博碩士論文 107881601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:175 、訪客IP:18.118.10.141
姓名 阮氏美(NGUYEN THI MAI)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 通过 CRISPR/Cas9 内含子靶向插入策略在水稻悬浮培养物中生产重组蛋白
(Production of recombinant proteins in rice suspension cultures via a CRISPR/Cas9 intron-targeted insertion strategy)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 農業生物技術是一系列工具,其中植物是理想的載體來表達藥物重組蛋白和食品。這項研究利用內源性αAmy3啟動子和信號肽來探討水稻懸浮培養細胞中生產生物活性製藥蛋白的效力。該αAmy3啟動子在無糖條件下受到強烈誘導,本研究用於生產人類骨形成蛋白2(mature hBMP2 , hBMP2m)。使用修改過的CRISPR/Cas9敲入(knock-in)系統,在重組基因的5’剪接位點,使得基因能夠插入到水稻αAmy3的內含子1中。在這項研究中,成功將重組的GFP基因或水稻hBMP2m序插入αAmy3的內含子1中,水稻轉職效率達12.5%及13.5%。在無糖培養基中處理的轉殖水稻懸浮細胞中,由於水稻αAmy3啟動子對缺糖反應的高活性和敏感性,重組基因的mRNA和重組蛋白的表達比利用農桿菌隨機嵌入染色體表達更高。原生αAmy3信號肽不僅將重組GFP蛋白雙重定位到澱粉體中,還引導GFP重組蛋白分泌到CRISPR介導的敲入水稻細胞系的培養基中。值得注意的是,rhBMP2m重組蛋白在每毫升細胞中產生了21.5μg,佔總可溶蛋白的1.03%,表示在αAmy3的rhBMP2m基因插入在兩代中保持一致。再者,來自水稻細胞的rhBMP2m蛋白表現出糖基化、二聚體形成能力和生物活性。我們的結果證明了以內源性水稻αAmy3啟動子-信號肽為基礎的表達系統對於生產重組蛋白質是有效的。這種修改後的CRISPR/Cas9基因敲入系統可以很容易地應用於水稻懸浮細胞培養中生產製藥蛋白質。
摘要(英) Agricultural biotechnology is a range of tools and plants are attractive platforms to express pharmaceutical recombinant proteins and food production. This study explores the efficacy of utilizing an endogenous αAmy3 promoter, which is induced strongly un-der sugar-free conditions, and signal peptide for the production of a bioactive pharma-ceutical protein, specifically the mature form of human bone morphogenetic protein 2 (hBMP2m) in rice suspension culture cells. The modified CRISPR/Cas9 knock-in sys-tem, which incorporates an artificial 3’ splicing site at the 5′ end of the recombinant gene, enables gene insertion into intron 1 of rice αAmy3. In this study, knock-in transgenic rice cell lines harboring the recombinant GFP gene or the rice-codon optimized mature form of hBMP2 cDNA (rhBMP2m) inserted in intron 1 of αAmy3 were generated with trans-formation efficiencies of 12.5% or 13.5%, respectively. Expression levels of recombi-nant genes were strongly upregulated by the high activity and sensitivity of the rice αAmy3 promoter in the transgenic rice suspension cells cultivated in a sugar-free liquid medium. Native αAmy3 signal peptide not only directed dual localization of recombi-nant GFP protein in amyloplasts but also guided the secretion of the GFP recombinant proteins into the culture medium in the CRISPR-mediated knock-in rice cell lines. Re-markably, the rhBMP2m recombinant protein yielded 21.5 μg/mL of cells, accounting for 1.03% of the total soluble protein, and showed consistent expression across two gen-erations of rhBMP2m gene knock-in at αAmy3 intron I. Furthermore, the rhBMP2m pro-teins derived from rice cells exhibited glycosylation, dimer formation and bioactivity. Our results demonstrate the effectiveness of the endogenous rice αAmy3 promoter–signal peptide-based expression system for producing recombinant proteins. This modified CRISPR/Cas9 knock-in system can be readily applied to the production of pharmaceuti-cal proteins in rice suspension cell cultures.
關鍵字(中) ★ CRISPR/Cas 9 敲入
★ 水稻悬浮细胞
★ 人 BMP2 重组蛋白
★ αAmy3 启动子
★ 糖
關鍵字(英) ★ CRISPR/Cas 9 knock-in
★ rice suspension cells
★ sugar
★ αAmy3 promoter
★ human BMP2 recombinant protein
論文目次 Table of Contents
摘要 V
Abstracts VI
Acknowledgments VII
Introduction 1
Materials and Methods 10
Chapter 1: 19
1-1: Results 20
1-2: Discussion 28
Chapter 2: 32
2-1: Results 33
2-2: Discussion 44
References 50
Supplementary data 84
參考文獻 Ahmad, P., Ashraf, M., Younis, M., Hu, X., Kumar, A., Akram, N. A., & Al-Qurainy, F. (2012). Role of transgenic plants in agriculture and biopharming. Biotechnology advances, 30(3), 524-540.
Bessho, K., Konishi, Y., Kaihara, S., Fujimura, K., Okubo, Y., & Iizuka, T. (2000). Bone induction by Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. British Journal of Oral and Maxillofacial Surgery, 38(6), 645-649.
Butaye, K. M., Cammue, B. P., Delauré, S. L., & De Bolle, M. F. (2005). Approaches to minimize variation of transgene expression in plants. Molecular Breeding, 16, 79-91.
Buyel, J. F. (2019). Plant molecular farming–integration and exploitation of side streams to achieve sustainable biomanufacturing. Frontiers in Plant Science, 9, 1893.
Canalis, E., Economides, A. N., & Gazzerro, E. (2003). Bone morphogenetic proteins, their antagonists, and the skeleton. Endocrine reviews, 24(2), 218-235.
Carreira, A. C., Alves, G. G., Zambuzzi, W. F., Sogayar, M. C., & Granjeiro, J. M. (2014). Bone morphogenetic proteins: structure, biological function and therapeutic applications. Archives of biochemistry and biophysics, 561, 64-73.
Ceresoli, V., Mainieri, D., Del Fabbro, M., Weinstein, R., & Pedrazzini, E. (2016). A fusion between domains of the human bone morphogenetic protein-2 and maize 27 kD γ-zein accumulates to high levels in the endoplasmic reticulum without forming protein bodies in transgenic tobacco. Frontiers in Plant Science, 7, 358.
Chen, M.-H., Huang, L.-F., Li, H.-m., Chen, Y.-R., & Yu, S.-M. (2004). Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant physiology, 135(3), 1367-1377.
Chi, Y.-H., & Huang, L.-F. (2022). Current Strategies to Improve Yield of Recombinant Protein Production in Rice Suspension Cells. Processes, 10(6), 1120.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.
Daniell, H., Singh, N. D., Mason, H., & Streatfield, S. J. (2009). Plant-made vaccine antigens and biopharmaceuticals. Trends in plant science, 14(12), 669-679.
Daniell, H., Streatfield, S. J., & Rybicki, E. P. (2015). Advances in molecular farming: key technologies, scaled up production and lead targets. Plant biotechnology journal, 13(8), 1011.
Day, C. D., Lee, E., Kobayashi, J., Holappa, L. D., Albert, H., & Ow, D. W. (2000). Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes & development, 14(22), 2869-2880.
Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology advances, 27(3), 297-306.
Dong, O. X., & Ronald, P. C. (2021). Targeted DNA insertion in plants. Proceedings of the National Academy of Sciences, 118(22), e2004834117.
Dong, O. X., Yu, S., Jain, R., Zhang, N., Duong, P. Q., Butler, C., Li, Y., Lipzen, A., Martin, J. A., & Barry, K. W. (2020). Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature communications, 11(1), 1178.
Fauser, F., Schiml, S., & Puchta, H. (2014). Both CRISPR/C as‐based nucleases and nickases can be used efficiently for genome engineering in A rabidopsis thaliana. The Plant Journal, 79(2), 348-359.
Fischer, R., Schillberg, S., Hellwig, S., Twyman, R. M., & Drossard, J. (2012). GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnology advances, 30(2), 434-439.
Gamer, L. W., Pregizer, S., Gamer, J., Feigenson, M., Ionescu, A., Li, Q., Han, L., & Rosen, V. (2018). The role of Bmp2 in the maturation and maintenance of the murine knee joint. Journal of Bone and Mineral Research, 33(9), 1708-1717.
Ghag, S. B., Adki, V. S., Ganapathi, T. R., & Bapat, V. A. (2021). Plant platforms for efficient heterologous protein production. Biotechnology and Bioprocess Engineering, 26(4), 546-567.
Halloran, D., Durbano, H. W., & Nohe, A. (2020). Bone morphogenetic protein-2 in development and bone homeostasis. Journal of developmental biology, 8(3), 19.
Hang, Q., Zhou, Y., Hou, S., Zhang, D., Yang, X., Chen, J., Ben, Z., Cheng, C., & Shen, A. (2014). Asparagine-linked glycosylation of bone morphogenetic protein-2 is required for secretion and osteoblast differentiation. Glycobiology, 24(3), 292-304.
Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., Zhao, K., Rahman, M., & Islam, T. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Frontiers in Plant Science, 9, 617.
Hellwig, S., Drossard, J., Twyman, R. M., & Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. Nature biotechnology, 22(11), 1415-1422.
Heng, S., Paule, S., Hardman, B., Li, Y., Singh, H., Rainczuk, A., Stephens, A. N., & Nie, G. (2010). Posttranslational activation of bone morphogenetic protein 2 is mediated by proprotein convertase 6 during decidualization for pregnancy establishment. Endocrinology, 151(8), 3909-3917.
Hobbs, S. L., Kpodar, P., & DeLong, C. M. (1990). The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant molecular biology, 15, 851-864.
Hong, S.-Y., Kwon, T.-H., Jang, Y.-S., Kim, S.-H., & Yang, M.-S. (2006). Production of bioactive human granulocyte-colony stimulating factor in transgenic rice cell suspension cultures. Protein Expression and Purification, 47(1), 68-73.
Hood, E. E., & Requesens, D. V. V. (2012). Recombinant protein production in plants: challenges and solutions. Recombinant Gene Expression, 469-481.
Huang, J., Wu, L., Yalda, D., Adkins, Y., Kelleher, S. L., Crane, M., Lonnerdal, B., Rodriguez, R. L., & Huang, N. (2002). Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic research, 11, 229-239.
Huang, L.-F., Liu, Y.-K., Lu, C.-A., Hsieh, S.-L., & Yu, S.-M. (2005). Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic research, 14, 569-581.
Huang, L.-F., Sinaga, D. S., Tan, C.-C., Hsieh, S.-J. M., & Huang, C.-H. (2021). Expression of Recombinant Human Octamer-Binding Transcription Factor 4 in Rice Suspension Cells. International journal of molecular sciences, 22(3), 1409.
Huang, L.-F., Tan, C.-C., Yeh, J.-F., Liu, H.-Y., Liu, Y.-K., Ho, S.-L., & Lu, C.-A. (2015). Efficient secretion of recombinant proteins from rice suspension-cultured cells modulated by the choice of signal peptide. PLoS One, 10(10), e0140812.
Huang, L. F., Liu, Y. K., Su, S. C., Lai, C. C., Wu, C. R., Chao, T. J., & Yang, Y. H. (2020). Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production. Biotechnology and Bioengineering, 117(4), 933-944.
Huang, T.-K., & Puchta, H. (2019). CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant cell reports, 38, 443-453.
Hwang, Y.-S., Karrer, E., Thomas, B., Chen, L., & Rodriguez, R. (1998). Three cis-elements required for rice α-amylase Amy3D expression during sugar starvation. Plant molecular biology, 36, 331-341.
Israel, D. I., Nove, J., Kerns, K. M., Moutsatsos, I. K., & Kaufman, R. J. (1992). Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth factors, 7(2), 139-150.
Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal, 6(13), 3901-3907.
Kooter, J. M., Matzke, M. A., & Meyer, P. (1999). Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends in plant science, 4(9), 340-347.
Kübler, N., Reuther, J., Faller, G., Kirchner, T., Ruppert, R., & Sebald, W. (1998). Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. International journal of oral and maxillofacial surgery, 27(4), 305-309.
Kulshreshtha, A., Sharma, S., Padilla, C. S., & Mandadi, K. K. (2022). Plant-based expression platforms to produce high-value metabolites and proteins. Frontiers in Plant Science, 13, 1043478.
Kuo, Y.-C., Tan, C.-C., Ku, J.-T., Hsu, W.-C., Su, S.-C., Lu, C.-A., & Huang, L.-F. (2013). Improving pharmaceutical protein production in Oryza sativa. International journal of molecular sciences, 14(5), 8719-8739.
Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., Li, J., & Gao, C. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature plants, 2(10), 1-6.
Li, J., Zhang, B.-b., Ren, Y.-g., Gu, S.-y., Xiang, Y.-h., Huang, C., & Du, J.-l. (2015). Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Research, 25(5), 634-637.
Li, J., Zhang, X., Sun, Y., Zhang, J., Du, W., Guo, X., Li, S., Zhao, Y., & Xia, L. (2018). Efficient allelic replacement in rice by gene editing: a case study of the NRT1. 1B gene. Journal of integrative plant biology, 60(7), 536-540.
Liu, Y.-K., Li, Y.-T., Lu, C.-F., & Huang, L.-F. (2015). Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy. New biotechnology, 32(3), 328-334.
Liu, Y.-K., Lu, C.-W., Chang, J.-Y., Lu, C.-F., Tan, C.-C., & Huang, L.-F. (2018). Optimization of the culture medium for recombinant protein production under the control of the αAmy3 promoter in a rice suspension-cultured cell expression system. Plant Cell, Tissue and Organ Culture (PCTOC), 132, 383-391.
Liu, Y. K., Huang, L. F., Ho, S. L., Liao, C. Y., Liu, H. Y., Lai, Y. H., Yu, S. M., & Lu, C. A. (2012). Production of mouse granulocyte‐macrophage colony‐stimulating factor by gateway technology and transgenic rice cell culture. Biotechnology and Bioengineering, 109(5), 1239-1247.
Lu, C.-A., Ho, T.-h. D., Ho, S.-L., & Yu, S.-M. (2002). Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of α-amylase gene expression. The Plant Cell, 14(8), 1963-1980.
Lu, C.-A., Lim, E.-K., & Yu, S.-M. (1998). Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. Journal of Biological Chemistry, 273(17), 10120-10131.
Ma, J. K., Drake, P. M., & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature reviews genetics, 4(10), 794-805.
Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., & Lin, Y. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular plant, 8(8), 1274-1284.
Matzke, A. J., & Matzke, M. A. (1998). Position effects and epigenetic silencing of plant transgenes. Current opinion in plant biology, 1(2), 142-148.
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., & Qu, L.-J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233-1236.
Mizukami, Y., & Ma, H. (1997). Determination of Arabidopsis floral meristem identity by AGAMOUS. The Plant Cell, 9(3), 393-408.
Nam, H.-J., Kwon, J.-Y., Choi, H.-Y., Kang, S.-H., Jung, H.-S., & Kim, D.-I. (2017). Production and purification of recombinant glucocerebrosidase in transgenic rice cell suspension cultures. Applied biochemistry and biotechnology, 181, 1401-1415.
Nguyen, T. M., Lu, C.-A., & Huang, L.-F. (2022). Applications of CRISPR/Cas9 in a rice protein expression system via an intron-targeted insertion approach. Plant Science, 315, 111132.
Park, M. K., Lee, S. H., Yang, K. S., Jung, S.-C., Lee, J. H., & Kim, S. C. (2014). Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences. Applied microbiology and biotechnology, 98, 6701-6713.
Peach, C., & Velten, J. (1991). Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant molecular biology, 17, 49-60.
Queiroz, L. N., Maldaner, F. R., Mendes, É. A., Sousa, A. R., D’Allastta, R. C., Mendonça, G., Mendonça, D. B., & Aragão, F. J. (2019). Evaluation of lettuce chloroplast and soybean cotyledon as platforms for production of functional bone morphogenetic protein 2. Transgenic research, 28, 213-224.
Rahimifard Hamedani, P., Solouki, M., Ehsani, P., Emamjomeh, A., & Ofoghi, H. (2021). Expression of BMP2-Hydrophobin fusion protein in the tobacco plant and molecular dynamic evaluation of its simulated model. Plant Biotechnology Reports, 15, 309-316.
Ruppert, R., Hoffmann, E., & Sebald, W. (1996). Human bone morphogenetic protein 2 contains a heparin‐binding site which modifies its biological activity. European Journal of Biochemistry, 237(1), 295-302.
Sabalza, M., Christou, P., & Capell, T. (2014). Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnology letters, 36, 2367-2379.
Scheufler, C., Sebald, W., & Hülsmeyer, M. (1999). Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution. Journal of molecular biology, 287(1), 103-115.
Shanmugaraj, B., I. Bulaon, C. J., & Phoolcharoen, W. (2020). Plant molecular farming: A viable platform for recombinant biopharmaceutical production. Plants, 9(7), 842.
Sharp, J. M., & Doran, P. M. (2001). Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnology progress, 17(6), 979-992.
Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant biotechnology journal, 15(2), 207-216.
Sieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365.
Sinaga, D. S., Ho, S.-L., Lu, C.-A., Yu, S.-M., & Huang, L.-F. (2021). Knockdown expression of a MYB-related transcription factor gene, OsMYBS2, enhances production of recombinant proteins in rice suspension cells. Plant Methods, 17, 1-10.
Singh, A. A., Pillay, P., & Tsekoa, T. L. (2021). Engineering approaches in plant molecular farming for global health. Vaccines, 9(11), 1270.
Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., & Xia, L. (2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular plant, 9(4), 628-631.
Suo, G., Chen, B., Zhang, J., Gao, Y., Wang, X., He, Z., & Dai, J. (2006). Expression of active hBMP2 in transgenic tobacco plants. Plant cell reports, 25, 1316-1324.
Taylor, C. B. (1997). Promoter fusion analysis: an insufficient measure of gene expression. The Plant Cell, 9(3), 273.
Tsuji, K., Bandyopadhyay, A., Harfe, B. D., Cox, K., Kakar, S., Gerstenfeld, L., Einhorn, T., Tabin, C. J., & Rosen, V. (2006). BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature genetics, 38(12), 1424-1429.
Urist, M. R., Chang, J., Lietze, A., Huo, Y., Brownell, A., & DeLange, R. (1987). [28] Preparation and bioassay of bone morphogenetic protein and polypeptide Fragments. In Methods in enzymology (Vol. 146, pp. 294-312). Elsevier.
Vallejo, L. F., Brokelmann, M., Marten, S., Trappe, S., Cabrera-Crespo, J., Hoffmann, A., Gross, G., Weich, H. A., & Rinas, U. (2002). Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. Journal of biotechnology, 94(2), 185-194.
Van Giap, D., Jung, J.-W., & Kim, N.-S. (2019). Production of functional recombinant cyclic citrullinated peptide monoclonal antibody in transgenic rice cell suspension culture. Transgenic research, 28, 177-188.
Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., Hewick, R. M., & Wang, E. A. (1988). Novel regulators of bone formation: molecular clones and activities. Science, 242(4885), 1528-1534.
Xu, Y., Wang, F., Chen, Z., Wang, J., Li, W.-Q., Fan, F., Tao, Y., Zhao, L., Zhong, W., & Zhu, Q.-H. (2020). Intron-targeted gene insertion in rice using CRISPR/Cas9: A case study of the Pi-ta gene. The Crop Journal, 8(3), 424-431.
Zhang, K., Kurachi, S., & Kurachi, K. (2003). Limitation in use of heterologous reporter genes for gene promoter analysis: silencer activity associated with the chloramphenicol acetyltransferase reporter gene. Journal of Biological Chemistry, 278(7), 4826-4830.
Zhao, M., Harris, S. E., Horn, D., Geng, Z., Nishimura, R., Mundy, G. R., & Chen, D. (2002). Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. The Journal of cell biology, 157(6), 1049-1060.
指導教授 陸重安(Chung-An Lu) 審核日期 2024-3-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明