參考文獻 |
Andrews, M., Huizinga, D. H., & Crowell, D. N. (2010). The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC plant biology, 10, 1-11.
Barghetti, A., Sjögren, L., Floris, M., Paredes, E. B., Wenkel, S., & Brodersen, P. (2017). Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes & development, 31(22), 2282-2295.
Barja, M. V., Ezquerro, M., Beretta, S., Diretto, G., Florez‐Sarasa, I., Feixes, E., Fiore, A., Karlova, R., Fernie, A. R., & Beekwilder, J. (2021). Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. New Phytologist, 231(1), 255-272.
Bellenger, L., Ducos, E., Dutilleul, C., & Pichon, O. (2023). The Arabidopsis protein farnesylation era1 mutant displays an altered hormonal-dependent nitrate regulation of root architecture. Plant Growth Regulation, 99(2), 283-298.
Berndt, N., & Sebti, S. M. (2011). Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nature protocols, 6(11), 1775-1791.
Bonetta, D., Bayliss, P., Sun, S., Sage, T., & McCourt, P. (2000). Farnesylation is involved in meristem organization in Arabidopsis. Planta, 211, 182-190.
Caldelari, D., Sternberg, H., Rodrıguez-Concepción, M., Gruissem, W., & Yalovsky, S. (2001). Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. Plant physiology, 126(4), 1416-1429.
Charron, G., Tsou, L. K., Maguire, W., Yount, J. S., & Hang, H. C. (2011). Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Molecular BioSystems, 7(1), 67-73.
Creasy, D. M., & Cottrell, J. S. (2004). Unimod: Protein modifications for mass spectrometry. Proteomics, 4(6), 1534-1536.
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., & McCourt, P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science, 273(5279), 1239-1241.
Dods, R., & Dods, R. (2019). Posttranslational Modifications (PTMs): Alteration of the Three-Dimensional Structure of Proteins. Concepts in Bioscience Engineering, 151-179.
Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., Veligodsky, A., Kalinin, A., Evstifeev, V., & Ciobanu, D. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128(9), 2822-2835.
Dykema, P. E., Sipes, P. R., Marie, A., Biermann, B. J., Crowell, D. N., & Randall, S. K. (1999). A new class of proteins capable of binding transition metals. Plant molecular biology, 41, 139-150.
Fang, C., Zhang, X., Zhang, L., Gao, X., Yang, P., & Lu, H. (2016). Identification of palmitoylated transitional endoplasmic reticulum ATPase by proteomic technique and pan antipalmitoylation antibody. Journal of Proteome Research, 15(3), 956-962.
Fields, T. A., & Casey, P. J. (1997). Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochemical Journal, 321(3), 561-571.
Fres, J. M., Müller, S., & Praefcke, G. J. (2010). Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase [S]. Journal of lipid research, 51(8), 2454-2459.
Friso, G., & van Wijk, K. J. (2015). Posttranslational Protein Modifications in Plant Metabolism. Plant Physiol, 169(3), 1469-1487. doi:10.1104/pp.15.01378
Fu, C., Zhang, J., Liu, X., Yang, W., Yu, H., & Liu, J. (2015). AtFes1A is essential for highly efficient molecular chaperone function in Arabidopsis. Journal Of Plant Biology, 58, 366-373.
Galichet, A., & Gruissem, W. (2006). Developmentally controlled farnesylation modulates AtNAP1; 1 function in cell proliferation and cell expansion during Arabidopsis leaf development. Plant physiology, 142(4), 1412-1426.
Galichet, A., Hoyerová, K., Kamínek, M., & Gruissem, W. (2008). Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis. Plant physiology, 146(3), 1155-1164.
George, J., Soares, C., Montersino, A., Beique, J.-C., & Thomas, G. M. (2015). Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity. Elife, 4, e06327.
González-García, M. P., Rodríguez, D., Nicolás, C., Rodríguez, P. L., Nicolás, G., & Lorenzo, O. (2003). Negative Regulation of Abscisic Acid Signaling by the Fagus sylvatica FsPP2C1 Plays A Role in Seed Dormancy Regulation and Promotion of Seed Germination. Plant Physiology, 133(1), 135-144. Retrieved from https://doi.org/10.1104/pp.103.025569. doi:10.1104/pp.103.025569
Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P., & Li, X. (2008). A novel role for protein farnesylation in plant innate immunity. Plant physiology, 148(1), 348-357.
Grefen, C., & Blatt, M. R. (2012). A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques, 53(5), 311-314.
Hála, M., & Žárský, V. (2019). Protein prenylation in plant stress responses. Molecules, 24(21), 3906.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. Retrieved from https://www.mdpi.com/1422-0067/14/5/9643.
Hong, X., Li, N., Lv, J., Zhang, Y., Li, J., Zhang, J., & Chen, H.-F. (2023). PTMint database of experimentally verified PTM regulation on protein–protein interaction. Bioinformatics, 39(1), btac823.
Houde, V. P., Ritorto, M. S., Gourlay, R., Varghese, J., Davies, P., Shpiro, N., Sakamoto, K., & Alessi, D. R. (2014). Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochemical Journal, 458(1), 41-56.
Jiang, H., Zhang, X., Chen, X., Aramsangtienchai, P., Tong, Z., & Lin, H. (2018). Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chemical reviews, 118(3), 919-988.
Johnson, C. D., Chary, S. N., Chernoff, E. A., Zeng, Q., Running, M. P., & Crowell, D. N. (2005). Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant physiology, 139(2), 722-733.
Lane, K. T., & Beese, L. S. (2006). Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of lipid research, 47(4), 681.
Lee, S., Lee, D. W., Lee, Y., Mayer, U., Stierhof, Y.-D., Lee, S., Jurgens, G., & Hwang, I. (2009). Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. The Plant Cell, 21(12), 3984-4001.
Liu, X.-h., & Prestwich, G. D. (2002). Didehydrogeranylgeranyl (ΔΔGG): a fluorescent probe for protein prenylation. Journal of the American Chemical Society, 124(1), 20-21.
Maurer-Stroh, S., Eisenhaber, B., & Eisenhaber, F. (2002). N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. Journal of molecular biology, 317(4), 541-557.
Moores, S. L., Schaber, M., Mosser, S., Rands, E., O′hara, M., Garsky, V., Marshall, M., Pompliano, D., & Gibbs, J. (1991). Sequence dependence of protein isoprenylation. Journal of Biological Chemistry, 266(22), 14603-14610.
Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Reid, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2(8), 16114. Retrieved from https://doi.org/10.1038/nplants.2016.114. doi:10.1038/nplants.2016.114
Park, C. J., & Seo, Y. S. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathol J, 31(4), 323-333. doi:10.5423/ppj.Rw.08.2015.0150
Parker, C. G., & Pratt, M. R. (2020). Click chemistry in proteomic investigations. Cell, 180(4), 605-632.
Pei, Z.-M., Ghassemian, M., Kwak, C. M., McCourt, P., & Schroeder, J. I. (1998). Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science, 282(5387), 287-290.
Qi, H., Xia, F.-N., & Xiao, S. (2021). Autophagy in plants: Physiological roles and post-translational regulation. Journal of Integrative Plant Biology, 63(1), 161-179. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/jipb.12941. doi:https://doi.org/10.1111/jipb.12941
Ruiz-Sola, M. Á., Barja, M. V., Manzano, D., Llorente, B., Schipper, B., Beekwilder, J., & Rodriguez-Concepcion, M. (2016). A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant physiology, 172(3), 1393-1402.
Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., & Ren, J. (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Molecular & Cellular Proteomics, 11(10), 1070-1083.
Suazo, K. F., Park, K.-Y., & Distefano, M. D. (2021). A not-so-ancient grease history: click chemistry and protein lipid modifications. Chemical reviews, 121(12), 7178-7248.
Terry, K. L., Casey, P. J., & Beese, L. S. (2006). Conversion of protein farnesyltransferase to a geranylgeranyltransferase. Biochemistry, 45(32), 9746-9755.
Troutman, J. M., Roberts, M. J., Andres, D. A., & Spielmann, H. P. (2005). Tools to analyze protein farnesylation in cells. Bioconjugate chemistry, 16(5), 1209-1217.
Venne, A. S., Kollipara, L., & Zahedi, R. P. (2014). The next level of complexity: crosstalk of posttranslational modifications. Proteomics, 14(4-5), 513-524.
Vergès, V., Dutilleul, C., Godin, B., Collet, B., Lecureuil, A., Rajjou, L., Guimaraes, C., Pinault, M., Chevalier, S., & Giglioli-Guivarc’h, N. (2021). Protein farnesylation takes part in Arabidopsis seed development. Frontiers in plant science, 12, 620325.
Wang, L. C., Lin, Y. R., Weng, C. P., Yeh, C. H., & Wu, S. J. (2017). The Arabidopsis heat‐intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New Phytologist, 213(3), 1181-1193.
Wang, R., & Chen, Y. Q. (2022). Protein lipidation types: current strategies for enrichment and characterization. International Journal of Molecular Sciences, 23(4), 2365.
Wang, T.-Y., Wu, J.-R., Duong, N. K. T., Lu, C.-A., Yeh, C.-H., & Wu, S.-J. (2021). HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsis. Journal of Plant Physiology, 261, 153430.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Wang, Y.-C., Peterson, S. E., & Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell research, 24(2), 143-160.
Wu, J.-R., Wang, L.-C., Lin, Y.-R., Weng, C.-P., Yeh, C.-H., & Wu, S.-J. (2017). The Arabidopsis heat-intolerant 5 (hit5)/enhanced response to aba 1 (era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress. New phytologist, 213(3), 1181-1193. Retrieved from https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.14212. doi:https://doi.org/10.1111/nph.14212
Wu, J.-R., Wang, T.-Y., Weng, C.-P., Duong, N. K. T., & Wu, S.-J. (2019). AtJ3, a specific HSP40 protein, mediates protein farnesylation-dependent response to heat stress in Arabidopsis. Planta, 250, 1449-1460.
Xu, X., Li, A., Zou, L., Shen, Y., Fan, W., & Wang, M. (2014). Improving the performance of protein kinase identification via high dimensional protein–protein interactions and substrate structure data. Molecular BioSystems, 10(3), 694-702.
Yalovsky, S., Kulukian, A., Rodríguez-Concepción, M., Young, C. A., & Gruissem, W. (2000). Functional requirement of plant farnesyltransferase during development in Arabidopsis. The Plant Cell, 12(8), 1267-1278.
Yi, S.-Y., Sun, A.-Q., Sun, Y., Yang, J.-Y., Zhao, C.-M., & Liu, J. (2006). Differential regulation of Lehsp23. 8 in tomato plants: analysis of a multiple stress-inducible promoter. Plant science, 171(3), 398-407.
Yu, K., Wang, Y., Zheng, Y., Liu, Z., Zhang, Q., Wang, S., Zhao, Q., Zhang, X., Li, X., & Xu, R.-H. (2023). qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Research, 51(D1), D479-D487.
Zhang, F. L., & Casey, P. J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annual review of biochemistry, 65(1), 241-269.
Zhou, F., Wang, C.-Y., Gutensohn, M., Jiang, L., Zhang, P., Zhang, D., Dudareva, N., & Lu, S. (2017). A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences, 114(26), 6866-6871.
Zhu, L., & Li, N. (2013). Quantitation, networking, and function of protein phosphorylation in plant cell. Frontiers in plant science, 3, 302.
Ziegelhoffer, E. C., Medrano, L. J., & Meyerowitz, E. M. (2000). Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proceedings of the National Academy of Sciences, 97(13), 7633-7638.
|