參考文獻 |
Reference
Adetutu, E.M., Gundry, T.D., Patil, S.S., Golneshin, A., Adigun, J., Bhaskarla, V., Aleer, S., Shahsavari, E., Ross, E., Ball, A.S., 2015. Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. J. Hazard. Mater. 300, 48-57. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.06.055.
Adrian, L., Löffler, F.E., 2016. Organohalide-Respiring Bacteria.
APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association APHA-AWWA-WEF, Washington, DC, USA.
Asai, M., Yoshida, N., Kusakabe, T., Ismaeil, M., Nishiuchi, T., Katayama, A., 2022. Dehalococcoides mccartyi NIT01, a novel isolate, dechlorinates high concentrations of chloroethenes by expressing at least six different reductive dehalogenases. Environ. Res. 207, 112150. https://doi.org/10.1016/j.envres.2021.112150.
Aulenta, F., Bianchi, A., Majone, M., Petrangeli Papini, M., Potalivo, M., Tandoi, V., 2005. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environ. Int. 31(2), 185-190. https://doi.org/https://doi.org/10.1016/j.envint.2004.09.014.
Beck, M.W., Mikryukov, V., 2022. ggord: Ordination Plots with ggplot2. https://doi.org/10.5281/zenodo.6382531.
Becker, J.G., 2006. A Modeling Study and Implications of Competition between Dehalococcoides ethenogenes and Other Tetrachloroethene- Respiring Bacteria. Environ. Sci. Technol. 40(14), 4473-4480. https://doi.org/10.1021/es051849o.
Beeman, R.E., Suflita, J.M., 1990. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study. J. Ind. Microbiol. Biotechnol. 5(1), 45-57. https://doi.org/10.1007/bf01569605.
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
Boni, M.R., Sbaffoni, S., 2009. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test. J. Hazard. Mater. 166(2), 1087-1095. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.12.036.
Borden, R.C., 2007. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. J. Contam. Hydrol. 94(1), 13-33. https://doi.org/https://doi.org/10.1016/j.jconhyd.2007.06.002.
Borden, R.C., 2008. Development of Permeable Reactive Barriers (PRB) Using Edible Oils. Final Report Strategic Research and Development Program SERDP Project ER-1205, North Carolina State University, 143pp.
Borden, R.C., Richardson, S.D., Bodour, A.A., 2019. Enhanced reductive dechlorination of trichloroethene in an acidic DNAPL impacted aquifer. J. Environ. Manage. 237, 617-628. https://doi.org/10.1016/j.jenvman.2018.12.093.
Bradley, P.M., Chapelle, F.H., Löffler, F.E., 2008. Anoxic Mineralization: Environmental Reality or Experimental Artifact? Ground Water Monit. Remediat. 28(1), 47-49. https://doi.org/https://doi.org/10.1111/j.1745-6592.2007.00186.x.
Budania, R., Dangayach, S., 2023. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. J. Environ. Manage. 332, 117343. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117343.
Calviello, L., Ohler, U., 2017. Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. Trends Genet. 33(10), 728-744. https://doi.org/10.1016/j.tig.2017.08.003.
Chen, C., Xu, G., He, J., 2023. Substrate-dependent strategies to mitigate sulfate inhibition on microbial reductive dechlorination of polychlorinated biphenyls. Chemosphere 342, 140063. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140063.
Clark, K., Taggart, D.M., Baldwin, B.R., Ritalahti, K.M., Murdoch, R.W., Hatt, J.K., Löffler, F.E., 2018. Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. Environ. Sci. Technol. 52(22), 13410-13420. https://doi.org/10.1021/acs.est.8b04373.
Cobas, M., Ferreira, L., Tavares, T., Sanromán, M.A., Pazos, M., 2013. Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91(5), 711-716. https://doi.org/10.1016/j.chemosphere.2013.01.028.
Comtet-Marre, S., Chaucheyras-Durand, F., Bouzid, O., Mosoni, P., Bayat, A.R., Peyret, P., Forano, E., 2018. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota. Front Microbiol 9, 215. https://doi.org/10.3389/fmicb.2018.00215.
Cui, Y., Li, X., Yan, J., Lv, Y., Jin, H., Wang, J., Chen, G., Kara-Murdoch, F., Yang, Y., Löffler, F.E., 2023. Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace. Int. J. Syst. Evol. Microbiol. 73(5). https://doi.org/10.1099/ijsem.0.005881.
Daniels, L., Fulton, G., Spencer, R.W., Orme-Johnson, W.H., 1980. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum. J. Bacteriol. 141(2), 694-698. https://doi.org/10.1128/jb.141.2.694-698.1980.
Davis, G.B., 2023. Reviewing the Bioremediation of Contaminants in Groundwater: Investigations over 40 Years Provide Insights into What′s Achievable. Front Biosci (Elite Ed) 15(3), 16. https://doi.org/10.31083/j.fbe1503016.
De Marines, F., Cruciata, I., Di Bella, G., Di Trapani, D., Giustra, M.G., Scirè Calabrisotto, L., Greco Lucchina, P., Quatrini, P., Viviani, G., 2023. Degradation of 1,2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions. Int. Biodeterior. Biodegrad. 183, 105644. https://doi.org/https://doi.org/10.1016/j.ibiod.2023.105644.
Ding, C., Rogers, M.J., He, J., 2020. Dehalococcoides mccartyi Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. Environ. Sci. Technol. 54(14), 8750-8759. https://doi.org/10.1021/acs.est.0c00993.
Ding, C., Rogers, M.J., Yang, K.L., He, J., 2017. Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environ. Microbiol. 19(7), 2906-2915. https://doi.org/10.1111/1462-2920.13817.
Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927-930. https://doi.org/https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
Dugat-Bony, E., Biderre-Petit, C., Jaziri, F., David, M.M., Denonfoux, J., Lyon, D.Y., Richard, J.Y., Curvers, C., Boucher, D., Vogel, T.M., Peyretaillade, E., Peyret, P., 2012. In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 5(5), 642-653. https://doi.org/10.1111/j.1751-7915.2012.00339.x.
Dugat-Bony, E., Missaoui, M., Peyretaillade, E., Biderre-Petit, C., Bouzid, O., Gouinaud, C., Hill, D., Peyret, P., 2011. HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27(5), 641-648. https://doi.org/10.1093/bioinformatics/btq712.
Dutta, N., Usman, M., Ashraf, M.A., Luo, G., Zhang, S., 2022. A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators. Chem. Eng. J. Adv. 12, 100359. https://doi.org/https://doi.org/10.1016/j.ceja.2022.100359.
El-Sayed, W.S., 2016. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Polish J. Microbiol. 65(3), 341-352. https://doi.org/10.5604/17331331.1215613.
Fennell, D.E., Nijenhuis, I., Wilson, S.F., Zinder, S.H., Häggblom, M.M., 2004. Dehalococcoides ethenogenes Strain 195 Reductively Dechlorinates Diverse Chlorinated Aromatic Pollutants. Environ. Sci. Technol. 38(7), 2075-2081. https://doi.org/10.1021/es034989b.
Ferreira, L., Cobas, M., Tavares, T., Sanromán, M.A., Pazos, M., 2013. Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation. Environ. Sci. Pollut. Res. 20(10), 7348-7354. https://doi.org/10.1007/s11356-013-1750-6.
Fiala, G.J., Schamel, W.W., Blumenthal, B., 2011. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates. J Vis Exp(48). https://doi.org/10.3791/2164.
Findlay, M., Smoler, D.F., Fogel, S., Mattes, T.E., 2016. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria. Environ. Sci. Technol. 50(7), 3617-3625. https://doi.org/10.1021/acs.est.5b05798.
Frauenstein, D., Seidel, K., Adrian, L., 2017. SandTraps are efficient, scalable, and mild systems for harvesting, washing and concentrating cells. J. Microbiol. Methods 132, 106-111. https://doi.org/10.1016/j.mimet.2016.11.018.
Gangola, S., Bhatt, P., Kumar, A.J., Bhandari, G., Joshi, S., Punetha, A., Bhatt, K., Rene, E.R., 2022. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere 296, 133916. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.133916.
Ghandehari, S.S., Cheng, S.-H., Hapeman, C.J., Torrents, A., Kjellerup, B.V., 2023. Ensuring the continued success of a mulch biowall at a trichloroethylene-contaminated superfund site: Lessons learned. Remediation 33, 323-337. https://doi.org/https://doi.org/10.1002/rem.21764.
Gihring, T.M., Zhang, G., Brandt, C.C., Brooks, S.C., Campbell, J.H., Carroll, S., Criddle, C.S., Green, S.J., Jardine, P., Kostka, J.E., Lowe, K., Mehlhorn, T.L., Overholt, W., Watson, D.B., Yang, Z., Wu, W.M., Schadt, C.W., 2011. A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Appl. Environ. Microbiol. 77(17), 5955-5965. https://doi.org/10.1128/aem.00220-11.
Grant, J.R., Enns, E., Marinier, E., Mandal, A., Herman, E.K., Chen, C.-y., Graham, M., Van Domselaar, G., Stothard, P., 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51(W1), W484-W492. https://doi.org/10.1093/nar/gkad326.
Güell, M., Yus, E., Lluch-Senar, M., Serrano, L., 2011. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat. Rev. Microbiol. 9(9), 658-669. https://doi.org/10.1038/nrmicro2620.
Guo, M., Chen, Y., 2018. Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Rev. Environ. Sci. Biotechnol. 17, 259-284.
Gushgari-Doyle, S., Alvarez-Cohen, L., 2020. Effects of Arsenic on Trichloroethene-Dechlorination Activities of Dehalococcoides mccartyi 195. Environ. Sci. Technol. 54(2), 1276-1285. https://doi.org/10.1021/acs.est.9b06527.
Hand, S.C., Hardewig, I., 1996. Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu. Rev. Physiol. 58(1), 539-563.
He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S., Löffler, F.E., 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424(6944), 62-65. https://doi.org/10.1038/nature01717.
He, J., Sung, Y., Dollhopf, M.E., Fathepure, B.Z., Tiedje, J.M., Löffler, F.E., 2002. Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sites. Environ. Sci. Technol. 36(18), 3945-3952. https://doi.org/10.1021/es025528d.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M., Löffler, F.E., 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ. Microbiol. 7(9), 1442-1450. https://doi.org/10.1111/j.1462-2920.2005.00830.x.
He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., Criddle, C., Zhou, J., 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1(1), 67-77. https://doi.org/10.1038/ismej.2007.2.
Heimann, A.C., Batstone, D.J., Jakobsen, R., 2006. Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl. Environ. Microbiol. 72(4), 2942-2949. https://doi.org/10.1128/aem.72.4.2942-2949.2006.
Hellmold, N., Eberwein, M., Phan, M.H.T., Kümmel, S., Einsle, O., Deobald, D., Adrian, L., 2023. Dehalococcoides mccartyi strain CBDB1 takes up protons from the cytoplasm to reductively dehalogenate organohalides indicating a new modus of proton motive force generation. Front Microbiol 14, 1305108. https://doi.org/10.3389/fmicb.2023.1305108.
Hermon, L., Hellal, J., Denonfoux, J., Vuilleumier, S., Imfeld, G., Urien, C., Ferreira, S., Joulian, C., 2019. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater. Front Microbiol 10, 89. https://doi.org/10.3389/fmicb.2019.00089.
Huang, S.-W., Hussain, B., Chen, J.-S., Asif, A., Hsu, B.-M., 2024. Evaluating groundwater ecosystem dynamics in response to post in-situ remediation of mixed chlorinated volatile organic compounds (CVOCs): An insight into microbial community resilience, adaptability, and metabolic functionality for sustainable remediation and ecosystem restoration. Sci. Total Environ. 920, 170874. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170874.
Huang, Y.-T., Liu, P.-Y., Shih, P.-W., 2021. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biology 22(1), 95. https://doi.org/10.1186/s13059-021-02282-6.
Huung, W.P., Lin, T.a.L., Ren, S.S., Chen, J.C., Chen, Y.R., Kao, C.H., 1988. Senescence of Rice Leaves XVIII. Changes of Stomatal Aperture during Senescence. Plant and Cell Physiology 29(1), 27-31. https://doi.org/10.1093/oxfordjournals.pcp.a077469.
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9.
Jin, Y.O., Mattes, T.E., 2010. A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ. Sci. Technol. 44(23), 9036-9041. https://doi.org/10.1021/es102232m.
Johnson, D.R., Nemir, A., Andersen, G.L., Zinder, S.H., Alvarez-Cohen, L., 2009. Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol. Lett. 294(2), 198-206. https://doi.org/10.1111/j.1574-6968.2009.01569.x.
Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27.
Kasi, M., Wadhawan, T., Simsek, H., McEvoy, J., Padmanabhan, G., Sletten, D., Khan, E., 2013. Enricher reactor – Permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions. Bioresour. Technol. 146, 336-344. https://doi.org/https://doi.org/10.1016/j.biortech.2013.07.089.
Kidane, D., Sanchez, H., Alonso, J.C., Graumann, P.L., 2004. Visualization of DNA double‐strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol. Microbiol. 52(6), 1627-1639.
Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37(8), 907-915. https://doi.org/10.1038/s41587-019-0201-4.
Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A., 2019. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540-546. https://doi.org/10.1038/s41587-019-0072-8.
Koner, S., Chen, J.-S., Hsu, B.-M., Rathod, J., Huang, S.-W., Chien, H.-Y., Hussain, B., Chan, M.W.Y., 2022. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. J. Hazard. Mater. 424, 127266. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127266.
Kruse, S., Türkowsky, D., Birkigt, J., Matturro, B., Franke, S., Jehmlich, N., von Bergen, M., Westermann, M., Rossetti, S., Nijenhuis, I., Adrian, L., Diekert, G., Goris, T., 2021. Interspecies metabolite transfer and aggregate formation in a co-culture of Dehalococcoides and Sulfurospirillum dehalogenating tetrachloroethene to ethene. The ISME Journal 15(6), 1794-1809. https://doi.org/10.1038/s41396-020-00887-6.
Kucharzyk, K.H., Meisel, J.E., Kara-Murdoch, F., Murdoch, R.W., Higgins, S.A., Vainberg, S., Bartling, C.M., Mullins, L., Hatzinger, P.B., Löffler, F.E., 2020. Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the Dehalococcoides mccartyi-Containing Consortium SDC-9. J. Proteome Res. 19(4), 1812-1823. https://doi.org/10.1021/acs.jproteome.0c00072.
Kucharzyk, K.H., Meisel, J.E., Kara-Murdoch, F., Murdoch, R.W., Higgins, S.A., Vainberg, S., Bartling, C.M., Mullins, L., Hatzinger, P.B., Löffler, F.E., 2020. Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the Dehalococcoides mccartyi-Containing Consortium SDC-9. J Proteome Res 19(4), 1812-1823. https://doi.org/10.1021/acs.jproteome.0c00072.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096.
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357-359. https://doi.org/10.1038/nmeth.1923.
Lee, H.-C., Chen, S.-C., Sheu, Y.-T., Yao, C.-L., Lo, K.-H., Kao, C.-M., 2024. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. Environ. Pollut. 348, 123768. https://doi.org/https://doi.org/10.1016/j.envpol.2024.123768.
Lee, P.K., Cheng, D., West, K.A., Alvarez-Cohen, L., He, J., 2013. Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ. Microbiol. 15(8), 2293-2305. https://doi.org/10.1111/1462-2920.12099.
Li, H., 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191.
Li, W., O′Neill, K.R., Haft, D.H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F., Derbyshire, M.K., Durkin, A.S., Gonzales, N.R., Gwadz, M., Lanczycki, C.J., Song, J.S., Thanki, N., Wang, J., Yamashita, R.A., Yang, M., Zheng, C., Marchler-Bauer, A., Thibaud-Nissen, F., 2021. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 49(D1), D1020-d1028. https://doi.org/10.1093/nar/gkaa1105.
Li, Y., Li, B., Wang, C.P., Fan, J.Z., Sun, H.W., 2014. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates. Int J Mol Sci 15(5), 9134-9148. https://doi.org/10.3390/ijms15059134.
Li, Z.-T., Song, X., Yuan, S., Zhao, H.-P., 2024. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. Water Res. 253, 121328. https://doi.org/https://doi.org/10.1016/j.watres.2024.121328.
Li, Z.-T., Yang, S.-Y., Zhao, H.-P., 2023. The effects of arsenic on dechlorination of trichloroethene by consortium DH: Microbial response and resistance. Sci. Total Environ. 896, 165219. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.165219.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M., 2013. Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. J. Hazard. Mater. 254-255, 107-115. https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.03.047.
Liang, X., Molenda, O., Tang, S., Edwards, E.A., 2015. Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes. Appl. Environ. Microbiol. 81(14), 4626-4633. https://doi.org/10.1128/aem.00536-15.
Liao, H.Y., Chien, C.C., Tang, P., Chen, C.C., Chen, C.Y., Chen, S.C., 2018. The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2, 4, 6-trinitrotoluene by Citrobacter sp. J. Hazard. Mater. 349, 79-90. https://doi.org/10.1016/j.jhazmat.2018.01.039.
Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656.
Limbu, M.S., Xiong, T., Wang, S., 2024. A review of Ribosome profiling and tools used in Ribo-seq data analysis. Comput Struct Biotechnol J 23, 1912-1918. https://doi.org/10.1016/j.csbj.2024.04.051.
Lin, W.H., Chien, C.C., Lu, C.W., Hou, D., Sheu, Y.T., Chen, S.C., Kao, C.M., 2021. Growth inhibition of methanogens for the enhancement of TCE dechlorination. Sci. Total Environ. 787, 147648. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147648.
Liu, D., Yang, X., Zhang, L., Tang, Y., He, H., Liang, M., Tu, Z., Zhu, H., 2022. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. Int. J. Env. Res. Public Health 19(21). https://doi.org/10.3390/ijerph192113830.
Liu, X., Zhang, L., Shen, R., Lu, Q., Zeng, Q., Zhang, X., He, Z., Rossetti, S., Wang, S., 2023. Reciprocal Interactions of Abiotic and Biotic Dechlorination of Chloroethenes in Soil. Environ. Sci. Technol. 57(37), 14036-14045. https://doi.org/10.1021/acs.est.3c04262.
Lo, K.-H., Lu, C.-W., Chien, C.-C., Sheu, Y.-T., Lin, W.-H., Chen, S.-C., Kao, C.-M., 2022. Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. J. Environ. Manage. 311, 114836. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114836.
Lo, K.-H., Lu, C.-W., Lin, W.-H., Chien, C.-C., Chen, S.-C., Kao, C.-M., 2020. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Chemosphere 238, 124596. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.124596.
Löffler, F.E., Sanford, R.A., Tiedje, J.M., 1996. Initial Characterization of a Reductive Dehalogenase from Desulfitobacterium chlororespirans Co23. Appl. Environ. Microbiol. 62(10), 3809-3813. https://doi.org/10.1128/aem.62.10.3809-3813.1996.
Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H., Spormann, A.M., 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63(Pt 2), 625-635. https://doi.org/10.1099/ijs.0.034926-0.
Love, M., Anders, S., Huber, W., 2014. Differential analysis of count data–the DESeq2 package. Genome Biol 15(550), 10-1186.
Lowe, R., Shirley, N., Bleackley, M., Dolan, S., Shafee, T., 2017. Transcriptomics technologies. PLoS Comp. Biol. 13(5), e1005457. https://doi.org/10.1371/journal.pcbi.1005457.
Lu, C.-W., Kao, C.-M., Le, N.N., Lin, C.-C., Chen, S.-C., 2022. Long-term dechlorination of cis-DCE to ethene with co-immobilized Dehalococcoides mccartyi BAV1 and Clostridium butyricum in silica gel system. J. Hazard. Mater. 430, 128355. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128355.
Lu, C.-W., Lo, K.-H., Wang, S.-C., Kao, C.-M., Chen, S.-C., 2024. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. Sci. Total Environ. 920, 170885. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170885.
Lu, Q., Zhu, R.L., Yang, J., Li, H., Liu, Y.D., Lu, S.G., Luo, Q.S., Lin, K.F., 2015. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater. Front. Microbiol. 6, 839. https://doi.org/10.3389/fmicb.2015.00839.
Luo, M., Zhang, X., Zhu, X., Long, T., Cao, S., Yu, R., 2024. Bioremediation of chlorinated ethenes contaminated groundwater and the reactive transport modeling – A review. Environ. Res. 240, 117389. https://doi.org/https://doi.org/10.1016/j.envres.2023.117389.
Ma, J., Xie, M., Zhao, N., Wang, Y., Lin, Q., Zhu, Y., Chao, Y., Ni, Z., Qiu, R., 2023. Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbon‑iron materials. Sci. Total Environ. 878, 162720. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162720.
Malla, M.A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., Abd_Allah, E.F., 2018. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front. Microbiol. 9.
Mao, X., Polasko, A., Alvarez-Cohen, L., 2017. Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Appl. Environ. Microbiol. 83(8). https://doi.org/10.1128/aem.03384-16.
Mattes, T.E., Alexander, A.K., Coleman, N.V., 2010. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol. Rev. 34(4), 445-475. https://doi.org/10.1111/j.1574-6976.2010.00210.x.
McMurdie, P.J., Behrens, S.F., Müller, J.A., Göke, J., Ritalahti, K.M., Wagner, R., Goltsman, E., Lapidus, A., Holmes, S., Löffler, F.E., Spormann, A.M., 2009. Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet. 5(11), e1000714. https://doi.org/10.1371/journal.pgen.1000714.
McMurdie, P.J., Hug, L.A., Edwards, E.A., Holmes, S., Spormann, A.M., 2011. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides. BMC Genomics 12(1), 287. https://doi.org/10.1186/1471-2164-12-287.
Men, Y., Feil, H., VerBerkmoes, N.C., Shah, M.B., Johnson, D.R., Lee, P.K.H., West, K.A., Zinder, S.H., Andersen, G.L., Alvarez-Cohen, L., 2012. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. The ISME Journal 6(2), 410-421. https://doi.org/10.1038/ismej.2011.111.
Mena, E., Ruiz, C., Villaseñor, J., Rodrigo, M.A., Cañizares, P., 2015. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. J. Hazard. Mater. 283, 131-139. https://doi.org/https://doi.org/10.1016/j.jhazmat.2014.08.069.
Meng, L., Tomita, R., Yoshida, T., Yoshida, N., 2023. Soil organic matter and nutrient availability affect the applicability of low-carbon energy source in Dehalococcoides-augmented soil. J. Hazard. Mater. 459, 132251. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132251.
Meng, L., Yoshida, N., Li, Z., 2022. Soil microorganisms facilitated the electrode-driven trichloroethene dechlorination to ethene by Dehalococcoides species in a bioelectrochemical system. Environ. Res. 209, 112801. https://doi.org/https://doi.org/10.1016/j.envres.2022.112801.
Miller, E., Menashe, O., Dosoretz, C.G., 2022. A tailored permeable reactive bio-barrier for in situ groundwater remediation: removal of 3-chlorophenol as a case study. Environ. Technol. 43(8), 1200-1210. https://doi.org/10.1080/09593330.2020.1822922.
Min, Y., Mei, S.-C., Pan, X.-Q., Chen, J.-J., Yu, H.-Q., Xiong, Y., 2023. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat. Commun. 14(1), 5134. https://doi.org/10.1038/s41467-023-40906-6.
Moench, T.T., Zeikus, J.G., 1983. An improved preparation method for a titanium (III) media reductant. J. Microbiol. Methods 1(4), 199-202. https://doi.org/https://doi.org/10.1016/0167-7012(83)90024-6.
Molenda, O., Puentes Jácome, L.A., Cao, X., Nesbø, C.L., Tang, S., Morson, N., Patron, J., Lomheim, L., Wishart, D.S., Edwards, E.A., 2020. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. Environ Sci Process Impacts 22(3), 663-678. https://doi.org/10.1039/c9em00605b.
Molenda, O., Tang, S., Edwards, E.A., 2016. Complete Genome Sequence of Dehalococcoides mccartyi Strain WBC-2, Capable of Anaerobic Reductive Dechlorination of Vinyl Chloride. Genome Announc 4(6). https://doi.org/10.1128/genomeA.01375-16.
Molenda, O., Tang, S., Lomheim, L., Gautam, V.K., Lemak, S., Yakunin, A.F., Maxwell, K.L., Edwards, E.A., 2019. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes. Isme j 13(1), 24-38. https://doi.org/10.1038/s41396-018-0254-2.
Morson, N., Molenda, O., Picott, K.J., Richardson, R.E., Edwards, E.A., 2022. Long-term survival of Dehalococcoides mccartyi strains in mixed cultures under electron acceptor and ammonium limitation. FEMS Microbes 3. https://doi.org/10.1093/femsmc/xtac021.
Němeček, J., Marková, K., Špánek, R., Antoš, V., Kozubek, P., Lhotský, O., Černík, M., 2020. Hydrochemical Conditions for Aerobic/Anaerobic Biodegradation of Chlorinated Ethenes—A Multi-Site Assessment, Water.
Niño de Guzmán, G.T., Hapeman, C.J., Millner, P.D., Torrents, A., Jackson, D., Kjellerup, B.V., 2018. Presence of organohalide-respiring bacteria in and around a permeable reactive barrier at a trichloroethylene-contaminated Superfund site. Environ. Pollut. 243, 766-776. https://doi.org/https://doi.org/10.1016/j.envpol.2018.08.095.
Obiri-Nyarko, F., Grajales-Mesa, S.J., Malina, G., 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111, 243-259. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.03.112.
Orlygsson, J., Kristjansson, J.K., 2014. The Family Hydrogenophilaceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 859-868. https://doi.org/10.1007/978-3-642-30197-1_244.
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114.
Peredo, E.L., Cardon, Z.G., 2020. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proc Natl Acad Sci U S A 117(29), 17438-17445. https://doi.org/10.1073/pnas.1906904117.
Pérez-de-Mora, A., Lacourt, A., McMaster, M.L., Liang, X., Dworatzek, S.M., Edwards, E.A., 2018. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi) Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. Front Microbiol 9, 812. https://doi.org/10.3389/fmicb.2018.00812.
Phillips, D.H., 2009. Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination 248(1), 352-359. https://doi.org/https://doi.org/10.1016/j.desal.2008.05.075.
Pitsikas, P., Polosina, Y.Y., Cupples, C.G., 2009. Interaction between the mismatch repair and nucleotide excision repair pathways in the prevention of 5-azacytidine-induced CG-to-GC mutations in Escherichia coli. DNA Repair (Amst) 8(3), 354-359. https://doi.org/10.1016/j.dnarep.2008.11.015.
Prensner, J.R., Abelin, J.G., Kok, L.W., Clauser, K.R., Mudge, J.M., Ruiz-Orera, J., Bassani-Sternberg, M., Moritz, R.L., Deutsch, E.W., van Heesch, S., 2023. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol. Cell. Proteomics 22(9), 100631. https://doi.org/10.1016/j.mcpro.2023.100631.
Puentes Jácome, L.A., Wang, P.-H., Molenda, O., Li, Y.X., Islam, M.A., Edwards, E.A., 2019. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. Environ. Sci. Technol. 53(19), 11364-11374. https://doi.org/10.1021/acs.est.9b02339.
Ren, X., Ruan, J., Lan, X., Yang, S., Wu, D., Huang, X., Zhang, H., Liu, J., Huang, H., 2023. SET-mediated epigenetic dysregulation of p53 impairs trichloroethylene-induced DNA damage response. Toxicol. Lett. 387, 76-83. https://doi.org/10.1016/j.toxlet.2023.09.008.
Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., Peplies, J., 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6), 929-931. https://doi.org/10.1093/bioinformatics/btv681.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S., Löffler, F.E., 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72(4), 2765-2774. https://doi.org/10.1128/aem.72.4.2765-2774.2006.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S., Löffler, F.E., 2006. Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Appl. Environ. Microbiol. 72(4), 2765-2774. https://doi.org/10.1128/AEM.72.4.2765-2774.2006.
Ritalahti, K.M., Hatt, J.K., Lugmayr, V., Henn, K., Petrovskis, E.A., Ogles, D.M., Davis, G.A., Yeager, C.M., Lebrón, C.A., Löffler, F.E., 2010. Comparing On-Site to Off-Site Biomass Collection for Dehalococcoides Biomarker Gene Quantification To Predict in Situ Chlorinated Ethene Detoxification Potential. Environ. Sci. Technol. 44(13), 5127-5133. https://doi.org/10.1021/es100408r.
Ritalahti, K.M., Löffler, F.E., Rasch, E.E., Koenigsberg, S.S., 2005. Bioaugmentation for chlorinated ethene detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Industrial Biotechnology 1(2), 114-118. https://doi.org/10.1089/ind.2005.1.114.
Saiyari, D.M., Chuang, H.-P., Senoro, D.B., Lin, T.-F., Whang, L.-M., Chiu, Y.-T., Chen, Y.-H., 2018. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustain. Environ. Res. 28(4), 149-157. https://doi.org/https://doi.org/10.1016/j.serj.2018.01.006.
Sakr, M., El Agamawi, H., Klammler, H., Mohamed, M.M., 2023. A review on the use of permeable reactive barriers as an effective technique for groundwater remediation. Groundw. Sustain. Dev. 21, 100914. https://doi.org/https://doi.org/10.1016/j.gsd.2023.100914.
Samatova, E., Daberger, J., Liutkute, M., Rodnina, M.V., 2020. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 11, 619430. https://doi.org/10.3389/fmicb.2020.619430.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537-7541. https://doi.org/10.1128/aem.01541-09.
Seidel, K., Kühnert, J., Adrian, L., 2018. The Complexome of Dehalococcoides mccartyi Reveals Its Organohalide Respiration-Complex Is Modular. Front Microbiol 9, 1130. https://doi.org/10.3389/fmicb.2018.01130.
Semkiw, E.S., Barcelona, M.J., 2011. Field Study of Enhanced TCE Reductive Dechlorination by a Full-Scale Whey PRB. Ground Water Monit. Remediat. 31(1), 68-78. https://doi.org/https://doi.org/10.1111/j.1745-6592.2010.01321.x.
Sexton, D.L., Chen, G., Kara Murdoch, F., Hashimi, A., Löffler, F.E., Tocheva, E.I., 2022. Ultrastructure of Organohalide-Respiring Dehalococcoidia Revealed by Cryo-Electron Tomography. Appl. Environ. Microbiol. 88(2), e0190621. https://doi.org/10.1128/aem.01906-21.
Shapiro, A.M., Evans, C.E., Hayes, E.C., 2017. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents. J. Contam. Hydrol. 203, 70-84. https://doi.org/10.1016/j.jconhyd.2017.06.006.
Sharma, P., Singh, S.P., Iqbal, H.M.N., Tong, Y.W., 2022. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ. Res. 211, 113102. https://doi.org/https://doi.org/10.1016/j.envres.2022.113102.
Shi, C., Tong, M., Cai, Q., Li, Z., Li, P., Lu, Y., Cao, Z., Liu, H., Zhao, H.-P., Yuan, S., 2023. Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity. Environ. Sci. Technol. 57(12), 5046-5055. https://doi.org/10.1021/acs.est.3c00278.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351.
Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. Sci. Total Environ. 770, 144561. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144561.
Skinner, J., Delgado, A.G., Hyman, M., Chu, M.-Y.J., 2024. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. Sci. Total Environ., 171667. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.171667.
Song, Y., Tang, H., Yan, Y., Guo, Y., Wang, H., Bian, Z., 2022. Combining electrokinetic treatment with modified zero-valent iron nanoparticles for rapid and thorough dechlorination of trichloroethene. Chemosphere 292, 133443. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133443.
Striggow, B., 2017. Groundwater Sampling. Operating Procedure. EPA SESDA, SESDPROC-301-R303.
Stupperich, E., Eisinger, H.J., Kräutler, B., 1988. Diversity of corrinoids in acetogenic bacteria. P-cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii. Eur. J. Biochem. 172(2), 459-464. https://doi.org/10.1111/j.1432-1033.1988.tb13910.x.
Sung, Y., Fletcher, K.E., Ritalahti, K.M., Apkarian, R.P., Ramos-Hernández, N., Sanford, R.A., Mesbah, N.M., Löffler, F.E., 2006a. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72(4), 2775-2782. https://doi.org/10.1128/aem.72.4.2775-2782.2006.
Sung, Y., Ritalahti, K.M., Apkarian, R.P., Löffler, F.E., 2006b. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72(3), 1980-1987. https://doi.org/10.1128/aem.72.3.1980-1987.2006.
Tang, S., Chan, W.W., Fletcher, K.E., Seifert, J., Liang, X., Löffler, F.E., Edwards, E.A., Adrian, L., 2013. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 79(3), 974-981. https://doi.org/10.1128/aem.01873-12.
Tang, Z., Song, X., Xu, M., Yao, J., Ali, M., Wang, Q., Zeng, J., Ding, X., Wang, C., Zhang, Z., Liu, X., 2022. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. J. Hazard. Mater. 435, 128969. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128969.
Tarnawski, S.-E., Rossi, P., Brennerova, M.V., Stavelova, M., Holliger, C., 2016. Validation of an Integrative Methodology to Assess and Monitor Reductive Dechlorination of Chlorinated Ethenes in Contaminated Aquifers. Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00007.
Taş, N., van Eekert, M.H., de Vos, W.M., Smidt, H., 2010. The little bacteria that can - diversity, genomics and ecophysiology of ′Dehalococcoides′ spp. in contaminated environments. Microb Biotechnol 3(4), 389-402. https://doi.org/10.1111/j.1751-7915.2009.00147.x.
Türkowsky, D., Jehmlich, N., Diekert, G., Adrian, L., von Bergen, M., Goris, T., 2018. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol. Ecol. 94(3), fiy013. https://doi.org/10.1093/femsec/fiy013.
Uchino, Y., Miura, T., Hosoyama, A., Ohji, S., Yamazoe, A., Ito, M., Takahata, Y., Suzuki, K., Fujita, N., 2015. Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci 10, 102. https://doi.org/10.1186/s40793-015-0095-9.
Upadhyay, S., Sinha, A., 2018. Role of Microorganisms in Permeable Reactive Bio-Barriers (PRBBs) for Environmental Clean-Up: A Review. Glob. Nest J. 20(2), 269-280. https://doi.org/10.30955/gnj.002525.
Vainberg, S., Condee, C.W., Steffan, R.J., 2009. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J. Ind. Microbiol. Biotechnol. 36(9), 1189-1197. https://doi.org/10.1007/s10295-009-0600-5.
Valdivia-Rivera, S., Ayora-Talavera, T., Lizardi-Jiménez, M.A., García-Cruz, U., Cuevas-Bernardino, J.C., Pacheco, N., 2021. Encapsulation of microorganisms for bioremediation: Techniques and carriers. Rev. Environ. Sci. Biotechnol. 20(3), 815-838. https://doi.org/10.1007/s11157-021-09577-x.
van Hylckama, V.J., de Koning, W., Janssen, D.B., 1996. Transformation Kinetics of Chlorinated Ethenes by Methylosinus trichosporium OB3b and Detection of Unstable Epoxides by On-Line Gas Chromatography. Appl. Environ. Microbiol. 62(9), 3304-3312. https://doi.org/10.1128/aem.62.9.3304-3312.1996.
Vaser, R., Sović, I., Nagarajan, N., Šikić, M., 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5), 737-746. https://doi.org/10.1101/gr.214270.116.
Viamajala, S., Peyton, B.M., Gerlach, R., Sivaswamy, V., Apel, W.A., Petersen, J.N., 2008. Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp. strain ES6. Biotechnol. Bioeng. 101(6), 1150-1162. https://doi.org/10.1002/bit.22020.
Vogel, T.M., McCarty, P.L., 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49(5), 1080-1083. https://doi.org/10.1128/aem.49.5.1080-1083.1985.
Wang, S., Chng, K.R., Wilm, A., Zhao, S., Yang, K.L., Nagarajan, N., He, J., 2014. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci U S A 111(33), 12103-12108. https://doi.org/10.1073/pnas.1404845111.
Wang, W., Gong, T., Li, H., Liu, Y., Dong, Q., Zan, R., Wu, Y., 2022. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance. Water Res. 217, 118422. https://doi.org/https://doi.org/10.1016/j.watres.2022.118422.
Wang, W., Wu, Y., 2019. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater. Environ. Sci. Pollut. Res. 26(12), 12042-12054. https://doi.org/10.1007/s11356-019-04676-3.
Wen, L.L., Zhang, Y., Pan, Y.W., Wu, W.Q., Meng, S.H., Zhou, C., Tang, Y., Zheng, P., Zhao, H.P., 2015. The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environ. Sci. Pollut. Res. 22(23), 19039-19047. https://doi.org/10.1007/s11356-015-5117-z.
Wickham, H., 2016. ggplot2. Use R!
Wolin, E.A., Wolin, M.J., Wolfe, R.S., 1963. Formation of Methane by Bacterial Extracts. J. Biol. Chem. 238(8), 2882-2886. https://doi.org/https://doi.org/10.1016/S0021-9258(18)67912-8.
Wu, R., Shen, R., Liang, Z., Zheng, S., Yang, Y., Lu, Q., Adrian, L., Wang, S., 2023. Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites. Environ. Sci. Technol. 57(45), 17338-17352. https://doi.org/10.1021/acs.est.3c05932.
Wu, Y.-J., Liu, P.-W.G., Hsu, Y.-S., Whang, L.-M., Lin, T.-F., Hung, W.-N., Cho, K.-C., 2019. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation. Chemosphere 233, 697-704. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.203.
Xiao, Z., Jiang, W., Chen, D., Xu, Y., 2020. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: A review. Ecotoxicol. Environ. Saf. 202, 110925. https://doi.org/https://doi.org/10.1016/j.ecoenv.2020.110925.
Xu, G., Ng, H.L., Chen, C., Rogers, M.J., He, J., 2024. Combatting multiple aromatic organohalide pollutants by bioaugmentation with a single Dehalococcoides in sediments. Water Res., 121447. https://doi.org/https://doi.org/10.1016/j.watres.2024.121447.
Xu, G., Zhao, S., Chen, C., Zhang, N., He, J., 2023a. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. Environ. Sci. Technol. 57(40), 15112-15122. https://doi.org/10.1021/acs.est.3c04535.
Xu, G., Zhao, X., Zhao, S., Rogers, M.J., He, J., 2023b. Salinity determines performance, functional populations, and microbial ecology in consortia attenuating organohalide pollutants. ISME J. 17(5), 660-670. https://doi.org/10.1038/s41396-023-01377-1.
Xu, Y., Wang, Y., Zheng, A., Yuan, Y., Xu, L., Tang, Y., Qin, Q., 2024. Efficient biostimulation of microbial dechlorination of polychlorinated biphenyls by acetate and lactate under nitrate reducing conditions: Insights into dechlorination pathways and functional genes. J. Hazard. Mater. 468, 133775. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.133775.
Yamazaki, Y., Kitamura, G., Tian, X., Suzuki, I., Kobayashi, T., Shimizu, T., Inoue, D., Ike, M., 2022. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere 287, 131989. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131989.
Yan, J., Im, J., Yang, Y., Löffler, F.E., 2013. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1616), 20120320.
Yan, J., Şimşir, B., Farmer, A.T., Bi, M., Yang, Y., Campagna, S.R., Löffler, F.E., 2016. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. The ISME Journal 10(5), 1092-1101. https://doi.org/10.1038/ismej.2015.197.
Yan, J., Wang, J., Villalobos Solis, M.I., Jin, H., Chourey, K., Li, X., Yang, Y., Yin, Y., Hettich, R.L., Löffler, F.E., 2021. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. Environ. Sci. Technol. 55(8), 4831-4841. https://doi.org/10.1021/acs.est.0c07354.
Yan, X., Gao, B., Wang, J., Zhu, X., Zhang, M., 2023. Insights into remediation effects and bacterial diversity of different remediation measures in rare earth mine soil with SO42- and heavy metals. Front. Microbiol. 14, 1050635. https://doi.org/10.3389/fmicb.2023.1050635.
Yang, Y., Cápiro, N.L., Yan, J., Marcet, T.F., Pennell, K.D., Löffler, F.E., 2017. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiol. Ecol. 93(12), fix130. https://doi.org/10.1093/femsec/fix130.
Yang, Y., Higgins, S.A., Yan, J., Şimşir, B., Chourey, K., Iyer, R., Hettich, R.L., Baldwin, B., Ogles, D.M., Löffler, F.E., 2017. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME J. 11(12), 2767-2780. https://doi.org/10.1038/ismej.2017.127.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., Glöckner, F.O., 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42(D1), D643-D648. https://doi.org/10.1093/nar/gkt1209.
Yohda, M., Ikegami, K., Aita, Y., Kitajima, M., Takechi, A., Iwamoto, M., Fukuda, T., Tamura, N., Shibasaki, J., Koike, S., Komatsu, D., Miyagi, S., Nishimura, M., Uchino, Y., Shiroma, A., Shimoji, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yagi, O., 2017. Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture. Sci Rep 7(1), 2230. https://doi.org/10.1038/s41598-017-02381-0.
Yu, Y., Zhang, Y., Liu, Y., Lv, M., Wang, Z., Wen, L.-l., Li, A., 2023. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. J. Hazard. Mater. 452, 131243. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131243.
Zhang, H., Ziv-El, M., Rittmann, B.E., Krajmalnik-Brown, R., 2010. Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ. Sci. Technol. 44(13), 5159-5164. https://doi.org/10.1021/es100695n.
Zhang, M., Dong, J., Cai, P., 2020. Mechanisms of mass transfer enhancement by phase-transfer catalysis for permanganate oxidizing dense non-aqueous phase liquid (DNAPL) TCE. Chemosphere 240, 124867. https://doi.org/10.1016/j.chemosphere.2019.124867.
Zhang, S., Wen, W., Xia, X., Ouyang, W., Mai, B.-x., Adrian, L., Schüürmann, G., 2023. Insight into the Mechanism Underlying Dehalococcoides mccartyi Strain CBDB1-Mediated B12-Dependent Aromatic Reductive Dehalogenation. Environ. Sci. Technol. 57(29), 10773-10781. https://doi.org/10.1021/acs.est.3c00364.
Zhang, Z., Ali, M., Tang, Z., Sun, Q., Wang, Q., Liu, X., Yin, L., Yan, S., Xu, M., Coulon, F., Song, X., 2024. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. J. Hazard. Mater. 469, 134034. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.134034.
Zhang, Z., Fan, Z., Zhang, G., Qin, L., Fang, J., 2021. Application Progress of Microbial Immobilization Technology Based on Biomass Materials. Bioresour. 16(4), 8509-8524. https://doi.org/10.15376/biores.16.4.Zhang.
Zhao, J., Qin, B., Nikolay, R., Spahn, C.M.T., Zhang, G., 2019. Translatomics: The Global View of Translation. International Journal of Molecular Sciences 20(1), 212.
Zhao, S., Ding, C., He, J., 2017. Genomic characterization of Dehalococcoides mccartyi strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. FEMS Microbiol. Ecol. 93(4). https://doi.org/10.1093/femsec/fiw235.
Zhao, S., He, J., 2019. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiol. Ecol. 95(1). https://doi.org/10.1093/femsec/fiy209.
|