參考文獻 |
1. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300.
2. Viel, S., et al., TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal, 2016. 9(415): p. ra19.
3. Sun, C., et al., High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology, 2017. 6(1): p. e1264562.
4. Huang, S., S.E. Ullrich, and M. Bar-Eli, Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interferon Cytokine Res, 1999. 19(7): p. 697-703.
5. Hsu, P., et al., IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1. J Immunol, 2015. 195(8): p. 3665-74.
6. Zheng, S.G., et al., TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol, 2006. 176(6): p. 3321-9.
7. D′Andrea, A., et al., Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med, 1993. 178(3): p. 1041-8.
8. Xia, C.Q. and K.J. Kao, Suppression of interleukin-12 production through endogenously secreted interleukin-10 in activated dendritic cells: involvement of activation of extracellular signal-regulated protein kinase. Scand J Immunol, 2003. 58(1): p. 23-32.
9. Pahne-Zeppenfeld, J., et al., Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9-expressing dendritic cells. Int J Cancer, 2014. 134(9): p. 2061-73.
10. Park, S.J., et al., IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol, 2004. 173(6): p. 3844-54.
11. Scoville, S.D., A.G. Freud, and M.A. Caligiuri, Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells. Front Immunol, 2017. 8: p. 360.
12. Abel, A.M., et al., Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol, 2018. 9: p. 1869.
13. Wang, X. and X.Y. Zhao, Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol, 2021. 12: p. 610789.
14. Vance, R.E., et al., Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med, 1998. 188(10): p. 1841-8.
15. Hicklin, D.J., F.M. Marincola, and S. Ferrone, HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today, 1999. 5(4): p. 178-86.
16. Smyth, M.J., et al., Activation of NK cell cytotoxicity. Mol Immunol, 2005. 42(4): p. 501-10.
17. Kaplan, D.H., et al., Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A, 1998. 95(13): p. 7556-61.
18. Shimasaki, N., A. Jain, and D. Campana, NK cells for cancer immunotherapy. Nat Rev Drug Discov, 2020. 19(3): p. 200-218.
19. Chockley, P.J., et al., Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J Clin Invest, 2018. 128(4): p. 1384-1396.
20. Lopez-Soto, A., et al., Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol, 2013. 190(8): p. 4408-19.
21. Takeda, K., et al., IFN-gamma production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol, 2011. 90(4): p. 777-85.
22. Mittal, D., et al., Interleukin-12 from CD103(+) Batf3-dependent dendritic cells required for NK-Cell suppression of metastasis. Cancer Immunol Res, 2017. 5(12): p. 1098-1108.
23. Hildner, K., et al., Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science, 2008. 322(5904): p. 1097-100.
24. Roberts, E.W., et al., Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell, 2016. 30(2): p. 324-336.
25. Ferris, S.T., et al., cDC1 prime and are licensed by CD4(+) T cells to induce anti-tumour immunity. Nature, 2020. 584(7822): p. 624-629.
26. Mikucki, M.E., et al., Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun, 2015. 6: p. 7458.
27. Spranger, S., et al., Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell, 2017. 31(5): p. 711-723 e4.
28. Hochrein, H., et al., Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol, 2001. 166(9): p. 5448-55.
29. Macri, C., et al., Dendritic cell subsets. Semin Cell Dev Biol, 2018. 84: p. 11-21.
30. Leal Rojas, I.M., et al., Human Blood CD1c(+) Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4(+) T Cells. Front Immunol, 2017. 8: p. 971.
31. Andreu-Sanz, D. and S. Kobold, Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel), 2023. 15(6).
32. de Saint-Vis, B., et al., A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity, 1998. 9(3): p. 325-36.
33. Cheng, S., et al., A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell, 2021. 184(3): p. 792-809 e23.
34. Maier, B., et al., A conserved dendritic-cell regulatory program limits antitumour immunity. Nature, 2020. 580(7802): p. 257-262.
35. Zhang, X., et al., Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun, 2021. 12(1): p. 5291.
36. Peng, W.S., et al., Dissecting the heterogeneity of the microenvironment in primary and recurrent nasopharyngeal carcinomas using single-cell RNA sequencing. Oncoimmunology, 2022. 11(1): p. 2026583.
37. Bassez, A., et al., A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med, 2021. 27(5): p. 820-832.
38. Del Prete, A., et al., Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol, 2023. 20(5): p. 432-447.
39. Bottcher, J.P., et al., NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell, 2018. 172(5): p. 1022-1037.e14.
40. Durgeau, A., et al., Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol, 2018. 9: p. 14.
41. Jiang, W., et al., Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front Immunol, 2020. 11: p. 622509.
42. Castiglioni, A., et al., Combined PD-L1/TGFbeta blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun, 2023. 14(1): p. 4703.
43. Galletti, G., et al., Two subsets of stem-like CD8(+) memory T cell progenitors with distinct fate commitments in humans. Nat Immunol, 2020. 21(12): p. 1552-1562.
44. Shih-Wen Huang, Y.-G.L., Hao-Ting Liao, Chin-Ling Chang, Ruo-Yu Ma, Yung-Hsiang Chen, Yae-Huei Liou, Zhen-Qi Wu, Yu-Chen Wu, Ko-Jiunn Liu, Yen-Tsung Huang, Jen-Lung Yang, Ming-Shen Dai, Nan-Shih Liao, Syngeneic natural killer cell therapy activates dendritic and T cells in metastatic lungs and effectively treat low-burden metastases. 2024.
45. Melaiu, O., et al., Influence of the Tumor Microenvironment on NK Cell Function in Solid Tumors. Front Immunol, 2019. 10: p. 3038.
46. Ruffell, B., et al., Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014. 26(5): p. 623-37.
47. Sharpe, A.H. and K.E. Pauken, The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol, 2018. 18(3): p. 153-167.
48. Calagua, C., et al., A Subset of Localized Prostate Cancer Displays an Immunogenic Phenotype Associated with Losses of Key Tumor Suppressor Genes. Clin Cancer Res, 2021. 27(17): p. 4836-4847.
49. Yang, Z.Z., et al., Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget, 2017. 8(37): p. 61425-61439.
50. Jones, R.B., et al., Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. Journal of Experimental Medicine, 2008. 205(12): p. 2763-2779.
51. Mocikat, R., et al., Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8 T cell responses. Immunity, 2003. 19(4): p. 561-9.
52. Eisenbarth, S.C., Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol, 2019. 19(2): p. 89-103.
53. Si, Y., et al., Lung cDC1 and cDC2 dendritic cells priming naive CD8(+) T cells in situ prior to migration to draining lymph nodes. Cell Rep, 2023. 42(10): p. 113299.
54. Correia, A.L., et al., Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021. 594(7864): p. 566-571.
55. Malladi, S., et al., Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 2016. 165(1): p. 45-60.
56. Uemura, A., et al., Natural killer cell is a major producer of interferon gamma that is critical for the IL-12-induced anti-tumor effect in mice. Cancer Immunol Immunother, 2010. 59(3): p. 453-63.
57. Spiegel, A., et al., Neutrophils suppress intraluminal NK Cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov, 2016. 6(6): p. 630-49.
58. Gurevich, I., et al., Active dissemination of cellular antigens by DCs facilitates CD8(+) T-cell priming in lymph nodes. Eur J Immunol, 2017. 47(10): p. 1802-1818.
59. Schenkel, J.M., et al., Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1(+) CD8(+) T cells in tumor-draining lymph nodes. Immunity, 2021. 54(10): p. 2338-2353 e6.
60. Prokhnevska, N., et al., CD8(+) T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity, 2023. 56(1): p. 107-124 e5.
61. Bodder, J., et al., Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Front Immunol, 2020. 11: p. 631713.
62. Dong, Y., et al., PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front Immunol, 2020. 11: p. 1710.
63. Arasanz, H., et al., PD1 signal transduction pathways in T cells. Oncotarget, 2017. 8(31): p. 51936-51945.
64. Imai, Y., et al., Interferon-gamma induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol Lett, 2020. 20(3): p. 2161-2168.
65. Peng, Q., et al., PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun, 2020. 11(1): p. 4835.
66. Oyer, J.L., et al., PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology, 2018. 7(11): p. e1509819.
67. Siddiqui, I., et al., Intratumoral Tcf1 PD-1 CD8 T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity, 2019. 50(1): p. 195-221.e10. |