參考文獻 |
1. Mirzoyan, Z., et al., Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet, 2019. 10: p. 51.
2. Ugur, B., K. Chen, and H.J. Bellen, Drosophila tools and assays for the study of human diseases. Dis Model Mech, 2016. 9(3): p. 235-44.
3. Chien, S., et al., Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res, 2002. 30(1): p. 149-51.
4. Yamamoto, S., et al., A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 2014. 159(1): p. 200-214.
5. Colonnetta, M.M., et al., CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics, 2021. 219(2).
6. Foe, V.E. and B.M. Alberts, Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci, 1983. 61: p. 31-70.
7. Lecuyer, E., et al., Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell, 2007. 131(1): p. 174-87.
8. Tadros, W., et al., SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell, 2007. 12(1): p. 143-55.
9. ten Bosch, J.R., J.A. Benavides, and T.W. Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development, 2006. 133(10): p. 1967-77.
10. Aviv, T., et al., The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol, 2003. 10(8): p. 614-21.
11. Semotok, J.L., et al., Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol, 2005. 15(4): p. 284-94.
12. Bushati, N., et al., Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol, 2008. 18(7): p. 501-6.
13. Liang, H.L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-3.
14. Bashirullah, A., et al., Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J, 1999. 18(9): p. 2610-20.
15. Hamm, D.C. and M.M. Harrison, Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol, 2018. 8(12): p. 180183.
16. Darbo, E., et al., Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis. BMC Genomics, 2013. 14: p. 226.
17. De Renzis, S., et al., Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol, 2007. 5(5): p. e117.
18. Schweisguth, F., J.A. Lepesant, and A. Vincent, The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo. Genes Dev, 1990. 4(6): p. 922-31.
19. Rose, L.S. and E. Wieschaus, The Drosophila cellularization gene nullo produces a blastoderm-specific transcript whose levels respond to the nucleocytoplasmic ratio. Genes Dev, 1992. 6(7): p. 1255-68.
20. Lecuit, T., R. Samanta, and E. Wieschaus, slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell, 2002. 2(4): p. 425-36.
21. Nien, C.Y., et al., Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet, 2011. 7(10): p. e1002339.
22. Lee, M.T., et al., Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013. 503(7476): p. 360-4.
23. Pilot, F., et al., Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development, 2006. 133(4): p. 711-23.
24. Lott, S.E., et al., Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol, 2011. 9(2): p. e1000590.
25. Gardini, A., Global Run-On Sequencing (GRO-Seq). Methods Mol Biol, 2017. 1468: p. 111-20.
26. Smale, S.T., Nuclear run-on assay. Cold Spring Harb Protoc, 2009. 2009(11): p. pdb prot5329.
27. Saunders, A., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev, 2013. 27(10): p. 1146-58.
28. Ibarra-Morales, D., et al., Histone variant H2A.Z regulates zygotic genome activation. Nat Commun, 2021. 12(1): p. 7002.
29. Chen, K., et al., A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife, 2013. 2: p. e00861.
30. Kwasnieski, J.C., T.L. Orr-Weaver, and D.P. Bartel, Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res, 2019. 29(7): p. 1188-1197.
31. Stathopoulos, A. and M. Levine, Genomic regulatory networks and animal development. Dev Cell, 2005. 9(4): p. 449-62.
32. Harrison, M.M., et al., Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet, 2011. 7(10): p. e1002266.
33. Foo, S.M., et al., Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr Biol, 2014. 24(12): p. 1341-1346.
34. Schloop, A.E., P.U. Bandodkar, and G.T. Reeves, Formation, interpretation, and regulation of the Drosophila Dorsal/NF-kappaB gradient. Curr Top Dev Biol, 2020. 137: p. 143-191.
35. Liberman, L.M., G.T. Reeves, and A. Stathopoulos, Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22317-22.
36. Sun, Y., et al., Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res, 2015. 25(11): p. 1703-14.
37. Driever, W. and C. Nusslein-Volhard, A gradient of bicoid protein in Drosophila embryos. Cell, 1988. 54(1): p. 83-93.
38. Chen, H., et al., A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes. Cell, 2012. 149(3): p. 618-29.
39. Xu, Z., et al., Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev, 2014. 28(6): p. 608-21.
40. Zaret, K.S. and J.S. Carroll, Pioneer transcription factors: establishing competence for gene expression. Genes Dev, 2011. 25(21): p. 2227-41.
41. Wang, H., et al., Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development. Genetics, 2013. 195(4): p. 1291-306.
42. Larson, E.D., et al., Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun, 2021. 12(1): p. 7153.
43. Reichardt, I., et al., The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep, 2018. 19(1): p. 102-117.
44. Wang, S. and C. Samakovlis, Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol, 2012. 98: p. 35-63.
45. Simpson, P., Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics, 1983. 105(3): p. 615-32.
46. Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol, 1972. 27(2): p. 353-65.
47. Larkin, A., et al., FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res, 2021. 49(D1): p. D899-D907.
48. Gibson, T.J. and M.M. Harrison, Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. bioRxiv, 2023.
49. Zaret, K.S., Pioneer Transcription Factors Initiating Gene Network Changes. Annu Rev Genet, 2020. 54: p. 367-385.
50. Iwafuchi-Doi, M. and K.S. Zaret, Pioneer transcription factors in cell reprogramming. Genes Dev, 2014. 28(24): p. 2679-92.
51. Paraiso, K.D., et al., Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. Cell Rep, 2019. 27(10): p. 2962-2977 e5.
52. Schulz, K.N. and M.M. Harrison, Mechanisms regulating zygotic genome activation. Nat Rev Genet, 2019. 20(4): p. 221-234.
53. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p. 379-91.
54. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003. 17(1): p. 126-40.
55. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
56. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
57. Soufi, A., Mechanisms for enhancing cellular reprogramming. Curr Opin Genet Dev, 2014. 25: p. 101-9.
58. Mansisidor, A.R. and V.I. Risca, Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus, 2022. 13(1): p. 236-276.
59. Dingwall, C., G.P. Lomonossoff, and R.A. Laskey, High sequence specificity of micrococcal nuclease. Nucleic Acids Res, 1981. 9(12): p. 2659-73.
60. Buenrostro, J.D., et al., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 2013. 10(12): p. 1213-8.
61. Ciccarone, V.C., D.A. Polayes, and V.A. Luckow, Generation of Recombinant Baculovirus DNA in E.coli Using a Baculovirus Shuttle Vector. Methods Mol Med, 1998. 13: p. 213-35.
62. van Oers, M.M. and J.M. Vlak, Baculovirus genomics. Curr Drug Targets, 2007. 8(10): p. 1051-68.
63. Ayres, M.D., et al., The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994. 202(2): p. 586-605.
64. van Oers, M.M., Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv Virus Res, 2006. 68: p. 193-253.
65. Smith, G.E., M.D. Summers, and M.J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65.
66. Weyer, U. and R.D. Possee, A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells. J Gen Virol, 1991. 72 ( Pt 12): p. 2967-74.
67. Vlak, J.M., et al., Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta-galactosidase fusion gene. J Gen Virol, 1988. 69 ( Pt 4): p. 765-76.
68. Vaughn, J.L., et al., The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro, 1977. 13(4): p. 213-7.
69. Cheng, X.H., et al., Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants. J Gen Virol, 2013. 94(Pt 1): p. 166-176.
70. Lee, D.F., et al., A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol, 2000. 74(24): p. 11873-80.
71. Kang, C.-C., Construction and ectopic expression of Drosophila Zelda using baculovirus system for functional analysis. 2023, NCU.
72. Yu, Z., Testing S2 cells ectopically expressing Zelda as a platform for mapping Zelda dependent-enhancers by STARR-seq. 2022, NCU.
73. Lettice, L.A., et al., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet, 2003. 12(14): p. 1725-35.
74. Andersson, R. and A. Sandelin, Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet, 2020. 21(2): p. 71-87.
75. Arnold, C.D., et al., Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 2013. 339(6123): p. 1074-7.
76. Zabidi, M.A., et al., Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature, 2015. 518(7540): p. 556-9.
77. Scholz, J. and S. Suppmann, A new single-step protocol for rapid baculovirus-driven protein production in insect cells. BMC Biotechnol, 2017. 17(1): p. 83.
78. van Loo, N.D., et al., Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol, 2001. 75(2): p. 961-70.
79. Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula. World J Virol, 2016. 5(2): p. 85-6.
80. Kim, D., Paggi, J.M., Park, C. et al, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915, 2019: p. https://doi.org/10.1038s41587-019-0201-4.
81. Anders S, R.A., Huber W, Detecting differential usage of exons from RNA-seq data. Genome Research, 22, 4025, 2012: p. Reyes A, Anders S, Weatheritt R, Gibson T, Steinmetz L, Huber W (2013). “Drift and conservation of differential exon usage across tissues in primate species.” PNAS, 110, -5. doi:10.1073/pnas.1307202110.
82. Sonia Tarazona, P.F.-T., Maria Jose Nueda, Alberto Ferrer and Ana Conesa, “Differential expression in RNA-seq: a matter of depth.”. Genome Research, 21(12), 4436., 2011: p. Tarazona S, Furio-Tari P, Turra D, Pietro AD, Nueda MJ, Ferrer A, Conesa A (2015). “Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package.” Nucleic Acids Research, 43(21), e140.
83. Robinson, M.D. and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010. 11(3): p. R25.
84. Ramirez, F., et al., deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res, 2016. 44(W1): p. W160-5.
85. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
86. Zhang, Y., et al., Model-based analysis of ChIP-Seq (MACS). Genome Biol, 2008. 9(9): p. R137.
87. Wu, T.Y., et al., A bi-cistronic baculovirus expression vector for improved recombinant protein production. Bioeng Bugs, 2012. 3(2): p. 129-32.
88. Barry, G.F., A broad-host-range shuttle system for gene insertion into the chromosomes of gram-negative bacteria. Gene, 1988. 71(1): p. 75-84.
89. Expression system. p. https://expressionsystems.com/product/insect-cells/.
90. Bullard, J.H., et al., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 2010. 11: p. 94.
91. Abbas-Aghababazadeh, F., Q. Li, and B.L. Fridley, Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing. PLoS One, 2018. 13(10): p. e0206312.
92. Oshlack, A. and M.J. Wakefield, Transcript length bias in RNA-seq data confounds systems biology. Biol Direct, 2009. 4: p. 14.
93. Neumayr, C., et al., STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. Curr Protoc Mol Biol, 2019. 128(1): p. e105.
94. Tu, Q., et al., Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep, 2016. 6: p. 24648.
95. Ning Wu, K.M., Bizuayehu Kebede, George Acquaah, Sonya Williams, Enhancing DNA electrotransformation efficiency in Escherichia coli DH10B electrocompetent cells, in Electronic Journal of Biotechnology, Vol 13, No 5 (2010). 2010. |