripotent stem cells (hiPSCs) have the potential to differentiate into any cell types derived from endoderm, mesoderm and ectoderm lineages. Xeno-containing Matrigel is one of the most commonly used substrates for culturing and differentiating hPSCs. Matrigel is a solubilized basement membrane extracts from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma composed of multiple molecules, including collagen IV and laminin-111. Instead of Matrigel-coated dishes, hydrogels grafted with single ECM-derived peptides have been utilized for the culture and differentiation of PSCs by most of researches. Considering that Matrigel is comprised of various components, hydrogels grafted with mixed ECM-derived peptides have been designed in this study. Poly(vinyl alcohol-co-itaconic), PVA-IA, hydrogels grafted with vitronectin-derived peptide (VN2CK) and laminin β4-derived peptide (LB2CK) were prepared using EDC/NHS chemistry, where the elasticity of the hydrogels was fixed at 25.3 kPa. Compared to the hydrogels grafted with single peptides, hPSCs demonstrated more efficient proliferation on the hydrogels grafted with mixed peptides. Hydrogels grafted with a combination of mixed peptides (1000:1000 μg/mL) were effective in promoting adhesion and preserving pluripotency of hPSCs, where positive amino acids (Lysine, K) was added on the first of the peptide sequences. The hydrogels grafted with KKLB2CK having positively charged amino acids on the first peptide sequence exhibited higher reactivity than those grafted with LB2CK. Interestingly, the insertion of positively charged amino acids on the peptides significantly enhanced both the surface grafting density and the zeta potential of the peptide-grafted hydrogels. The universal hiPSCs were prepared from the reprogramming of human amniotic fluids after mixing three different source of amniotic fluid without gene editing. This universal hiPSCs were cultured and differentiated on the hydrogels grafted with mixed vitronectin- and laminin β4-derived peptides. Immunotolerance of the universal hiPSCs were evaluated from the treatment of human peripheral blood-derived mononuclear cells (hPBMCs).
關鍵字(中) ★ 寡肽
★ 重編程
★ 人類誘導多能幹細胞
★ 羊水幹細胞
★ 人類白血球抗原
★ 心肌細胞
關鍵字(英) ★ oligopeptides
★ reprogramming
★ humam induced pluripotent stem cells
★ amniotic stem cells
★ HLA
★ cardiomyocytes
論文目次 Abstract I
摘要 III
Index of Content IV
Index of Figures V
Index of Tables XI
Chapter 1. Introduction 1
1-1 Stem cells 1
1-1-1 Human embryonic stem cells (hESCs) 2
1-1-2 Human induced pluripotent stem cells (hiPSCs) 4
1-1-3 The potential risks associated with human pluripotent stem cells (hPSCs) 5
1-1-4 Characterization of human pluripotent stem cells (hPSCs) 6
1-1-5 Human pluripotent stem cells (hPSCs) for therapeutic application 9
1-2 Human amniotic fluid stem cells (hAFSCs) 10
1-3 Cardiomyocytes 10
1-3-1 Characterization of human cardiomyocytes 11
1-3-2 Effective method for inducing cardiomyocyte differentiation 12
1-4 Biomaterials used to cultivate hPSCs 13
1-4-1 Feeder free and xeno-contained culture for hPSCs 14
1-4-2 Feeder free and xeno-free ECMs for hPSCculture 15
1-4-2-1 Cellular receptors for ECM 16
1-4-3 Creation of peptides with a joint-chain and a double-chain design 18
1-4-4 ECM-derived peptides for hPSCs adhesion, cultivation, and differentiation 18
1-5 Human peripheral blood mononuclear cells (hPBMCs) 20
1-6 Development of universal hiPSCs 20
1-7 The goal of this study 22
Chapter 2. Materials and Method 23
2-1 Materials 23
2-1-1 Cell line 23
2-1-2 Commercial culture dishes 23
2-1-3 Culture medium 24
2-1-4 Passage processing medium 24
2-1-5 Human induced pluripotent stem cells (hiPSCs) generation kit 25
2-1-6 Isolation of allogenic mononuclear cells 25
2-1-7 Phosphate buffer saline solution (PBS) 25
2-1-8 The chemicals for preparation of peptide-grafted hydrogels 26
2-1-9 Differentiation medium 29
2-1-10 Characterization of stem cells 29
2-2 Instruments 31
2-3 Methods 32
2-3-1 Preparation of culture medium 32
2-3-2 Generation and isolation of stem cell lines 33
2-3-3 Cultivation and passage method of stem cells 36
2-3-4 Cell number measurements 39
2-3-5 Characterization of hPSCs 40
2-3-5-1 Expansion fold evaluation of hPSCs 40
2-3-5-2 Differentiation ratio of hPSCs 40
2-3-5-3 Immunofluorescence staining 40
2-3-5-4 Flow cytometry measurements 43
2-3-5-5 Embryoid body (EB) formation assay in vitro 46
2-3-6 Isolation of allogenic mononuclear cells 46
2-3-7 Live and dead staining of the cells 47
2-4 Preparation of peptide-grafted hydrogels 48
2-4-1 Preparation of PVA-IA coated surface 48
2-4-2 Preparation of different peptide-grafted PVA-IA hydrogels 49
2-5 Characterization of peptide-grafted hydrogels 50
2-5-1 X-ray photoelectron spectroscopy (XPS) measurements 50
2-5-2 Zeta potential measurements 51
2-6 Differentiation method of hPSCs into cardiomyocytes 52
2-6-1 The protocol for differentiation of hPSCs into cardiomyocytes 52
2-6-2 Characterization of hPSC-derived cardiomyocytes 53
Chapter 3. Results and Discussion 55
3-1 Reprogramming and cultivation of hAFSCs-derived hiPSCs 55
3-1-1 The morphologies of mixed hAFSCs 55
3-1-2 Generation and isolation of hAFSCs-derived hiPSCs 56
3-1-3 Immune marker expression of universal hiPSCs and several human stem cells 59
3-2 Cultivation of universal hiPSCs on different peptide-grafted hydrogels 63
3-2-1 The morphologies of universal hiPSCs on different peptide-grafted hydrogels during long-term cultivation 65
3-2-2 Expansion fold of hiPSCs (HPS0077) on different peptide-grafted hydrogels 69
3-2-3 Pluripotency analysis of hiPSCs (HPS0077) cultured on different peptide-grafted hydrogels 71
3-2-4 EB formation of universal hiPSCs (mix-3-4) on different peptide-grafted hydrogels 74
3-3 Cultivation of hiPSCs (HPS0077) on different peptide-grafted hydrogels 76
3-3-1 The morphologies of hiPSCs (HPS0077) on different peptide-grafted hydrogels during long-term cultivation 76
3-3-2 Expansion fold of hiPSCs (HPS0077) on different peptide-grafted hydrogels 79
3-3-3 Pluripotency analysis of hiPSCs (HPS0077) cultured on different peptide-grafted hydrogels 81
3-3-4 EB formation of hiPSCs (HPS0077) on different peptide-grafted hydrogels 84
3-4 Characterization of different peptide-grafted hydrogels 86
3-4-1 X-ray photoelectron spectroscopy analysis of different peptide-grafted hydrogels 86
3-4-2 Zeta potential analysis of the surface electrical potential on different peptide-grafted hydrogels 92
3-5 Differentiation of human pluripotent stem cells into cardiomyocytes on different peptide-grafted hydrogels 95
3-5-1 Differentiation of hPSCs into cardiomyocytes on different peptide-grafted hydrogels 95
3-5-2 Specific marker expression of cardiomyocytes derived from universal hPSCs (mix-3-4) cultured on different peptide-grafted hydrogels 97
Chapter 4. Conclusion 100
References 102
Supplementary Data 110
參考文獻 1. Sada, A. and T. Tumbar, New Insights into Mechanisms of Stem Cell Daughter Fate Determination in Regenerative Tissues, in Intenational Review of Cell and Molecular Biology, Vol 300, K.W. Jeon, Editor. 2013. p. 1-50.
2. Zakrzewski, Stem cells: past, present, and future. Stem Cell Research & Therapy, 2019. 10.
3. Singh, V.K., Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016. 4.
4. Erceg Ivkošić, I., Unlocking the Potential of Mesenchymal Stem Cells in Gynecology: Where Are We Now? Journal of personalized medicine, 2023. 13(8): p. 1253.
5. Boroviak, T. and J. Nichols, The birth of embryonic pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014. 369(1657): p. 20130541.
6. Chang, E.A., Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases. Journal of Korean Neurosurgical Society, 2019. 62(5): p. 493-501.
7. Teo, A.K.K. and L. Vallier, Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010. 428: p. 11-23.
8. Eguizabal, C., Two decades of embryonic stem cells: a historical overview. Human Reproduction Open, 2019. 2019(1).
9. Niu, X., Is day 7 culture necessary for in vitro fertilization of cryopreserved/warmed human oocytes? Reproductive Biology and Endocrinology, 2020. 18: p. 1-4.
10. Alteri, A., Busting the myth of extended blastocyst culture until Day 7: Protocol for systematic review and meta-analysis. Medicine, 2020. 99(5): p. e18909.
11. Higuchi, A., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
12. Sills, E.S., Identification and isolation of embryonic stem cells in reproductive endocrinology: theoretical protocols for conservation of human embryos derived from in vitro fertilization. Theoretical Biology and Medical Modelling, 2005. 2.
13. Heins, N., Derivation, characterization, and differentiation of human embryonic stem cells. Stem cells, 2004. 22(3): p. 367-376.
14. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocrine reviews, 2009. 30(3): p. 204-213.
15. Hyun, I., The bioethics of stem cell research and therapy. The Journal of clinical investigation, 2010. 120(1): p. 71-75.
16. Landry, D.W. and H.A. Zucker, Embryonic death and the creation of human embryonic stem cells. The Journal of Clinical Investigation, 2004. 114(9): p. 1184-1186.
17. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
18. Takahashi, K., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell, 2007. 131(5): p. 861-872.
19. Okita, K. and S. Yamanaka, Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. 366(1575): p. 2198-2207.
20. Ye, L., C. Swingen, and J. Zhang, Induced pluripotent stem cells and their potential for basic and clinical sciences. Current cardiology reviews, 2013. 9(1): p. 63-72.
21. Bai, Q., Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective. Current Gene Therapy, 2013. 13(2): p. 93-98.
22. Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell stem cell, 2012. 10(6): p. 678-684.
23. Nath, S.C., L. Menendez, and I.F. Ben-Nun, Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. International Journal of Molecular Sciences, 2023. 24(23).
24. Taylor, C.J., E.M. Bolton, and J.A. Bradley, Immunological considerations for embryonic and induced pluripotent stem cell banking. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. 366(1575): p. 2312-2322.
25. Moradi, S., Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem cell research & therapy, 2019. 10: p. 1-13.
26. Tian, Z., Rationale and methodology of reprogramming for generation of induced pluripotent stem cells and induced neural progenitor cells. International journal of molecular sciences, 2016. 17(4): p. 594.
27. Mitsui, K., Viral vector-based innovative approaches to directly abolishing tumorigenic pluripotent stem cells for safer regenerative medicine. Molecular Therapy Methods & Clinical Development, 2017. 5: p. 51-58.
28. Mamaeva, A., Quality Control of Human Pluripotent Stem Cell Colonies by Computational Image Analysis Using Convolutional Neural Networks. International Journal of Molecular Sciences, 2023. 24(1).
29. Ren, Y., Feeder cells treated with ethanol can be used to maintain self‐renewal and pluripotency of human pluripotent stem cells. FEBS Open bio, 2023. 13(2): p. 279-292.
30. Higuchi, A., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
31. Allison, T.F., Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nature Communications, 2018. 9.
32. Krasnova, O.A., Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers. International Journal of Molecular Sciences, 2022. 23(21).
33. Maruotti, J., A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem cells translational medicine, 2013. 2(5): p. 341-354.
34. Guillevic, O., A novel molecular and functional stemness signature assessing human cord blood-derived endothelial progenitor cell immaturity. PLoS One, 2016. 11(4): p. e0152993.
35. Hoang, D.M., Stem cell-based therapy for human diseases. Signal transduction and targeted therapy, 2022. 7(1): p. 1-41.
36. De Masi, C., Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Human genomics, 2020. 14: p. 1-12.
37. Chun, Y.S., K. Byun, and B. Lee, Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anatomy & cell biology, 2011. 44(4): p. 245.
38. Lee, H. and M.-Y. Son, Current challenges associated with the use of human induced pluripotent stem cell-derived organoids in regenerative medicine. International Journal of Stem Cells, 2021. 14(1): p. 9.
39. De Coppi, P., Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 2007. 25(1): p. 100-106.
40. Rennie, K., Applications of Amniotic Membrane and Fluid in Stem Cell Biology and Regenerative Medicine. Stem Cells International, 2012. 2012.
41. Antonucci, I., Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases. International Journal of Molecular Sciences, 2016. 17(4).
42. Walther, G., J. Gekas, and O.F. Bertrand, Amniotic Stem Cells for Cellular Cardiomyoplasty: Promises and Premises. Catheterization and Cardiovascular Interventions, 2009. 73(7): p. 917-924.
43. Alonaizan, R. and C. Carr, Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochemical Society Transactions, 2022. 50(1): p. 269-281.
44. Khan, M.A., Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus, 2020. 12(7).
45. Li, N., New insights into the role of exosomes in the heart after myocardial infarction. Journal of cardiovascular translational research, 2019. 12: p. 18-27.
46. Li, Z., Targeted anti–IL-1β platelet microparticles for cardiac detoxing and repair. Science advances, 2020. 6(6): p. eaay0589.
47. Huang, J., Human pluripotent stem cell-derived cardiac cells: application in disease modeling, cell therapy, and drug discovery. Frontiers in Cell and Developmental Biology, 2021. 9: p. 655161.
48. Yu, D., X. Wang, and L. Ye, Cardiac tissue engineering for the treatment of myocardial infarction. Journal of Cardiovascular Development and Disease, 2021. 8(11): p. 153.
49. Mummery, C.L., Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circulation research, 2012. 111(3): p. 344-358.
50. Balafkan, N., A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates. Scientific Reports, 2020. 10(1).
51. D′Amour, K.A., Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature biotechnology, 2005. 23(12): p. 1534-1541.
52. Kehat, I., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of clinical investigation, 2001. 108(3): p. 407-414.
53. Mummery, C., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2003. 107(21): p. 2733-2740.
54. Passier, R., Increased cardiomyocyte differentiation from human embryonic stem cells in serum‐free cultures. Stem Cells, 2005. 23(6): p. 772-780.
55. Kishimoto, K., Directed differentiation of human pluripotent stem cells into diverse organ-specific mesenchyme of the digestive and respiratory systems. Nature protocols, 2022. 17(11): p. 2699-2719.
56. Bhattacharya, S., High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. JoVE (Journal of Visualized Experiments), 2014(91): p. e52010.
57. Shao, Y., J.M. Sang, and J.P. Fu, On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials, 2015. 52: p. 26-43.
58. Xu, Y.B., Biomaterials for stem cell engineering and biomanufacturing. Bioactive Materials, 2019. 4: p. 366-379.
59. Park, Y.-G., Effects of feeder cell types on culture of mouse embryonic stem cell in vitro. Development & reproduction, 2015. 19(3): p. 119.
60. Kropp, C., D. Massai, and R. Zweigerdt, Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry, 2017. 59: p. 244-254.
61. Meng, G., A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture. Stem cells and development, 2008. 17(3): p. 413-422.
62. Zou, Q., Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture. Plos One, 2016. 11(2).
63. Higuchi, A., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Scientific Reports, 2015. 5.
64. Kawase, E. and N. Nakatsuji, Development of substrates for the culture of human pluripotent stem cells. Biomaterials Science, 2023. 11(9): p. 2974-2987.
65. Higuchi, A., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chemical reviews, 2012. 112(8): p. 4507-4540.
66. Aisenbrey, E.A. and W.L. Murphy, Synthetic alternatives to Matrigel. Nature Reviews Materials, 2020. 5(7): p. 539-551.
67. Vukicevic, S., Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Experimental cell research, 1992. 202(1): p. 1-8.
68. Salo, T., A novel human leiomyoma tissue derived matrix for cell culture studies. BMC cancer, 2015. 15: p. 1-16.
69. Ahmadian Baghbaderani, B., A newly defined and xeno-free culture medium supports every-other-day medium replacement in the generation and long-term cultivation of human pluripotent stem cells. PLoS One, 2016. 11(9): p. e0161229.
70. Bandzerewicz, A. and A. Gadomska-Gajadhur, Into the tissues: Extracellular matrix and its artificial substitutes: Cell signalling mechanisms. Cells, 2022. 11(5): p. 914.
71. Karamanos, N.K., A guide to the composition and functions of the extracellular matrix. The FEBS journal, 2021. 288(24): p. 6850-6912.
72. Yue, B., Biology of the extracellular matrix: an overview. Journal of glaucoma, 2014. 23: p. S20-S23.
73. Chen, G., Chemically defined conditions for human iPSC derivation and culture. Nature methods, 2011. 8(5): p. 424-429.
74. Rodin, S., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature biotechnology, 2010. 28(6): p. 611.
75. Dzobo, K. and C. Dandara, The extracellular matrix: its composition, function, remodeling, and role in tumorigenesis. Biomimetics, 2023. 8(2): p. 146.
76. Kular, J.K., S. Basu, and R.I. Sharma, The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of tissue engineering, 2014. 5: p. 2041731414557112.
77. Krebsbach, P.H. and L.G. Villa-Diaz, The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells and Development, 2017. 26(15): p. 1090-1099.
78. Pang, X.C., Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 2023. 8(1).
79. Xu, C.H., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
80. Mezu-Ndubuisi, O.J. and A. Maheshwari, The role of integrins in inflammation and angiogenesis. Pediatric Research, 2021. 89(7): p. 1619-1626.
81. Goswami, S., Importance of integrin receptors in the field of pharmaceutical & medical science. 2013.
82. Jia, J., Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomaterialia, 2016. 45: p. 110-120.
83. Chen, Y.M., Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Scientific Reports, 2017. 7.
84. Hayashi, Y. and M.K. Furue, Biological effects of culture substrates on human pluripotent stem cells. Stem cells international, 2016. 2016.
85. Yang, K., J. Lee, and S.-W. Cho, Engineering biomaterials for feeder-free maintenance of human pluripotent stem cells. International journal of stem cells, 2012. 5(1): p. 1.
86. Sung, T.-C., Design of dual peptide-conjugated hydrogels for proliferation and differentiation of human pluripotent stem cells. Materials Today Bio, 2024. 25: p. 100969.
87. Hozumi, K. and M. Nomizu, Mixed peptide-conjugated chitosan matrices as multi-receptor targeted cell-adhesive scaffolds. International Journal of Molecular Sciences, 2018. 19(9): p. 2713.
88. Musilkova, J., Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly (ethylene oxide) protein repulsive surface. Journal of Materials Science: Materials in Medicine, 2015. 26: p. 1-13.
89. Pierschbacher, M.D. and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984. 309(5963): p. 30-33.
90. Melkoumian, Z., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature biotechnology, 2010. 28(6): p. 606-610.
91. Cooke, M., Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010. 93(3): p. 824-832.
92. Nomizu, M., Cell binding sequences in mouse laminin α1 chain. Journal of Biological Chemistry, 1998. 273(49): p. 32491-32499.
93. Suzuki, S., Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. The EMBO journal, 1985. 4(10): p. 2519-2524.
94. Higuchi, A., Polymeric materials for ex vivo expansion of hematopoietic progenitor and stem cells. Journal of Macromolecular Science®, Part C: Polymer Reviews, 2009. 49(3): p. 181-200.
95. Oldberg, A., Identification of a bone sialoprotein receptor in osteosarcoma cells. Journal of Biological Chemistry, 1988. 263(36): p. 19433-19436.
96. Salasznyk, R.M., Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. BioMed Research International, 2004. 2004: p. 24-34.
97. Kondo, M., Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunological reviews, 2010. 238(1): p. 37-46.
98. Wu, L. and Y.-J. Liu, Development of dendritic-cell lineages. Immunity, 2007. 26(6): p. 741-750.
99. Hassan, G. and M. Seno, Blood and cancer: cancer stem cells as origin of hematopoietic cells in solid tumor microenvironments. Cells, 2020. 9(5): p. 1293.
100. Davila, J.A.A. and A.H. De Los Rios, An overview of peripheral blood mononuclear cells as a model for immunological research of Toxoplasma gondii and other apicomplexan parasites. Frontiers in cellular and infection microbiology, 2019. 9.
101. Corkum, C.P., Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC immunology, 2015. 16: p. 1-18.
102. Wood, K.J., F. Issa, and J. Hester, Understanding stem cell immunogenicity in therapeutic applications. Trends in immunology, 2016. 37(1): p. 5-16.
103. Ye, Q., Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell proliferation, 2020. 53(12): p. e12946.
104. Wang, D., Targeted disruption of the β 2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem cells translational medicine, 2015. 4(10): p. 1234-1245.
105. Deuse, T., Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 2019. 37(3): p. 252-258.
106. Jang, Y., Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 2019. 51(1): p. 1-11.
107. Torikai, H., Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood, The Journal of the American Society of Hematology, 2013. 122(8): p. 1341-1349.
108. Zhao, H.-X., Enhanced immunological tolerance by HLA-G1 from neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs). Cellular Physiology and Biochemistry, 2017. 44(4): p. 1435-1444.
109. Rong, Z., An effective approach to prevent immune rejection of human ESC-derived allografts. Cell stem cell, 2014. 14(1): p. 121-130.
110. Sung, T.C., Design of dual peptide-conjugated hydrogels for proliferation and differentiation of human pluripotent stem cells. Materials Today Bio, 2024. 25.
111. Sung, T.C., Poly(vinyl alcohol-<i>co</i>-itaconic acid) hydrogels grafted with several designed peptides for human pluripotent stem cell culture and differentiation into cardiomyocytes. Journal of Materials Chemistry B, 2021. 9(37): p. 7662-7673.
112. Sung, T.C., Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. Journal of Materials Chemistry B, 2023. 11(7): p. 1389-1415.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明