參考文獻 |
參考文獻
1. Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science, 2010. 3(2): p. 174-189.
2. Palomares, V., et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3): p. 5884-5901.
3. Goikolea, E., et al., Na‐ion batteries—approaching old and new challenges. Advanced Energy Materials, 2020. 10(44): p. 2002055.
4. Yang, J., et al., Safety-enhanced polymer electrolytes for sodium batteries: recent progress and perspectives. ACS applied materials & interfaces, 2019. 11(19): p. 17109-17127.
5. Tapia-Ruiz, N., et al., 2021 roadmap for sodium-ion batteries. Journal of Physics: Energy, 2021. 3(3): p. 031503.
6. Hussain, M.M., et al., Big data analytics platforms for electric vehicle integration in transport oriented smart cities: Computing platforms for platforms for electric vehicle integration in smart cities, in Cyber warfare and terrorism: Concepts, methodologies, tools, and applications. 2020, IGI Global. p. 833-854.
7. Wang, Q., et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
8. FANG, Y.-J., et al., Recent developments in cathode materials for Na ion batteries. Acta Physico-Chimica Sinica, 2017. 33(1): p. 211-241.
9. Jia, S., et al., High-throughput design of Na–Fe–Mn–O cathodes for Na-ion batteries. Journal of Materials Chemistry A, 2022. 10(1): p. 251-265.
10. Delmas, C., C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+ c, 1980. 99(1-4): p. 81-85.
11. Jian, Z., et al., Carbon coated Na3V2 (PO4) 3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012. 14(1): p. 86-89.
12. Avdeev, M., et al., Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorganic chemistry, 2013. 52(15): p. 8685-8693.
13. Qian, J., et al., Prussian blue cathode materials for sodium‐ion batteries and other ion batteries. Advanced Energy Materials, 2018. 8(17): p. 1702619.
14. Muñoz‐Márquez, M.Á., et al., Na‐ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Advanced Energy Materials, 2017. 7(20): p. 1700463.
15. Huang, S., et al., Biomass-derived carbon anodes for sodium-ion batteries. New Carbon Materials, 2023. 38(1): p. 40-66.
16. Kang, H., et al., Update on anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2015. 3(35): p. 17899-17913.
17. Tian, Z., et al., Electrolyte solvation structure design for sodium ion batteries. Advanced science, 2022. 9(22): p. 2201207.
18. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
19. Che, H., et al., Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. Journal of Power Sources, 2018. 407: p. 173-179.
20. Che, H., et al., Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy & Environment, 2021. 6(2): p. 212-219.
21. Waqas, M., et al., Recent development in separators for high‐temperature lithium‐ion batteries. Small, 2019. 15(33): p. 1901689.
22. Arora, P. and Z. Zhang, Battery separators. Chemical reviews, 2004. 104(10): p. 4419-4462.
23. Fan, L., et al., Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials, 2018. 8(11): p. 1702657.
24. Yang, H.-L., et al., Progress and challenges for all‐solid‐state sodium batteries. Advanced Energy and Sustainability Research, 2021. 2(2): p. 2000057.
25. Wang, Y., et al., Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 2019. 1(2): p. 91-100.
26. Wolf, M., J. Walker, and C. Catlow, Structural and transport properties of β ″-Al2O3. Solid State Ionics, 1984. 13(1): p. 33-38.
27. Hayashi, A., et al., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature communications, 2012. 3(1): p. 856.
28. Zhang, L., et al., Na 3 PSe 4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Advanced Energy Materials, 2015. 5(24).
29. Hong, H.-P., Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12. Materials Research Bulletin, 1976. 11(2): p. 173-182.
30. Goodenough, J.B., H.-P. Hong, and J. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): p. 203-220.
31. Mouahid, F., et al., Crystal chemistry and ion conductivity of the Na1+ xTi2− xAlx (PO4) 3 (0≤ x≤ 0.9) NASICON series. Journal of Materials Chemistry, 2000. 10(12): p. 2748-2757.
32. Nieto-Munoz, A.M., J.F. Ortiz-Mosquera, and A.C. Rodrigues, The role of Al+ 3 on the microstructural and electrical properties of Na1+ xAlxTi2-x (PO4) 3 NASICON glass-ceramics. Journal of Alloys and Compounds, 2020. 820: p. 153148.
33. Jing, Y., et al., Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries. Energy Storage Science and Technology, 2020. 9(5): p. 1284.
34. Kazakevičius, E., et al., Characterization of NASICON-type Na solid electrolyte ceramics by impedance spectroscopy. Functional Materials Letters, 2014. 7(06): p. 1440002.
35. Lu, X., et al., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1. 3Al0. 3Ti1. 7 (PO4) 3. Solid State Ionics, 2020. 354: p. 115417.
36. Zhou, W., et al., Rechargeable sodium all-solid-state battery. ACS central science, 2017. 3(1): p. 52-57.
37. He, S., et al., Unique rhombus-like precursor for synthesis of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte with high ionic conductivity. Chemical engineering journal, 2018. 345: p. 483-491.
38. Gece, G., et al., Solvothermal Engineering of NaTi2 (PO4) 3 Nanomorphology for Applications in Aqueous Na-Ion Batteries. ACS Sustainable Chemistry & Engineering, 2023. 11(8): p. 3429-3436.
39. Fenton, D., Complex of alkali metal ions with poly (ethylene oxide). polymer, 1973. 14: p. 589.
40. Gebert, F., et al., Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021. 36: p. 10-30.
41. Li, Z., et al., Solid-state electrolytes for sodium metal batteries. Energy & Fuels, 2021. 35(11): p. 9063-9079.
42. Zhang, Y., et al., Electrospun porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances, 2017. 7(89): p. 56183-56193.
43. Wu, Y., et al., Advances and prospects of PVDF based polymer electrolytes. Journal of Energy Chemistry, 2022. 64: p. 62-84.
44. Zhong, Y., et al., Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries. Journal of materials chemistry A, 2019. 7(42): p. 24251-24261.
45. Liang, X., et al., Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC advances, 2018. 8(71): p. 40498-40504.
46. Bristi, A.A., et al., Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly (vinylidene fluoride) and Poly (vinyl pyrrolidone). ACS Applied Energy Materials, 2022. 5(7): p. 8812-8822.
47. Asghar, M.R., et al. Lithium salt doped Poly (Vinylidene Fluoride)/cellulose acetate composite gel electrolyte membrane for lithium ion battery. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
48. Niu, W., et al., All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chemical Engineering Journal, 2020. 384: p. 123233.
49. Ma, Q., et al., Viscoelastic and nonflammable interface design–enabled dendrite‐free and safe solid lithium metal batteries. Advanced Energy Materials, 2019. 9(13): p. 1803854.
50. Zhang, Z., et al., A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016. 4(41): p. 15823-15828.
51. Li, S., et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science, 2020. 7(5): p. 1903088.
52. Bhattacharjee, S., DLS and zeta potential–what they are and what they are not? Journal of controlled release, 2016. 235: p. 337-351.
53. Rosenberg, Y., et al., The sol/gel contribution to the behavior of γ‐irradiated poly (vinylidene fluoride). Journal of applied polymer science, 1991. 43(3): p. 535-541.
54. Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
55. Wu, J., et al., Effect of Al doping on electrochemical performance of NaTi2 (PO4) 3/C anode for aqueous sodium ion battery. Journal of Applied Electrochemistry, 2022. 52(11): p. 1563-1572.
56. Careem, M.A., I.S.M. Noor, and A.K. Arof, Impedance spectroscopy in polymer electrolyte characterization. Polymer Electrolytes: Characterization Techniques and Energy Applications, 2020: p. 23-64.
57. B. Aziz, S., et al., The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers, 2020. 12(10): p. 2184.
58. Golodnitsky, D., et al., On order and disorder in polymer electrolytes. Journal of The Electrochemical Society, 2015. 162(14): p. A2551.
59. Wang, W., et al., Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. The Journal of Physical Chemistry C, 2017. 121(5): p. 2563-2573.
60. Yang, X., et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Letters, 2023. 15(1): p. 74.
61. Mei, X., et al., A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Materials Today Communications, 2020. 24: p. 101004.
62. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 2015. 15(4): p. 2740-2745.
63. Meng, N., X. Zhu, and F. Lian, Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022. 60: p. 14-36.
64. Bag, S., et al., Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2 (PO4) 3 electrodes and polymer composite electrolyte. Journal of Power Sources, 2020. 454: p. 227954.
65. Aziz, S.B., et al., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018. 3(1): p. 1-17.
66. Zhang, J., et al., Research progress of organic liquid electrolyte for sodium ion battery. Frontiers in Chemistry, 2023. 11.
67. Diederichsen, K.M., E.J. McShane, and B.D. McCloskey, Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Letters, 2017. 2(11): p. 2563-2575.
68. Yi, Q., et al., Durable sodium battery with a flexible Na3Zr2Si2PO12–PVDF–HFP composite electrolyte and sodium/carbon cloth anode. ACS Applied Materials & Interfaces, 2018. 10(41): p. 35039-35046.
69. Liu, B., et al., A novel porous gel polymer electrolyte based on poly (acrylonitrile–maleic anhydride) composite by polyhedral oligomeric silsesquioxane for lithium-ion batteries. Journal of Applied Electrochemistry, 2019. 49: p. 1167-1179.
70. Tikekar, M.D., L.A. Archer, and D.L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. Journal of The Electrochemical Society, 2014. 161(6): p. A847.
71. Liang, Y., et al., A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) for rechargeable solid-state lithium ion batteries. Materials Research Bulletin, 2018. 102: p. 412-417.
72. Yang, H., et al., ′Environment-friendly′polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal, 2021. 421: p. 129710.
73. Wen-Zhuo, C., et al., Mechanism, strategies, and characterizations of Li plating in solid state batteries. ACTA PHYSICA SINICA, 2020. 69(22).
74. Cheng, M., et al., A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology, 2020. 31(42): p. 425401.
75. Son, Y., et al., Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium‐Ion Battery Applications. Energy & Environmental Materials, 2023: p. e12615.
76. Zhang, Z., et al., Na3. 4Zr1. 8Mg0. 2Si2PO12 filled poly (ethylene oxide)/Na (CF3SO2) 2N as flexible composite polymer electrolyte for solid-state sodium batteries. Journal of Power Sources, 2017. 372: p. 270-275.
77. Singh, M.D., A. Dalvi, and D. Phase, Novel Na3Zr2Si2PO12–polymer hybrid composites with high ionic conductivity for solid-state ionic devices. Materials Letters, 2020. 262: p. 127022.
78. Zheng, J. and Y.-Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces, 2018. 10(4): p. 4113-4120.
79. Fu, J., et al., Ion transport in composite polymer electrolytes. Materials Advances, 2022. 3(9): p. 3809-3819. |