參考文獻 |
1. Ferrara, J. L. M.; Levine, J. E.; Reddy, P.; Holler, E. Graft-versus-host disease. Lancet 2009, 373 (9674), 1550-1561, Review. DOI: 10.1016/s0140-6736(09)60237-3.
2. Appelbaum, F. R. Haematopoietic cell transplantation as immunotherapy. Nature 2001, 411 (6835), 385-389, Article. DOI: 10.1038/35077251.
3. Majhail, N. S. Long-term complications after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther 2017, 10 (4), 220-227. DOI: 10.1016/j.hemonc.2017.05.009 From NLM.
4. Woo, S.-B.; Lee, S. J.; Schubert, M. M. Graft-vs.-Host Disease. Critical Reviews in Oral Biology & Medicine 1997, 8 (2), 201-216. DOI: 10.1177/10454411970080020701.
5. KORNGOLD, R.; SPRENT, J. T cell subsets and graft-versus-host disease. Transplantation 1987, 44 (3), 335-339.
6. Kernan, N. A.; Collins, N. H.; Juliano, L.; Cartagena, T.; Dupont, B.; O′Reilly, R. J. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 1986, 68 (3), 770-773. From NLM.
7. Penack, O.; Holler, E.; van den Brink, M. R. M. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 2010, 115 (10), 1865-1872, Review. DOI: 10.1182/blood-2009-09-242784.
8. Ghimire, S.; Weber, D.; Mavin, E.; Wang, X. N.; Dickinson, A. M.; Holler, E. Pathophysiology of GvHD and Other HSCT-Related Major Complications. Front. Immunol. 2017, 8, 11, Review. DOI: 10.3389/fimmu.2017.00079.
9. Blazar, B. R.; Murphy, W. J.; Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 2012, 12 (6), 443-458, Review. DOI: 10.1038/nri3212.
10. Denham, M.; Conley, B.; Olsson, F.; Cole, T. J.; Mollard, R. Stem cells: an overview. Curr Protoc Cell Biol 2005, Chapter 23, Unit 23.21. DOI: 10.1002/0471143030.cb2301s28 From NLM.
11. Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respiration 2013, 85 (1), 3-10, Review. DOI: 10.1159/000345615.
12. Levenberg, S.; Zoldan, J.; Basevitch, Y.; Langer, R. Endothelial potential of human embryonic stem cells. Blood 2007, 110 (3), 806-814. DOI: 10.1182/blood-2006-08-019190 From NLM.
13. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282 (5391), 1145-1147. DOI: 10.1126/science.282.5391.1145 From NLM.
14. Ossanna, R.; Veronese, S.; Sierra, L. A. Q.; Conti, A.; Conti, G.; Sbarbati, A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023, 11 (6), 18, Review. DOI: 10.3390/biomedicines11061587.
15. DiGirolamo, C. M.; Stokes, D.; Colter, D.; Phinney, D. G.; Class, R.; Prockop, D. J. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 1999, 107 (2), 275-281, Article. DOI: 10.1046/j.1365-2141.1999.01715.x.
16. Jankowski, R. J.; Deasy, B. M.; Huard, J. Muscle-derived stem cells. Gene Ther 2002, 9 (10), 642-647. DOI: 10.1038/sj.gt.3301719 From NLM.
17. De Bari, C.; Dell′Accio, F.; Tylzanowski, P.; Luyten, F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001, 44 (8), 1928-1942, Article. DOI: 10.1002/1529-0131(200108)44:8<1928::Aid-art331>3.0.Co;2-p.
18. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7 (2), 211-228, Article. DOI: 10.1089/107632701300062859.
19. Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24 (5), 1294-1301, Article. DOI: 10.1634/stemcells.2005-0342.
20. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8 (4), 315-317. DOI: 10.1080/14653240600855905 From NLM.
21. Si, Y. L.; Zhao, Y. L.; Hao, H. J.; Fu, X. B.; Han, W. D. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 2011, 10 (1), 93-103. DOI: 10.1016/j.arr.2010.08.005 From NLM.
22. Bobis, S.; Jarocha, D.; Majka, M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 2006, 44 (4), 215-230. From NLM.
23. Sharifi, S.; Moghaddam, F. A.; Abedi, A.; Maleki Dizaj, S.; Ahmadian, S.; Abdolahinia, E. D.; Khatibi, S. M. H.; Samiei, M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020, 46 (6), 874-893. DOI: 10.1002/biof.1682 From NLM.
24. Saud, B.; Malla, R.; Shrestha, K. A Review on the Effect of Plant Extract on Mesenchymal Stem Cell Proliferation and Differentiation. Stem Cells Int 2019, 2019, 7513404. DOI: 10.1155/2019/7513404 From NLM.
25. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284 (5411), 143-147, Article. DOI: 10.1126/science.284.5411.143.
26. Ren, J. H.; Huang, D. L.; Li, R. Z.; Wang, W. C.; Zhou, C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci. 2020, 10 (1), 15, Review. DOI: 10.1186/s13578-020-0378-8.
27. Huang, Y. T.; Wu, Q.; Tam, P. K. H. Immunomodulatory Mechanisms of Mesenchymal Stem Cells and Their Potential Clinical Applications. Int. J. Mol. Sci. 2022, 23 (17), 17, Review. DOI: 10.3390/ijms231710023.
28. Jiang, W.; Xu, J. Y. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020, 53 (1), 16, Review. DOI: 10.1111/cpr.12712.
29. Weiss, A. R. R.; Dahlke, M. H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front. Immunol. 2019, 10, 10, Review. DOI: 10.3389/fimmu.2019.01191.
30. Han, Y. Y.; Yang, J. X.; Fang, J. K.; Zhou, Y. P.; Candi, E.; Wang, J. H.; Hua, D.; Shao, C. S.; Shi, Y. F. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7 (1), 19, Review. DOI: 10.1038/s41392-022-00932-0.
31. Aggarwal, S.; Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105 (4), 1815-1822, Article. DOI: 10.1182/blood-2004-04-1559.
32. Yen, B. L. J.; Hwa, H. L.; Hsu, P. J.; Chen, P. M.; Wang, L. T.; Jiang, S. S.; Liu, K. J.; Sytwu, H. K.; Yen, M. L. HLA-G Expression in Human Mesenchymal Stem Cells (MSCs) Is Related to Unique Methylation Pattern in the Proximal Promoter as well as Gene Body DNA. Int. J. Mol. Sci. 2020, 21 (14), 14, Article. DOI: 10.3390/ijms21145075.
33. Rahmat, Z.; Jose, S.; Ramasamy, R.; Vidyadaran, S. Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation. Stem Cell Res. Ther. 2013, 4, 11, Article. DOI: 10.1186/scrt160.
34. Lu, X. M.; Han, J. B.; Xu, X. P.; Xu, J. Y.; Liu, L.; Huang, Y. Z.; Yang, Y.; Qiu, H. B. PGE2 Promotes the Migration of Mesenchymal Stem Cells through the Activation of FAK and ERK1/2 Pathway. Stem Cells Int. 2017, 2017, 11, Article. DOI: 10.1155/2017/8178643.
35. Ling, W. F.; Zhang, J. M.; Yuan, Z. R.; Ren, G. W.; Zhang, L. Y.; Chen, X. D.; Rabson, A. B.; Roberts, A. I.; Wang, Y.; Shi, Y. F. Mesenchymal Stem Cells Use IDO to Regulate Immunity in Tumor Microenvironment. Cancer Res. 2014, 74 (5), 1576-1587, Article. DOI: 10.1158/0008-5472.Can-13-1656.
36. Ge, Q. H.; Zhang, H. W.; Hou, J. X.; Wan, L. F.; Cheng, W. Z.; Wang, X. Y.; Dong, D.; Chen, C. Z.; Xia, J.; Guo, J.; Chen, X. L.; Wu, X. W. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol. Med. Rep. 2018, 17 (1), 1667-1675, Article. DOI: 10.3892/mmr.2017.8059.
37. Putra, A.; Ridwan, F. B.; Putridewi, A. I.; Kustiyah, A. R.; Wirastuti, K.; Sadyah, N. A. C.; Rosdiana, I.; Munir, D. The Role of TNF-α induced MSCs on Suppressive Inflammation by Increasing TGF-β and IL-10. Open Access Maced J Med Sci 2018, 6 (10), 1779-1783. DOI: 10.3889/oamjms.2018.404 From NLM.
38. Lu, D.; Xu, Y.; Liu, Q. L.; Zhang, Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front. Cell. Dev. Biol. 2021, 9, 14, Review. DOI: 10.3389/fcell.2021.681171.
39. Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. Biological functions of mesenchymal stem cells and clinical implications. Cell. Mol. Life Sci. 2019, 76 (17), 3323-3348, Review. DOI: 10.1007/s00018-019-03125-1.
40. Gao, F.; Chiu, S. M.; Motan, D. A. L.; Zhang, Z.; Chen, L.; Ji, H. L.; Tse, H. F.; Fu, Q. L.; Lian, Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease 2016, 7 (1), e2062-e2062. DOI: 10.1038/cddis.2015.327.
41. Nauta, A. J.; Fibbe, W. E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007, 110 (10), 3499-3506. DOI: 10.1182/blood-2007-02-069716 (acccessed 4/11/2024).
42. Ding, D. C.; Shyu, W. C.; Lin, S. Z. Mesenchymal stem cells. Cell Transplant 2011, 20 (1), 5-14. DOI: 10.3727/096368910x From NLM.
43. Pittenger, M.; Discher, D.; Péault, B.; Phinney, D.; Hare, J.; Caplan, A. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine 2019, 4. DOI: 10.1038/s41536-019-0083-6.
44. Nádia de Cássia Noronha, N. C.; Mizukami, A.; Caliári-Oliveira, C.; Juçara Gastaldi, C.; Rocha, J. L. M.; Dimas Tadeu, C.; Swiech, K.; Kelen, C. R. M. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019, 10. DOI: https://doi.org/10.1186/s13287-019-1224-y Publicly Available Content Database.
45. Tirode, F.; Laud-Duval, K.; Prieur, A.; Delorme, B.; Charbord, P.; Delattre, O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007, 11 (5), 421-429. DOI: 10.1016/j.ccr.2007.02.027 From NLM.
46. Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology & Oncology 2021, 14 (1), 24. DOI: 10.1186/s13045-021-01037-x.
47. Santamaria, G.; Brandi, E.; Vitola, P. L.; Grandi, F.; Ferrara, G.; Pischiutta, F.; Vegliante, G.; Zanier, E. R.; Re, F.; Uccelli, A.; Forloni, G.; de Rosbo, N. K.; Balducci, C. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer′s mice. Cell Death Differ. 2021, 28 (1), 203-218, Article. DOI: 10.1038/s41418-020-0592-2.
48. Sajeesh, S.; Broekelman, T.; Mecham, R. P.; Ramamurthi, A. Stem cell derived extracellular vesicles for vascular elastic matrix regenerative repair. Acta Biomater. 2020, 113, 267-278, Article. DOI: 10.1016/j.actbio.2020.07.002.
49. Ranganath, S. H.; Levy, O.; Inamdar, M. S.; Karp, J. M. Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell 2012, 10 (3), 244-258, Review. DOI: 10.1016/j.stem.2012.02.005.
50. Qiu, G. G.; Zheng, G. P.; Ge, M. H.; Wang, J. M.; Huang, R. Q.; Shu, Q.; Xu, J. G. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther. 2018, 9, 9, Review. DOI: 10.1186/s13287-018-1069-9.
51. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367 (6478), 640-+, Review. DOI: 10.1126/science.aau6977.
52. Jeppesen, D. K.; Fenix, A. M.; Franklin, J. L.; Higginbotham, J. N.; Zhang, Q.; Zimmerman, L. J.; Liebler, D. C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W. H.; Patton, J. G.; Rome, L. H.; Burnette, D. T.; Coffey, R. J. Reassessment of Exosome Composition. Cell 2019, 177 (2), 428-+, Article. DOI: 10.1016/j.cell.2019.02.029.
53. Pluchino, S.; Smith, J. A. Explicating Exosomes: Reclassifying the Rising Stars of Intercellular Communication. Cell 2019, 177 (2), 225-227, Editorial Material. DOI: 10.1016/j.cell.2019.03.020.
54. Poggio, M.; Hu, T. Y.; Pai, C. C.; Chu, B.; Belair, C. D.; Chang, A.; Montabana, E.; Lang, U. E.; Fu, Q.; Fong, L.; Blelloch, R. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 2019, 177 (2), 414-+, Article. DOI: 10.1016/j.cell.2019.02.016.
55. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4-27, Review. DOI: 10.1016/j.addr.2015.11.001.
56. Frantz, C.; Stewart, K. M.; Weaver, V. M. The extracellular matrix at a glance. J Cell Sci 2010, 123 (Pt 24), 4195-4200. DOI: 10.1242/jcs.023820 From NLM.
57. Clause, K. C.; Barker, T. H. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013, 24 (5), 830-833. DOI: 10.1016/j.copbio.2013.04.011 From NLM.
58. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv Drug Deliv Rev 2016, 97, 4-27. DOI: 10.1016/j.addr.2015.11.001 From NLM.
59. Zhang, P.; Zhang, C.; Li, J.; Han, J. Y.; Liu, X. R.; Yang, H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res. Ther. 2019, 10 (1), 13, Review. DOI: 10.1186/s13287-019-1422-7.
60. Novoseletskaya, E. S.; Evdokimov, P. V.; Efimenko, A. Y. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signal. 2023, 21 (1), 20, Review. DOI: 10.1186/s12964-023-01252-8.
61. Loreti, M.; Sacco, A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. Npj Regenerative Medicine 2022, 7 (1), 15, Review. DOI: 10.1038/s41536-022-00204-z.
62. Yue, B. Biology of the extracellular matrix: an overview. J Glaucoma 2014, 23 (8 Suppl 1), S20-23. DOI: 10.1097/ijg.0000000000000108 From NLM.
63. Spencer, V. A.; Xu, R.; Bissell, M. J. Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: A work in progress. In Advances in Cancer Research, Vol 97, VandeWoude, G. F., Klein, G. Eds.; Advances in Cancer Research, Vol. 97; Elsevier Academic Press Inc, 2007; pp 275-+.
64. Hastings, J. F.; Skhinas, J. N.; Fey, D.; Croucher, D. R.; Cox, T. R. The extracellular matrix as a key regulator of intracellular signalling networks. Br. J. Pharmacol. 2019, 176 (1), 82-92, Review. DOI: 10.1111/bph.14195.
65. Boudreau, N.; Bissell, M. J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol. 1998, 10 (5), 640-646, Article. DOI: 10.1016/s0955-0674(98)80040-9.
66. Higuchi, A.; Ling, Q. D.; Hsu, S. T.; Umezawa, A. Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chem. Rev. 2012, 112 (8), 4507-4540, Review. DOI: 10.1021/cr3000169.
67. Naba, A.; Clauser, K. R.; Ding, H. M.; Whittaker, C. A.; Carr, S. A.; Hynes, R. O. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol. 2016, 49, 10-24, Article. DOI: 10.1016/j.matbio.2015.06.003.
68. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; Elvassore, N.; Piccolo, S. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474 (7350), 179-U212, Article. DOI: 10.1038/nature10137.
69. Méhes, E.; Biri-Kovács, B.; Isai, D. G.; Gulyás, M.; Nyitray, L.; Czirók, A. Matrigel patterning reflects multicellular contractility. PLoS Comput. Biol. 2019, 15 (10), 28, Article. DOI: 10.1371/journal.pcbi.1007431.
70. Kleinman, H. K.; Martin, G. R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 2005, 15 (5), 378-386, Review. DOI: 10.1016/j.semcancer.2005.05.004.
71. Hughes, C. S.; Postovit, L. M.; Lajoie, G. A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10 (9), 1886-1890, Article. DOI: 10.1002/pmic.200900758.
72. Benton, G.; George, J.; Kleinman, H. K.; Arnaoutova, I. P. Advancing Science and Technology Via 3D Culture on Basement Membrane Matrix. J. Cell. Physiol. 2009, 221 (1), 18-25, Review. DOI: 10.1002/jcp.21832.
73. Walton, R. L.; Beahm, E. K.; Wu, L. De novo adipose formation in a vascularized engineered construct. Microsurgery 2004, 24 (5), 378-384, Article. DOI: 10.1002/micr.20056.
74. Kawaguchi, N.; Toriyama, K.; Nicodemou-Lena, E.; Inou, K.; Torii, S.; Kitagawa, Y. <i>De novo</i> adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (3), 1062-1066, Article. DOI: 10.1073/pnas.95.3.1062.
75. Friess, W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm 1998, 45 (2), 113-136. DOI: 10.1016/s0939-6411(98)00017-4 From NLM.
76. Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. Designing materials to direct stem-cell fate. Nature 2009, 462 (7272), 433-441. DOI: 10.1038/nature08602 From NLM.
77. Kadler, K. E.; Baldock, C.; Bella, J.; Boot-Handford, R. P. Collagens at a glance. J Cell Sci 2007, 120 (Pt 12), 1955-1958. DOI: 10.1242/jcs.03453 From NLM.
78. Ferreira, A. M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater 2012, 8 (9), 3191-3200. DOI: 10.1016/j.actbio.2012.06.014 From NLM.
79. Ricard-Blum, S. The collagen family. Cold Spring Harb Perspect Biol 2011, 3 (1), a004978. DOI: 10.1101/cshperspect.a004978 From NLM.
80. Lin, K. L.; Zhang, D. W.; Macedo, M. H.; Cui, W. G.; Sarmento, B.; Shen, G. F. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29 (3), 16, Review. DOI: 10.1002/adfm.201804943.
81. Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3 (3), 1863-1887, Review. DOI: 10.3390/ma3031863.
82. Colognato, H.; Yurchenco, P. D. Form and function: The laminin family of heterotrimers. Dev. Dyn. 2000, 218 (2), 213-234, Review. DOI: 10.1002/(sici)1097-0177(200006)218:2<213::Aid-dvdy1>3.0.Co;2-r.
83. Arimori, T.; Miyazaki, N.; Mihara, E.; Takizawa, M.; Taniguchi, Y.; Cabañas, C.; Sekiguchi, K.; Takagi, J. Structural mechanism of laminin recognition by integrin. Nat. Commun. 2021, 12 (1), 13, Article. DOI: 10.1038/s41467-021-24184-8.
84. Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. A simplified laminin nomenclature. Matrix Biol. 2005, 24 (5), 326-332, Review. DOI: 10.1016/j.matbio.2005.05.006.
85. Vuoristo, S.; Toivonen, S.; Weltner, J.; Mikkola, M.; Ustinov, J.; Trokovic, R.; Palgi, J.; Lund, R.; Tuuri, T.; Otonkoski, T. A Novel Feeder-Free Culture System for Human Pluripotent Stem Cell Culture and Induced Pluripotent Stem Cell Derivation. PLoS One 2013, 8 (10), 14, Article. DOI: 10.1371/journal.pone.0076205.
86. Rodin, S.; Antonsson, L.; Niaudet, C.; Simonson, O. E.; Salmela, E.; Hansson, E. M.; Domogatskaya, A.; Xiao, Z. J.; Damdimopoulou, P.; Sheikhi, M.; Inzunza, J.; Nilsson, A. S.; Baker, D.; Kuiper, R.; Sun, Y.; Blennow, E.; Nordenskjöld, M.; Grinnemo, K. H.; Kere, J.; Betsholtz, C.; Hovatta, O.; Tryggvason, K. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun. 2014, 5, 13, Article. DOI: 10.1038/ncomms4195.
87. Miyazaki, T.; Futaki, S.; Hasegawa, K.; Kawasaki, M.; Sanzen, N.; Hayashi, M.; Kawase, E.; Sekiguchi, K.; Nakatsuji, N.; Suemori, H. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 2008, 375 (1), 27-32, Article. DOI: 10.1016/j.bbrc.2008.07.111.
88. Albalushi, H.; Kurek, M.; Karlsson, L.; Landreh, L.; Kjartansdóttir, K. R.; Söder, O.; Hovatta, O.; Stukenborg, J. B. Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. Stem Cells Int. 2018, 2018, 9, Article. DOI: 10.1155/2018/7127042.
89. Borg, T. K. Commentary - It′s the matrix! ECM, proteases, and cancer. Am. J. Pathol. 2004, 164 (4), 1141-1142, Editorial Material. DOI: 10.1016/s0002-9440(10)63201-4.
90. Doolittle, J. M.; Gomez, S. M. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol. J. 2010, 7, 15, Article. DOI: 10.1186/1743-422x-7-82.
91. Chen, K. G.; Mallon, B. S.; McKay, R. D. G.; Robey, P. G. Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell 2014, 14 (1), 13-26, Review. DOI: 10.1016/j.stem.2013.12.005.
92. Chen, G.; Gulbranson, D. R.; Hou, Z.; Bolin, J. M.; Ruotti, V.; Probasco, M. D.; Smuga-Otto, K.; Howden, S. E.; Diol, N. R.; Propson, N. E.; Wagner, R.; Lee, G. O.; Antosiewicz-Bourget, J.; Teng, J. M.; Thomson, J. A. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011, 8 (5), 424-429. DOI: 10.1038/nmeth.1593 From NLM.
93. Abdal Dayem, A.; Lee, S.; H, Y. C.; Cho, S. G. The Impact of Adhesion Molecules on the In Vitro Culture and Differentiation of Stem Cells. Biotechnol J 2018, 13 (2). DOI: 10.1002/biot.201700575 From NLM.
94. Haudek-Prinz, V. J.; Klepeisz, P.; Slany, A.; Griss, J.; Meshcheryakova, A.; Paulitschke, V.; Mitulovic, G.; Stöckl, J.; Gerner, C. Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells. J. Proteomics 2012, 76, 150-162, Article. DOI: 10.1016/j.jprot.2012.07.012.
95. Končarević, S.; Lößner, C.; Kuhn, K.; Prinz, T.; Pike, I.; Zucht, H. D. In-depth profiling of the peripheral blood mononuclear cells proteome for clinical blood proteomics. Int J Proteomics 2014, 2014, 129259. DOI: 10.1155/2014/129259 From NLM.
96. Nowak, M.; Klink, M.; Glowacka, E.; Sulowska, Z.; Kulig, A.; Szpakowski, M.; Szyllo, K.; Tchorzewski, H. Production of Cytokines During Interaction of Peripheral Blood Mononuclear Cells with Autologous Ovarian Cancer Cells or Benign Ovarian Tumour Cells. Scand. J. Immunol. 2010, 71 (2), 91-98, Article. DOI: 10.1111/j.1365-3083.2009.02350.x.
97. Anderson, N. L.; Anderson, N. G. The human plasma proteome: History, character, and diagnostic prospects (vol 1, pg 845, 2002). Mol. Cell. Proteomics 2003, 2 (1), 50-50, Correction. DOI: 10.1074/mcp.A300001-MCP200.
98. Kleiveland, C. R. Peripheral Blood Mononuclear Cells. In The Impact of Food Bioactives on Health: in vitro and ex vivo models, Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H. Eds.; Springer
Copyright 2015, The Author(s). 2015; pp 161-167.
99. Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2011, 1813 (5), 878-888. DOI: https://doi.org/10.1016/j.bbamcr.2011.01.034.
100. Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, 6, Article. DOI: 10.1186/ar1917.
101. Villar-Fincheira, P.; Sanhueza-Olivares, F.; Norambuena-Soto, I.; Cancino-Arenas, N.; Hernandez-Vargas, F.; Troncoso, R.; Gabrielli, L.; Chiong, M. Role of Interleukin-6 in Vascular Health and Disease. Front. Mol. Biosci. 2021, 8, 11, Review. DOI: 10.3389/fmolb.2021.641734.
102. Huang, Y.-R. Design of Thermoresponsive Surface Immobilized with ECM for Differentiation of Human Amniotic Fluid Stem Cells. 2019. https://hdl.handle.net/11296/chxj35.
103. Roberts, S. J.; Chen, Y.; Moesen, M.; Schrooten, J.; Luyten, F. P. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Research 2011, 7 (2), 137-144. DOI: https://doi.org/10.1016/j.scr.2011.04.003.
104. Wrobel, E.; Leszczynska, J.; Brzoska, E. The Characteristics Of Human Bone-Derived Cells (HBDCS) during osteogenesis in vitro. Cellular & Molecular Biology Letters 2016, 21 (1), 26. DOI: 10.1186/s11658-016-0027-8.
105. Lee, H.-T. Treatment of GVHD using MSCs cultured on ECM-coating surface. 2022. https://hdl.handle.net/11296/ff9458.
106. Atmani, H.; Audrain, C.; Mercier, L.; Chappard, D.; Basle, M. F. Phenotypic effects of continuous or discontinuous treatment with dexamethasone and/or calcitriol on osteoblasts differentiated from rat bone marrow stromal cells. J. Cell. Biochem. 2002, 85 (3), 640-650, Article. DOI: 10.1002/jcb.10165.
107. Bellows, C. G.; Heersche, J. N. M.; Aubin, J. E. DETERMINATION OF THE CAPACITY FOR PROLIFERATION AND DIFFERENTIATION OF OSTEOPROGENITOR CELLS IN THE PRESENCE AND ABSENCE OF DEXAMETHASONE. Dev. Biol. 1990, 140 (1), 132-138, Article. DOI: 10.1016/0012-1606(90)90060-v.
108. Liu, F.; Aubin, J. E.; Malaval, L. Expression of leukemia inhibitory factor (LIF)/interleukin-6 family cytokines and receptors during in vitro osteogenesis: Differential regulation by dexamethasone and LIF. Bone 2002, 31 (1), 212-219. DOI: 10.1016/s8756-3282(02)00806-2.
109. Jaiswal, N.; Haynesworth, S. E.; Caplan, A. I.; Bruder, S. P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 1997, 64 (2), 295-312, Article. DOI: 10.1002/(sici)1097-4644(199702)64:2<295::Aid-jcb12>3.3.Co;2-6.
110. Cheng, S. L.; Yang, J. W.; Rifas, L.; Zhang, S. F.; Avioli, L. V. DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE. Endocrinology 1994, 134 (1), 277-286. DOI: 10.1210/en.134.1.277. |