博碩士論文 111324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.116.14.71
姓名 蔡長諺(Chang-Yen Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用在生物材料上培養各種人類間充質幹細胞治療移植物抗宿主疾病
(GVHD treatment using several types of hMSCs cultured on biomaterials)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-20以後開放)
摘要(中) 移植物抗宿主疾病(GVHD)是一種異體移植過後可能發生的重要併發症,尤其是在骨髓移植手術後最常發生。間充質幹細胞(MSCs)因其免疫抑制性能而引起人們的關注,可被用於治療GVHD等免疫相關疾病。在這項研究中,我們想評估各種類型的人類間充質幹細胞 (hMSCs) 在抑制GVHD方面的功效,並通過hMSCs研究GVHD治療的最佳細胞培養環境(生物材料)。透過hMSCs進行了成骨細胞分化以產生成骨細胞,模擬了GVHD情境中常見受影響的骨細胞環境。隨後,用異體外周血單核細胞共同培養了人羊膜液幹細胞(hAFSCs)、人脂肪來源幹細胞(hADSCs)和人類多能幹細胞(hiPSCs,HPS0077)來源的MSCs。在共同培養後,對hMSCs進行了活細胞和死細胞的檢測,以評估其對異體外周血單核細胞的活性和反應。這些細胞經過異體外周血單核細胞共同培養,評估了它們抑制與GVHD相關的炎症反應的能力。結果表明,hADSCs、hAFSCs和hiPSCs來源的MSCs能夠抑制由異體外周血單核細胞引起的炎症反應。
此外,在異體外周血單核細胞存在的情況下評估了不同細胞外基質(ECM)的細胞培養環境(基質膠Matrigel、層粘連蛋白laminin-521和人類重組-玻璃粘連蛋白rVN)對hMSCs存活的影響。在塗有Matrigel的培養皿上培養的hMSCs在接受外周血單核細胞處理後比其他ECM塗層培養的細胞表現出更高的存活率。值得注意的是,在LN521上培養的hAFSCs和hiPSCs來源的MSCs表現出增強的免疫耐受性,表明這些細胞在預防免疫反應方面具有潛力。該研究突顯了這些hMSCs的免疫抑制作用的未來潛力,特別是hiPSC來源的MSCs,在治療GVHD以外的其他免疫相關疾病方面。總的來說,這些發現強調了各種hMSCs的有希望的治療潛力,以及在優化其治療GVHD的效果時考慮細胞培養環境的重要性。
摘要(英) Graft versus host disease (GVHD) is a significant complication that can occur after allogeneic transplants, particularly bone marrow transplantation. Mesenchymal stem cells (MSCs) have garnered attention for their potential in treating immune-related diseases such as GVHD because of their immunosuppressive properties. In this study, I aimed to evaluate the efficacy of various types of human MSCs (hMSCs) in suppressing GVHD, and the optimal cell culture environment (biomaterials) was investigated for GVHD treatment by hMSCs. The osteogenic differentiation of hMSCs was conducted to generate osteoblasts, which simulated the bone cell environment commonly affected in GVHD scenarios. Subsequently, human amniotic fluid stem cells (hAFSCs), human adipose-derived stem cells (hADSCs), and human pluripotent stem cells (hiPSCs, HPS0077)-derived MSCs were treated with allogeneic mononuclear cells. Following this treatment, live and dead staining of hMSCs was conducted to assess their viability and response to allogeneic mononuclear cells. These cells were subjected to allogeneic mononuclear cell treatment to evaluate their ability to suppress inflammation reactions associated with GVHD. hiPSC-derived osteoblasts with several hMSCs (hAFSCs, hADSCs, and hiPSC-derived MSCs) were also treated with allogenic mononuclear cells and were evaluated the viability of osteoblasts and the immune response by the mononuclear cells. Results indicated that hADSCs, hAFSCs, and hiPSCs-derived MSCs could suppress inflammation reactions on hMSCs as well as hiPSC-derived osteoblasts, which were induced by allogenic mononuclear cells. Furthermore, the effect of extracellular matrix (ECM) proteins (laminin-521, recombinant vitronectin, and Matrigel) on the survival of hMSCs and hiPSC-derived osteoblasts was evaluated in the presence of allogeneic mononuclear cells. hMSCs and hiPSC-derived osteoblasts cultured on Matrigel-coated dishs exhibited higher viability than those cultured on other ECM-coated dishs after treatment with allogeneic mononuclear cells. Notably, hAFSCs and hiPSCs-derived MSCs cultured on LN521 demonstrated enhanced immune tolerance, suggesting the potential for application in preventing immune reactions by the cells. The study highlights the future potential of these immunosuppressive effects of hMSCs, particularly hiPSC-derived MSCs, in treating other immune-related diseases beyond GVHD. Overall, the findings underscore the promising therapeutic potential of various hMSCs and the importance of considering the cell culture environment in optimizing their efficacy for GVHD treatment.
關鍵字(中) ★ 移植物抗宿主病
★ 生物材料
★ 間質幹細胞
★ 人類羊水幹細胞
★ 人類脂肪幹細胞
關鍵字(英) ★ Graft Versus Host Disease
★ Biomaterial
★ Mesenchymal Stem Cells
★ Human Amniotic Fluid Stem Cells
★ Human Adipose Derived Stem Cells
論文目次 Abstract 1
摘要 3
Table of Contents 4
Index of Figure 8
Index of Table 12
Chapter 1 Introduction 1
1-1 Graft-versus-host Disease (GVHD) 1
1-2 Stem Cells 4
1-2-1 Mesenchymal stem cells (MSCs) 5
1-2-1-1 Multipotency of MSCs 6
1-2-1-2 MSC immunomodulation 6
1-2-1-3 Limitations and advances of MSC usage in clinics 8
1-3 Extracellular Matrix (ECM) 9
1-3-1 Matrigel 12
1-3-2 Collagen 13
1-3-3 Laminin 14
1-3-4 Recombinant vitronectin 15
1-4 Peripheral Blood Mononuclear Cells (PBMCs) 16
1-5 Goal of this study 17
Chapter 2 Materials and Method 19
2-1 Materials 19
2-1-1 Cell line 19
2-1-1-1 Human adipose-derived stem cells (hADSCs) 19
2-1-1-2 Human amniotic fluid stem cells (hAFSCs) 20
2-1-2 Digestion and passage process 20
2-1-3 Culture medium 21
2-1-3-1 Human adipose-derived stem cells (hADSCs) 21
2-1-3-2 Human amniotic fluid stem cells (hAFSCs) 21
2-1-3-3 HPS0077-derived MSCs 22
2-1-4 Commercial cell cultivation dish 22
2-1-5 Surface coating ECM 22
2-1-6 Osteogenic differentiation and characterization 23
2-1-7 Isolation of peripheral blood mononuclear cells (PBMCs) 23
2-1-8 Live and Dead staining 24
2-1-9 CellTracker staining 24
2-1-10 Enzyme-linked immunosorbent assay (ELISA) 24
2-2 Experimental instruments 24
2-3 Experimental methods 25
2-3-1 Preparation of culture medium for cell cultivation 25
2-3-1-1 Human adipose-derived stem cells (hADSCs) 25
2-3-1-2 Human amniotic fluid stem cells (hAFSCs) 26
2-3-1-3 (hiPSCs, HPS0077)-derived MSCs and (hESCs, WA09)-derived MSCs 27
2-3-2 Preparation of phosphate-buffered saline solution (PBS) 28
2-3-3 Preparation of ammonium-chloride-potassium (ACK) lysing buffer 28
2-3-4 Preparation of collagenase digestion agent 28
2-3-5 Preparation and cultivation of MSCs 29
2-3-5-1 Human adipose-derived stem cells (hADSCs) 29
2-3-5-2 Human amniotic fluid stem cells (hAFSCs) 30
2-3-5-3 HPS0077-derived MSCs and H9-derived MSCs 32
2-3-6 Preparation of ECM-coating dishes 32
2-3-7 Isolation of allogeneic mononuclear cells 33
2-3-8 Osteogenic differentiation and characterization 34
2-3-9 Mononuclear cell treatment 36
2-3-10 Cell density measurement 37
2-3-11 Live and dead staining of the cells 37
2-3-12 CellTracker staining of the cells 38
2-3-13 Enzyme-linked immunosorbent assay (ELISA) 38
Chapter 3 Results and Discussion 41
3-1 Evaluation of the hMSCs immunosuppression using allogeneic mononuclear cells 41
3-1-1 Evaluation of the GVHD effect of stem cells cultivated on Matrigel-coated dishes treated by allogeneic mononuclear cells 41
3-1-2 Evaluation of the optimal ratio (target cell number: mononuclear cell number) in mononuclear cell treatment 44
3-1-3 Immunomodulation for different hMSCs cultivated on various ECM-coated dishes treated by allogeneic mononuclear cells 47
3-1-4 The inflammatory cytokine production by hMSCs cultivated on various ECM-coated dishes treated by allogeneic mononuclear cells 53
3-2 Osteogenic differentiation of hMSCs 56
3-2-1 The different hMSCs on varous ECM-coated dishs differentiate into osteoblasts 57
3-2-2 Improvement of osteogenic medium ingredients with dexamethasone 61
3-3 Evaluate immunomodulation on osteoblasts treated by allogeneic mononuclear cells 63
3-3-1 Osteoblasts cultivated on various ECM-coated dishes treated by allogeneic mononuclear cells 64
3-3-2 Several hMSCs cultivated on osteoblasts treated by allogeneic mononuclear cells 66
3-3-3 Seeding number effect of several hMSCs on osteoblast survival treated by allogeneic mononuclear cells 74
3-3-4 The inflammatory cytokine production by mononuclear cells on hMSCs cultivated on osteoblasts treated by allogeneic mononuclear cells 78
Chapter 4 Conclusion 83
References 85
參考文獻 1. Ferrara, J. L. M.; Levine, J. E.; Reddy, P.; Holler, E. Graft-versus-host disease. Lancet 2009, 373 (9674), 1550-1561, Review. DOI: 10.1016/s0140-6736(09)60237-3.
2. Appelbaum, F. R. Haematopoietic cell transplantation as immunotherapy. Nature 2001, 411 (6835), 385-389, Article. DOI: 10.1038/35077251.
3. Majhail, N. S. Long-term complications after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther 2017, 10 (4), 220-227. DOI: 10.1016/j.hemonc.2017.05.009 From NLM.
4. Woo, S.-B.; Lee, S. J.; Schubert, M. M. Graft-vs.-Host Disease. Critical Reviews in Oral Biology & Medicine 1997, 8 (2), 201-216. DOI: 10.1177/10454411970080020701.
5. KORNGOLD, R.; SPRENT, J. T cell subsets and graft-versus-host disease. Transplantation 1987, 44 (3), 335-339.
6. Kernan, N. A.; Collins, N. H.; Juliano, L.; Cartagena, T.; Dupont, B.; O′Reilly, R. J. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with development of graft-v-host disease. Blood 1986, 68 (3), 770-773. From NLM.
7. Penack, O.; Holler, E.; van den Brink, M. R. M. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 2010, 115 (10), 1865-1872, Review. DOI: 10.1182/blood-2009-09-242784.
8. Ghimire, S.; Weber, D.; Mavin, E.; Wang, X. N.; Dickinson, A. M.; Holler, E. Pathophysiology of GvHD and Other HSCT-Related Major Complications. Front. Immunol. 2017, 8, 11, Review. DOI: 10.3389/fimmu.2017.00079.
9. Blazar, B. R.; Murphy, W. J.; Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 2012, 12 (6), 443-458, Review. DOI: 10.1038/nri3212.
10. Denham, M.; Conley, B.; Olsson, F.; Cole, T. J.; Mollard, R. Stem cells: an overview. Curr Protoc Cell Biol 2005, Chapter 23, Unit 23.21. DOI: 10.1002/0471143030.cb2301s28 From NLM.
11. Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respiration 2013, 85 (1), 3-10, Review. DOI: 10.1159/000345615.
12. Levenberg, S.; Zoldan, J.; Basevitch, Y.; Langer, R. Endothelial potential of human embryonic stem cells. Blood 2007, 110 (3), 806-814. DOI: 10.1182/blood-2006-08-019190 From NLM.
13. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282 (5391), 1145-1147. DOI: 10.1126/science.282.5391.1145 From NLM.
14. Ossanna, R.; Veronese, S.; Sierra, L. A. Q.; Conti, A.; Conti, G.; Sbarbati, A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023, 11 (6), 18, Review. DOI: 10.3390/biomedicines11061587.
15. DiGirolamo, C. M.; Stokes, D.; Colter, D.; Phinney, D. G.; Class, R.; Prockop, D. J. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 1999, 107 (2), 275-281, Article. DOI: 10.1046/j.1365-2141.1999.01715.x.
16. Jankowski, R. J.; Deasy, B. M.; Huard, J. Muscle-derived stem cells. Gene Ther 2002, 9 (10), 642-647. DOI: 10.1038/sj.gt.3301719 From NLM.
17. De Bari, C.; Dell′Accio, F.; Tylzanowski, P.; Luyten, F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001, 44 (8), 1928-1942, Article. DOI: 10.1002/1529-0131(200108)44:8<1928::Aid-art331>3.0.Co;2-p.
18. Zuk, P. A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P.; Hedrick, M. H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7 (2), 211-228, Article. DOI: 10.1089/107632701300062859.
19. Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24 (5), 1294-1301, Article. DOI: 10.1634/stemcells.2005-0342.
20. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8 (4), 315-317. DOI: 10.1080/14653240600855905 From NLM.
21. Si, Y. L.; Zhao, Y. L.; Hao, H. J.; Fu, X. B.; Han, W. D. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 2011, 10 (1), 93-103. DOI: 10.1016/j.arr.2010.08.005 From NLM.
22. Bobis, S.; Jarocha, D.; Majka, M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol 2006, 44 (4), 215-230. From NLM.
23. Sharifi, S.; Moghaddam, F. A.; Abedi, A.; Maleki Dizaj, S.; Ahmadian, S.; Abdolahinia, E. D.; Khatibi, S. M. H.; Samiei, M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020, 46 (6), 874-893. DOI: 10.1002/biof.1682 From NLM.
24. Saud, B.; Malla, R.; Shrestha, K. A Review on the Effect of Plant Extract on Mesenchymal Stem Cell Proliferation and Differentiation. Stem Cells Int 2019, 2019, 7513404. DOI: 10.1155/2019/7513404 From NLM.
25. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284 (5411), 143-147, Article. DOI: 10.1126/science.284.5411.143.
26. Ren, J. H.; Huang, D. L.; Li, R. Z.; Wang, W. C.; Zhou, C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci. 2020, 10 (1), 15, Review. DOI: 10.1186/s13578-020-0378-8.
27. Huang, Y. T.; Wu, Q.; Tam, P. K. H. Immunomodulatory Mechanisms of Mesenchymal Stem Cells and Their Potential Clinical Applications. Int. J. Mol. Sci. 2022, 23 (17), 17, Review. DOI: 10.3390/ijms231710023.
28. Jiang, W.; Xu, J. Y. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020, 53 (1), 16, Review. DOI: 10.1111/cpr.12712.
29. Weiss, A. R. R.; Dahlke, M. H. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front. Immunol. 2019, 10, 10, Review. DOI: 10.3389/fimmu.2019.01191.
30. Han, Y. Y.; Yang, J. X.; Fang, J. K.; Zhou, Y. P.; Candi, E.; Wang, J. H.; Hua, D.; Shao, C. S.; Shi, Y. F. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct. Target. Ther. 2022, 7 (1), 19, Review. DOI: 10.1038/s41392-022-00932-0.
31. Aggarwal, S.; Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105 (4), 1815-1822, Article. DOI: 10.1182/blood-2004-04-1559.
32. Yen, B. L. J.; Hwa, H. L.; Hsu, P. J.; Chen, P. M.; Wang, L. T.; Jiang, S. S.; Liu, K. J.; Sytwu, H. K.; Yen, M. L. HLA-G Expression in Human Mesenchymal Stem Cells (MSCs) Is Related to Unique Methylation Pattern in the Proximal Promoter as well as Gene Body DNA. Int. J. Mol. Sci. 2020, 21 (14), 14, Article. DOI: 10.3390/ijms21145075.
33. Rahmat, Z.; Jose, S.; Ramasamy, R.; Vidyadaran, S. Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation. Stem Cell Res. Ther. 2013, 4, 11, Article. DOI: 10.1186/scrt160.
34. Lu, X. M.; Han, J. B.; Xu, X. P.; Xu, J. Y.; Liu, L.; Huang, Y. Z.; Yang, Y.; Qiu, H. B. PGE2 Promotes the Migration of Mesenchymal Stem Cells through the Activation of FAK and ERK1/2 Pathway. Stem Cells Int. 2017, 2017, 11, Article. DOI: 10.1155/2017/8178643.
35. Ling, W. F.; Zhang, J. M.; Yuan, Z. R.; Ren, G. W.; Zhang, L. Y.; Chen, X. D.; Rabson, A. B.; Roberts, A. I.; Wang, Y.; Shi, Y. F. Mesenchymal Stem Cells Use IDO to Regulate Immunity in Tumor Microenvironment. Cancer Res. 2014, 74 (5), 1576-1587, Article. DOI: 10.1158/0008-5472.Can-13-1656.
36. Ge, Q. H.; Zhang, H. W.; Hou, J. X.; Wan, L. F.; Cheng, W. Z.; Wang, X. Y.; Dong, D.; Chen, C. Z.; Xia, J.; Guo, J.; Chen, X. L.; Wu, X. W. VEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms. Mol. Med. Rep. 2018, 17 (1), 1667-1675, Article. DOI: 10.3892/mmr.2017.8059.
37. Putra, A.; Ridwan, F. B.; Putridewi, A. I.; Kustiyah, A. R.; Wirastuti, K.; Sadyah, N. A. C.; Rosdiana, I.; Munir, D. The Role of TNF-α induced MSCs on Suppressive Inflammation by Increasing TGF-β and IL-10. Open Access Maced J Med Sci 2018, 6 (10), 1779-1783. DOI: 10.3889/oamjms.2018.404 From NLM.
38. Lu, D.; Xu, Y.; Liu, Q. L.; Zhang, Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front. Cell. Dev. Biol. 2021, 9, 14, Review. DOI: 10.3389/fcell.2021.681171.
39. Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. Biological functions of mesenchymal stem cells and clinical implications. Cell. Mol. Life Sci. 2019, 76 (17), 3323-3348, Review. DOI: 10.1007/s00018-019-03125-1.
40. Gao, F.; Chiu, S. M.; Motan, D. A. L.; Zhang, Z.; Chen, L.; Ji, H. L.; Tse, H. F.; Fu, Q. L.; Lian, Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease 2016, 7 (1), e2062-e2062. DOI: 10.1038/cddis.2015.327.
41. Nauta, A. J.; Fibbe, W. E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007, 110 (10), 3499-3506. DOI: 10.1182/blood-2007-02-069716 (acccessed 4/11/2024).
42. Ding, D. C.; Shyu, W. C.; Lin, S. Z. Mesenchymal stem cells. Cell Transplant 2011, 20 (1), 5-14. DOI: 10.3727/096368910x From NLM.
43. Pittenger, M.; Discher, D.; Péault, B.; Phinney, D.; Hare, J.; Caplan, A. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine 2019, 4. DOI: 10.1038/s41536-019-0083-6.
44. Nádia de Cássia Noronha, N. C.; Mizukami, A.; Caliári-Oliveira, C.; Juçara Gastaldi, C.; Rocha, J. L. M.; Dimas Tadeu, C.; Swiech, K.; Kelen, C. R. M. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther. 2019, 10. DOI: https://doi.org/10.1186/s13287-019-1224-y Publicly Available Content Database.
45. Tirode, F.; Laud-Duval, K.; Prieur, A.; Delorme, B.; Charbord, P.; Delattre, O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007, 11 (5), 421-429. DOI: 10.1016/j.ccr.2007.02.027 From NLM.
46. Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. Journal of Hematology & Oncology 2021, 14 (1), 24. DOI: 10.1186/s13045-021-01037-x.
47. Santamaria, G.; Brandi, E.; Vitola, P. L.; Grandi, F.; Ferrara, G.; Pischiutta, F.; Vegliante, G.; Zanier, E. R.; Re, F.; Uccelli, A.; Forloni, G.; de Rosbo, N. K.; Balducci, C. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer′s mice. Cell Death Differ. 2021, 28 (1), 203-218, Article. DOI: 10.1038/s41418-020-0592-2.
48. Sajeesh, S.; Broekelman, T.; Mecham, R. P.; Ramamurthi, A. Stem cell derived extracellular vesicles for vascular elastic matrix regenerative repair. Acta Biomater. 2020, 113, 267-278, Article. DOI: 10.1016/j.actbio.2020.07.002.
49. Ranganath, S. H.; Levy, O.; Inamdar, M. S.; Karp, J. M. Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell 2012, 10 (3), 244-258, Review. DOI: 10.1016/j.stem.2012.02.005.
50. Qiu, G. G.; Zheng, G. P.; Ge, M. H.; Wang, J. M.; Huang, R. Q.; Shu, Q.; Xu, J. G. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res. Ther. 2018, 9, 9, Review. DOI: 10.1186/s13287-018-1069-9.
51. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367 (6478), 640-+, Review. DOI: 10.1126/science.aau6977.
52. Jeppesen, D. K.; Fenix, A. M.; Franklin, J. L.; Higginbotham, J. N.; Zhang, Q.; Zimmerman, L. J.; Liebler, D. C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W. H.; Patton, J. G.; Rome, L. H.; Burnette, D. T.; Coffey, R. J. Reassessment of Exosome Composition. Cell 2019, 177 (2), 428-+, Article. DOI: 10.1016/j.cell.2019.02.029.
53. Pluchino, S.; Smith, J. A. Explicating Exosomes: Reclassifying the Rising Stars of Intercellular Communication. Cell 2019, 177 (2), 225-227, Editorial Material. DOI: 10.1016/j.cell.2019.03.020.
54. Poggio, M.; Hu, T. Y.; Pai, C. C.; Chu, B.; Belair, C. D.; Chang, A.; Montabana, E.; Lang, U. E.; Fu, Q.; Fong, L.; Blelloch, R. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 2019, 177 (2), 414-+, Article. DOI: 10.1016/j.cell.2019.02.016.
55. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4-27, Review. DOI: 10.1016/j.addr.2015.11.001.
56. Frantz, C.; Stewart, K. M.; Weaver, V. M. The extracellular matrix at a glance. J Cell Sci 2010, 123 (Pt 24), 4195-4200. DOI: 10.1242/jcs.023820 From NLM.
57. Clause, K. C.; Barker, T. H. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013, 24 (5), 830-833. DOI: 10.1016/j.copbio.2013.04.011 From NLM.
58. Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv Drug Deliv Rev 2016, 97, 4-27. DOI: 10.1016/j.addr.2015.11.001 From NLM.
59. Zhang, P.; Zhang, C.; Li, J.; Han, J. Y.; Liu, X. R.; Yang, H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res. Ther. 2019, 10 (1), 13, Review. DOI: 10.1186/s13287-019-1422-7.
60. Novoseletskaya, E. S.; Evdokimov, P. V.; Efimenko, A. Y. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signal. 2023, 21 (1), 20, Review. DOI: 10.1186/s12964-023-01252-8.
61. Loreti, M.; Sacco, A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. Npj Regenerative Medicine 2022, 7 (1), 15, Review. DOI: 10.1038/s41536-022-00204-z.
62. Yue, B. Biology of the extracellular matrix: an overview. J Glaucoma 2014, 23 (8 Suppl 1), S20-23. DOI: 10.1097/ijg.0000000000000108 From NLM.
63. Spencer, V. A.; Xu, R.; Bissell, M. J. Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: A work in progress. In Advances in Cancer Research, Vol 97, VandeWoude, G. F., Klein, G. Eds.; Advances in Cancer Research, Vol. 97; Elsevier Academic Press Inc, 2007; pp 275-+.
64. Hastings, J. F.; Skhinas, J. N.; Fey, D.; Croucher, D. R.; Cox, T. R. The extracellular matrix as a key regulator of intracellular signalling networks. Br. J. Pharmacol. 2019, 176 (1), 82-92, Review. DOI: 10.1111/bph.14195.
65. Boudreau, N.; Bissell, M. J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol. 1998, 10 (5), 640-646, Article. DOI: 10.1016/s0955-0674(98)80040-9.
66. Higuchi, A.; Ling, Q. D.; Hsu, S. T.; Umezawa, A. Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chem. Rev. 2012, 112 (8), 4507-4540, Review. DOI: 10.1021/cr3000169.
67. Naba, A.; Clauser, K. R.; Ding, H. M.; Whittaker, C. A.; Carr, S. A.; Hynes, R. O. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol. 2016, 49, 10-24, Article. DOI: 10.1016/j.matbio.2015.06.003.
68. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; Elvassore, N.; Piccolo, S. Role of YAP/TAZ in mechanotransduction. Nature 2011, 474 (7350), 179-U212, Article. DOI: 10.1038/nature10137.
69. Méhes, E.; Biri-Kovács, B.; Isai, D. G.; Gulyás, M.; Nyitray, L.; Czirók, A. Matrigel patterning reflects multicellular contractility. PLoS Comput. Biol. 2019, 15 (10), 28, Article. DOI: 10.1371/journal.pcbi.1007431.
70. Kleinman, H. K.; Martin, G. R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 2005, 15 (5), 378-386, Review. DOI: 10.1016/j.semcancer.2005.05.004.
71. Hughes, C. S.; Postovit, L. M.; Lajoie, G. A. Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics 2010, 10 (9), 1886-1890, Article. DOI: 10.1002/pmic.200900758.
72. Benton, G.; George, J.; Kleinman, H. K.; Arnaoutova, I. P. Advancing Science and Technology Via 3D Culture on Basement Membrane Matrix. J. Cell. Physiol. 2009, 221 (1), 18-25, Review. DOI: 10.1002/jcp.21832.
73. Walton, R. L.; Beahm, E. K.; Wu, L. De novo adipose formation in a vascularized engineered construct. Microsurgery 2004, 24 (5), 378-384, Article. DOI: 10.1002/micr.20056.
74. Kawaguchi, N.; Toriyama, K.; Nicodemou-Lena, E.; Inou, K.; Torii, S.; Kitagawa, Y. <i>De novo</i> adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (3), 1062-1066, Article. DOI: 10.1073/pnas.95.3.1062.
75. Friess, W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm 1998, 45 (2), 113-136. DOI: 10.1016/s0939-6411(98)00017-4 From NLM.
76. Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. Designing materials to direct stem-cell fate. Nature 2009, 462 (7272), 433-441. DOI: 10.1038/nature08602 From NLM.
77. Kadler, K. E.; Baldock, C.; Bella, J.; Boot-Handford, R. P. Collagens at a glance. J Cell Sci 2007, 120 (Pt 12), 1955-1958. DOI: 10.1242/jcs.03453 From NLM.
78. Ferreira, A. M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater 2012, 8 (9), 3191-3200. DOI: 10.1016/j.actbio.2012.06.014 From NLM.
79. Ricard-Blum, S. The collagen family. Cold Spring Harb Perspect Biol 2011, 3 (1), a004978. DOI: 10.1101/cshperspect.a004978 From NLM.
80. Lin, K. L.; Zhang, D. W.; Macedo, M. H.; Cui, W. G.; Sarmento, B.; Shen, G. F. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29 (3), 16, Review. DOI: 10.1002/adfm.201804943.
81. Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials 2010, 3 (3), 1863-1887, Review. DOI: 10.3390/ma3031863.
82. Colognato, H.; Yurchenco, P. D. Form and function: The laminin family of heterotrimers. Dev. Dyn. 2000, 218 (2), 213-234, Review. DOI: 10.1002/(sici)1097-0177(200006)218:2<213::Aid-dvdy1>3.0.Co;2-r.
83. Arimori, T.; Miyazaki, N.; Mihara, E.; Takizawa, M.; Taniguchi, Y.; Cabañas, C.; Sekiguchi, K.; Takagi, J. Structural mechanism of laminin recognition by integrin. Nat. Commun. 2021, 12 (1), 13, Article. DOI: 10.1038/s41467-021-24184-8.
84. Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. A simplified laminin nomenclature. Matrix Biol. 2005, 24 (5), 326-332, Review. DOI: 10.1016/j.matbio.2005.05.006.
85. Vuoristo, S.; Toivonen, S.; Weltner, J.; Mikkola, M.; Ustinov, J.; Trokovic, R.; Palgi, J.; Lund, R.; Tuuri, T.; Otonkoski, T. A Novel Feeder-Free Culture System for Human Pluripotent Stem Cell Culture and Induced Pluripotent Stem Cell Derivation. PLoS One 2013, 8 (10), 14, Article. DOI: 10.1371/journal.pone.0076205.
86. Rodin, S.; Antonsson, L.; Niaudet, C.; Simonson, O. E.; Salmela, E.; Hansson, E. M.; Domogatskaya, A.; Xiao, Z. J.; Damdimopoulou, P.; Sheikhi, M.; Inzunza, J.; Nilsson, A. S.; Baker, D.; Kuiper, R.; Sun, Y.; Blennow, E.; Nordenskjöld, M.; Grinnemo, K. H.; Kere, J.; Betsholtz, C.; Hovatta, O.; Tryggvason, K. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat. Commun. 2014, 5, 13, Article. DOI: 10.1038/ncomms4195.
87. Miyazaki, T.; Futaki, S.; Hasegawa, K.; Kawasaki, M.; Sanzen, N.; Hayashi, M.; Kawase, E.; Sekiguchi, K.; Nakatsuji, N.; Suemori, H. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem. Biophys. Res. Commun. 2008, 375 (1), 27-32, Article. DOI: 10.1016/j.bbrc.2008.07.111.
88. Albalushi, H.; Kurek, M.; Karlsson, L.; Landreh, L.; Kjartansdóttir, K. R.; Söder, O.; Hovatta, O.; Stukenborg, J. B. Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. Stem Cells Int. 2018, 2018, 9, Article. DOI: 10.1155/2018/7127042.
89. Borg, T. K. Commentary - It′s the matrix! ECM, proteases, and cancer. Am. J. Pathol. 2004, 164 (4), 1141-1142, Editorial Material. DOI: 10.1016/s0002-9440(10)63201-4.
90. Doolittle, J. M.; Gomez, S. M. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol. J. 2010, 7, 15, Article. DOI: 10.1186/1743-422x-7-82.
91. Chen, K. G.; Mallon, B. S.; McKay, R. D. G.; Robey, P. G. Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell 2014, 14 (1), 13-26, Review. DOI: 10.1016/j.stem.2013.12.005.
92. Chen, G.; Gulbranson, D. R.; Hou, Z.; Bolin, J. M.; Ruotti, V.; Probasco, M. D.; Smuga-Otto, K.; Howden, S. E.; Diol, N. R.; Propson, N. E.; Wagner, R.; Lee, G. O.; Antosiewicz-Bourget, J.; Teng, J. M.; Thomson, J. A. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011, 8 (5), 424-429. DOI: 10.1038/nmeth.1593 From NLM.
93. Abdal Dayem, A.; Lee, S.; H, Y. C.; Cho, S. G. The Impact of Adhesion Molecules on the In Vitro Culture and Differentiation of Stem Cells. Biotechnol J 2018, 13 (2). DOI: 10.1002/biot.201700575 From NLM.
94. Haudek-Prinz, V. J.; Klepeisz, P.; Slany, A.; Griss, J.; Meshcheryakova, A.; Paulitschke, V.; Mitulovic, G.; Stöckl, J.; Gerner, C. Proteome signatures of inflammatory activated primary human peripheral blood mononuclear cells. J. Proteomics 2012, 76, 150-162, Article. DOI: 10.1016/j.jprot.2012.07.012.
95. Končarević, S.; Lößner, C.; Kuhn, K.; Prinz, T.; Pike, I.; Zucht, H. D. In-depth profiling of the peripheral blood mononuclear cells proteome for clinical blood proteomics. Int J Proteomics 2014, 2014, 129259. DOI: 10.1155/2014/129259 From NLM.
96. Nowak, M.; Klink, M.; Glowacka, E.; Sulowska, Z.; Kulig, A.; Szpakowski, M.; Szyllo, K.; Tchorzewski, H. Production of Cytokines During Interaction of Peripheral Blood Mononuclear Cells with Autologous Ovarian Cancer Cells or Benign Ovarian Tumour Cells. Scand. J. Immunol. 2010, 71 (2), 91-98, Article. DOI: 10.1111/j.1365-3083.2009.02350.x.
97. Anderson, N. L.; Anderson, N. G. The human plasma proteome: History, character, and diagnostic prospects (vol 1, pg 845, 2002). Mol. Cell. Proteomics 2003, 2 (1), 50-50, Correction. DOI: 10.1074/mcp.A300001-MCP200.
98. Kleiveland, C. R. Peripheral Blood Mononuclear Cells. In The Impact of Food Bioactives on Health: in vitro and ex vivo models, Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H. Eds.; Springer
Copyright 2015, The Author(s). 2015; pp 161-167.
99. Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2011, 1813 (5), 878-888. DOI: https://doi.org/10.1016/j.bbamcr.2011.01.034.
100. Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, 6, Article. DOI: 10.1186/ar1917.
101. Villar-Fincheira, P.; Sanhueza-Olivares, F.; Norambuena-Soto, I.; Cancino-Arenas, N.; Hernandez-Vargas, F.; Troncoso, R.; Gabrielli, L.; Chiong, M. Role of Interleukin-6 in Vascular Health and Disease. Front. Mol. Biosci. 2021, 8, 11, Review. DOI: 10.3389/fmolb.2021.641734.
102. Huang, Y.-R. Design of Thermoresponsive Surface Immobilized with ECM for Differentiation of Human Amniotic Fluid Stem Cells. 2019. https://hdl.handle.net/11296/chxj35.
103. Roberts, S. J.; Chen, Y.; Moesen, M.; Schrooten, J.; Luyten, F. P. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Research 2011, 7 (2), 137-144. DOI: https://doi.org/10.1016/j.scr.2011.04.003.
104. Wrobel, E.; Leszczynska, J.; Brzoska, E. The Characteristics Of Human Bone-Derived Cells (HBDCS) during osteogenesis in vitro. Cellular & Molecular Biology Letters 2016, 21 (1), 26. DOI: 10.1186/s11658-016-0027-8.
105. Lee, H.-T. Treatment of GVHD using MSCs cultured on ECM-coating surface. 2022. https://hdl.handle.net/11296/ff9458.
106. Atmani, H.; Audrain, C.; Mercier, L.; Chappard, D.; Basle, M. F. Phenotypic effects of continuous or discontinuous treatment with dexamethasone and/or calcitriol on osteoblasts differentiated from rat bone marrow stromal cells. J. Cell. Biochem. 2002, 85 (3), 640-650, Article. DOI: 10.1002/jcb.10165.
107. Bellows, C. G.; Heersche, J. N. M.; Aubin, J. E. DETERMINATION OF THE CAPACITY FOR PROLIFERATION AND DIFFERENTIATION OF OSTEOPROGENITOR CELLS IN THE PRESENCE AND ABSENCE OF DEXAMETHASONE. Dev. Biol. 1990, 140 (1), 132-138, Article. DOI: 10.1016/0012-1606(90)90060-v.
108. Liu, F.; Aubin, J. E.; Malaval, L. Expression of leukemia inhibitory factor (LIF)/interleukin-6 family cytokines and receptors during in vitro osteogenesis: Differential regulation by dexamethasone and LIF. Bone 2002, 31 (1), 212-219. DOI: 10.1016/s8756-3282(02)00806-2.
109. Jaiswal, N.; Haynesworth, S. E.; Caplan, A. I.; Bruder, S. P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 1997, 64 (2), 295-312, Article. DOI: 10.1002/(sici)1097-4644(199702)64:2<295::Aid-jcb12>3.3.Co;2-6.
110. Cheng, S. L.; Yang, J. W.; Rifas, L.; Zhang, S. F.; Avioli, L. V. DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE. Endocrinology 1994, 134 (1), 277-286. DOI: 10.1210/en.134.1.277.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明