博碩士論文 107881002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:176 、訪客IP:3.133.108.48
姓名 呂哲瑋(Che-Wei Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 台灣多氯乙烯污染生物整治的突破:本土脫鹵球菌的分離、應用與環境監控創新技術研究
(Breakthrough in the Bioremediation of Chloroethenes Pollution in Taiwan: Isolation, Application and Innovative Environmental Monitoring Techniques of Indigenous Dehalococcoides mccartyi)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-11-2以後開放)
摘要(中) 多氯乙烯污染對全世界的土壤和地下水構成了長期而棘手的挑戰,特別是致癌化合物氯乙烯(Vinyl Chloride, VC)在自然環境中難以被微生物分解,導致VC在地下水中長期累積,使得污染難以徹底清除。本研究成功分離了能夠完全脫氯VC的台灣本土脫鹵球菌(Dehalococcoides mccartyi)菌種CWV2及其菌群,證實了其在降解四氯乙烯及三氯乙烯至乙烯的過程中,不易產生氯乙烯。進一步利用多體學技術(包括基因體、轉錄體、轉譯體以及蛋白體),我們深入探討了其關鍵還原脫氯酵素VcrA的深度分析,確定了其代謝多氯乙烯的分子調控機制,為未來加強台灣多氯乙烯污染整治提供了重要的策略參考。第二部分中,我們將上述研究應用於一個多氯乙烯污染場址,開發了脫鹵球菌結合生物反應牆的創新脫氯膠體整治技術。實地應用證實,此技術能在300天內達到持久的脫氯效果,並將多氯乙烯完全轉化為無毒的乙烯,展示了該生物膠體整治工法在污染攔截上的良好效果。第三部分,針對生物整治過程中地下水微生物群落的即時監控需求,我們開發了環境生物晶片Dehalochip,以快速檢測脫氯菌群的菌相變化及整治效果。該晶片能夠針對氯烯、氯烷、氯甲烷,氯苯等常見的脫氯基因進行靈敏且專一的檢測。通過現地水樣本的分析,我們驗證了其在實地應用中的有效性,確認Dehalochip可作為現地環境監控的可靠工具。
摘要(英) Chloroethenes (CE) pollution poses a long-term and challenging issue for soil and groundwater in the world, especially since the carcinogenic compound vinyl chloride (VC) is resistant to microbial degradation in the natural environment, leading to prolonged accumulation of VC in groundwater, thus complicating the remediation efforts. This study successfully isolated a novel strain CWV2 of Dehalococcoides mccartyi (Dhc), and its consortia capable of completely dechlorinating VC. It was confirmed that this strain produces little or no vinyl chloride during the degradation of tetrachloroethylene and trichloroethylene to ethene. Using multi-omics technologies (including genomics, transcriptomics, translatomics, and proteomics), we conducted an in-depth analysis of the key reductive dehalogenase enzyme, VcrA, elucidating the molecular regulatory mechanisms involved in CEs metabolism. This offers significant strategic guidance for future efforts to enhance CEs pollution remediation in Taiwan. In the second part of the study, we applied the research at a CE-contaminated site, developing an innovative dechlorination colloidal gel combined with a permeable reactive bio-barrier (PRBB) using Dhc. Field applications confirmed that this technology achieves lasting dechlorination effects within 300 days, completely transforming CEs into non-toxic ethene, thereby demonstrating the effectiveness of this PRBB remediation method in pollution interception. In the third part, addressing the need for real-time monitoring of microbial communities in groundwater during bioremediation, we developed an environmental biochip, Dehalochip, for the rapid detection of shifts in dechlorinating bacterial communities and the effectiveness of remediation. This chip is capable of sensitive and specific detection of common dechlorination genes associated with CEs, chloroalkanes, chloromethanes, and chlorobenzenes. Through analysis of field water samples, we verified its effectiveness in real-world applications, confirming that Dehalochip serves as a reliable tool for in-situ environmental monitoring.
關鍵字(中) ★ 脫鹵球菌
★ 多氯乙烯
★ 多體分析
★ 轉譯體
★ 透水性生物反應牆
★ 現地整治
★ 生物整治
★ 生物晶片
★ 生物添加
關鍵字(英) ★ Dehalococcoides mccartyi
★ Chlorinated ethenes
★ Multi-omics analysis
★ Ribo-seq
★ Permeable reactive bio-barriers
★ In-situ treatment
★ Bioremediation
★ Microarray
★ Bioaugmentation
論文目次 Table of Contents
國立中央大學圖書館學位論文授權書 I
論文指導教授推薦書 II
論文口試委員審定書 III
Publications IV
致謝 VI
摘要 VII
Abstract VIII
Table of Contents IX
List of Figures XII
List of Tables XVII
Chapter 1 Multi-omic Profiling of Dehalococcoides mccartyi Strain CWV2 Reveals Mechanisms of Chloroethene Dechlorination and Potential for Groundwater Bioremediation 1
Abstract 2
1. Introduction 3
2. Materials and methods 6
2.1 Groundwater sample collection and isolation of Dhc strain CWV2 from enriched consortia 6
2.2 Determination of dechlorination ability for CWV2 7
2.3 Genomic analysis of CWV2 7
2.4 RNA extraction and transcriptomic analysis 9
2.5 Ribo-seq translatome analysis of CWV2 9
2.6 Protein extraction and BN-PAGE analysis for dechlorination activity 10
2.7 In-gel trypsin digestion and mass spectrometry 12
2.8 Validation by reverse transcription quantitative PCR 12
2.9 Data available 13
3. Results and discussion 13
3.1. Dechlorination of Chloroethenes by Strain CWV2 13
3.2. Insights from the genome sequence of Dhc CWV2 15
3.3. Transcriptome analysis of Dhc CWV2 17
3.4. Ribo-seq analysis for translation of strain CWV2 19
3.5. BN-PAGE dechlorination activity and Proteomic analysis 20
4. Conclusions 21
Chapter 2 Site Study - An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study 23
Abstract 24
1. Introduction 25
2. Materials and methods 27
2.1. Site characteristics 27
2.2. Chemicals and materials 27
2.3. Preparation of silica gel column and bacterial growth conditions 28
2.4. Practical application of PRBB for remediation 29
2.5. Analysis and Sampling of Chemicals in Groundwater 30
2.6. DNA extraction and cell number quantification 31
2.7. 16S rRNA gene amplicon sequencing analysis 32
3. Results and discussion 32
3.1. Groundwater analyses 32
3.2. Effects of PRBB on dechlorination 35
3.3. Effects of PRBB on reductive dehalogenase genes 37
3.4. Effects of PRBB on bacterial community 38
3.5. The effects of subsurface hydrology on complete reductive dechlorination 40
4. Conclusions 42
Chapter 3 Analyzing Dehalochip: A Functional DNA Microarray for Reductive Dichlorination in Chloroethene-Contaminated Sites 43
Abstract 44
1. Introduction 45
2. Materials and methods 47
2.1 Characteristics of the Site 47
2.2 Practical application of bioaugmentation 48
2.3 Microarray features: Genes Targeted and Probe Design 48
2.4 DNA labeling and microarray hybridization 49
2.5 Analysis and Sampling of Chemicals in Groundwater 50
2.6 DNA extraction and cell number quantification 51
3 Result and discussion 52
3.1 Overall Description of Dehalochip Features 52
3.2 Selection of Functional Genes 52
3.3 Evaluation of the Dehalochip sensitivity and specificity 53
3.4 Comparison of Microarray and qPCR data 54
3.5 Application of Dehalochip to The Bioaugmentation site 55
4 Conclusion 57
Reference 58
Figures 79
Tables 95
Supplementary Figures 104
Supplementary Tables 124
參考文獻 Reference
Adetutu, E.M., Gundry, T.D., Patil, S.S., Golneshin, A., Adigun, J., Bhaskarla, V., Aleer, S., Shahsavari, E., Ross, E., Ball, A.S., 2015. Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. J. Hazard. Mater. 300, 48-57. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.06.055.
Adrian, L., Löffler, F.E., 2016. Organohalide-Respiring Bacteria.
APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association APHA-AWWA-WEF, Washington, DC, USA.
Asai, M., Yoshida, N., Kusakabe, T., Ismaeil, M., Nishiuchi, T., Katayama, A., 2022. Dehalococcoides mccartyi NIT01, a novel isolate, dechlorinates high concentrations of chloroethenes by expressing at least six different reductive dehalogenases. Environ. Res. 207, 112150. https://doi.org/10.1016/j.envres.2021.112150.
Aulenta, F., Bianchi, A., Majone, M., Petrangeli Papini, M., Potalivo, M., Tandoi, V., 2005. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study. Environ. Int. 31(2), 185-190. https://doi.org/https://doi.org/10.1016/j.envint.2004.09.014.
Beck, M.W., Mikryukov, V., 2022. ggord: Ordination Plots with ggplot2. https://doi.org/10.5281/zenodo.6382531.
Becker, J.G., 2006. A Modeling Study and Implications of Competition between Dehalococcoides ethenogenes and Other Tetrachloroethene- Respiring Bacteria. Environ. Sci. Technol. 40(14), 4473-4480. https://doi.org/10.1021/es051849o.
Beeman, R.E., Suflita, J.M., 1990. Environmental factors influencing methanogenesis in a shallow anoxic aquifer: a field and laboratory study. J. Ind. Microbiol. Biotechnol. 5(1), 45-57. https://doi.org/10.1007/bf01569605.
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
Boni, M.R., Sbaffoni, S., 2009. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test. J. Hazard. Mater. 166(2), 1087-1095. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.12.036.
Borden, R.C., 2007. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier. J. Contam. Hydrol. 94(1), 13-33. https://doi.org/https://doi.org/10.1016/j.jconhyd.2007.06.002.
Borden, R.C., 2008. Development of Permeable Reactive Barriers (PRB) Using Edible Oils. Final Report Strategic Research and Development Program SERDP Project ER-1205, North Carolina State University, 143pp.
Borden, R.C., Richardson, S.D., Bodour, A.A., 2019. Enhanced reductive dechlorination of trichloroethene in an acidic DNAPL impacted aquifer. J. Environ. Manage. 237, 617-628. https://doi.org/10.1016/j.jenvman.2018.12.093.
Bradley, P.M., Chapelle, F.H., Löffler, F.E., 2008. Anoxic Mineralization: Environmental Reality or Experimental Artifact? Ground Water Monit. Remediat. 28(1), 47-49. https://doi.org/https://doi.org/10.1111/j.1745-6592.2007.00186.x.
Budania, R., Dangayach, S., 2023. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. J. Environ. Manage. 332, 117343. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117343.
Calviello, L., Ohler, U., 2017. Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. Trends Genet. 33(10), 728-744. https://doi.org/10.1016/j.tig.2017.08.003.
Chen, C., Xu, G., He, J., 2023. Substrate-dependent strategies to mitigate sulfate inhibition on microbial reductive dechlorination of polychlorinated biphenyls. Chemosphere 342, 140063. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140063.
Clark, K., Taggart, D.M., Baldwin, B.R., Ritalahti, K.M., Murdoch, R.W., Hatt, J.K., Löffler, F.E., 2018. Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. Environ. Sci. Technol. 52(22), 13410-13420. https://doi.org/10.1021/acs.est.8b04373.
Cobas, M., Ferreira, L., Tavares, T., Sanromán, M.A., Pazos, M., 2013. Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91(5), 711-716. https://doi.org/10.1016/j.chemosphere.2013.01.028.
Comtet-Marre, S., Chaucheyras-Durand, F., Bouzid, O., Mosoni, P., Bayat, A.R., Peyret, P., Forano, E., 2018. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota. Front Microbiol 9, 215. https://doi.org/10.3389/fmicb.2018.00215.
Cui, Y., Li, X., Yan, J., Lv, Y., Jin, H., Wang, J., Chen, G., Kara-Murdoch, F., Yang, Y., Löffler, F.E., 2023. Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace. Int. J. Syst. Evol. Microbiol. 73(5). https://doi.org/10.1099/ijsem.0.005881.
Daniels, L., Fulton, G., Spencer, R.W., Orme-Johnson, W.H., 1980. Origin of hydrogen in methane produced by Methanobacterium thermoautotrophicum. J. Bacteriol. 141(2), 694-698. https://doi.org/10.1128/jb.141.2.694-698.1980.
Davis, G.B., 2023. Reviewing the Bioremediation of Contaminants in Groundwater: Investigations over 40 Years Provide Insights into What′s Achievable. Front Biosci (Elite Ed) 15(3), 16. https://doi.org/10.31083/j.fbe1503016.
De Marines, F., Cruciata, I., Di Bella, G., Di Trapani, D., Giustra, M.G., Scirè Calabrisotto, L., Greco Lucchina, P., Quatrini, P., Viviani, G., 2023. Degradation of 1,2-dichloroethane in real polluted groundwater by using enriched bacterial consortia in aerobic and anaerobic laboratory-scale conditions. Int. Biodeterior. Biodegrad. 183, 105644. https://doi.org/https://doi.org/10.1016/j.ibiod.2023.105644.
Ding, C., Rogers, M.J., He, J., 2020. Dehalococcoides mccartyi Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. Environ. Sci. Technol. 54(14), 8750-8759. https://doi.org/10.1021/acs.est.0c00993.
Ding, C., Rogers, M.J., Yang, K.L., He, J., 2017. Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environ. Microbiol. 19(7), 2906-2915. https://doi.org/10.1111/1462-2920.13817.
Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14(6), 927-930. https://doi.org/https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
Dugat-Bony, E., Biderre-Petit, C., Jaziri, F., David, M.M., Denonfoux, J., Lyon, D.Y., Richard, J.Y., Curvers, C., Boucher, D., Vogel, T.M., Peyretaillade, E., Peyret, P., 2012. In situ TCE degradation mediated by complex dehalorespiring communities during biostimulation processes. Microb Biotechnol 5(5), 642-653. https://doi.org/10.1111/j.1751-7915.2012.00339.x.
Dugat-Bony, E., Missaoui, M., Peyretaillade, E., Biderre-Petit, C., Bouzid, O., Gouinaud, C., Hill, D., Peyret, P., 2011. HiSpOD: probe design for functional DNA microarrays. Bioinformatics 27(5), 641-648. https://doi.org/10.1093/bioinformatics/btq712.
Dutta, N., Usman, M., Ashraf, M.A., Luo, G., Zhang, S., 2022. A critical review of recent advances in the bio-remediation of chlorinated substances by microbial dechlorinators. Chem. Eng. J. Adv. 12, 100359. https://doi.org/https://doi.org/10.1016/j.ceja.2022.100359.
El-Sayed, W.S., 2016. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Polish J. Microbiol. 65(3), 341-352. https://doi.org/10.5604/17331331.1215613.
Fennell, D.E., Nijenhuis, I., Wilson, S.F., Zinder, S.H., Häggblom, M.M., 2004. Dehalococcoides ethenogenes Strain 195 Reductively Dechlorinates Diverse Chlorinated Aromatic Pollutants. Environ. Sci. Technol. 38(7), 2075-2081. https://doi.org/10.1021/es034989b.
Ferreira, L., Cobas, M., Tavares, T., Sanromán, M.A., Pazos, M., 2013. Assessment of Arthrobacter viscosus as reactive medium for forming permeable reactive biobarrier applied to PAHs remediation. Environ. Sci. Pollut. Res. 20(10), 7348-7354. https://doi.org/10.1007/s11356-013-1750-6.
Fiala, G.J., Schamel, W.W., Blumenthal, B., 2011. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates. J Vis Exp(48). https://doi.org/10.3791/2164.
Findlay, M., Smoler, D.F., Fogel, S., Mattes, T.E., 2016. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria. Environ. Sci. Technol. 50(7), 3617-3625. https://doi.org/10.1021/acs.est.5b05798.
Frauenstein, D., Seidel, K., Adrian, L., 2017. SandTraps are efficient, scalable, and mild systems for harvesting, washing and concentrating cells. J. Microbiol. Methods 132, 106-111. https://doi.org/10.1016/j.mimet.2016.11.018.
Gangola, S., Bhatt, P., Kumar, A.J., Bhandari, G., Joshi, S., Punetha, A., Bhatt, K., Rene, E.R., 2022. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere 296, 133916. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.133916.
Ghandehari, S.S., Cheng, S.-H., Hapeman, C.J., Torrents, A., Kjellerup, B.V., 2023. Ensuring the continued success of a mulch biowall at a trichloroethylene-contaminated superfund site: Lessons learned. Remediation 33, 323-337. https://doi.org/https://doi.org/10.1002/rem.21764.
Gihring, T.M., Zhang, G., Brandt, C.C., Brooks, S.C., Campbell, J.H., Carroll, S., Criddle, C.S., Green, S.J., Jardine, P., Kostka, J.E., Lowe, K., Mehlhorn, T.L., Overholt, W., Watson, D.B., Yang, Z., Wu, W.M., Schadt, C.W., 2011. A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Appl. Environ. Microbiol. 77(17), 5955-5965. https://doi.org/10.1128/aem.00220-11.
Grant, J.R., Enns, E., Marinier, E., Mandal, A., Herman, E.K., Chen, C.-y., Graham, M., Van Domselaar, G., Stothard, P., 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51(W1), W484-W492. https://doi.org/10.1093/nar/gkad326.
Güell, M., Yus, E., Lluch-Senar, M., Serrano, L., 2011. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat. Rev. Microbiol. 9(9), 658-669. https://doi.org/10.1038/nrmicro2620.
Guo, M., Chen, Y., 2018. Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Rev. Environ. Sci. Biotechnol. 17, 259-284.
Gushgari-Doyle, S., Alvarez-Cohen, L., 2020. Effects of Arsenic on Trichloroethene-Dechlorination Activities of Dehalococcoides mccartyi 195. Environ. Sci. Technol. 54(2), 1276-1285. https://doi.org/10.1021/acs.est.9b06527.
Hand, S.C., Hardewig, I., 1996. Downregulation of cellular metabolism during environmental stress: mechanisms and implications. Annu. Rev. Physiol. 58(1), 539-563.
He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S., Löffler, F.E., 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424(6944), 62-65. https://doi.org/10.1038/nature01717.
He, J., Sung, Y., Dollhopf, M.E., Fathepure, B.Z., Tiedje, J.M., Löffler, F.E., 2002. Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sites. Environ. Sci. Technol. 36(18), 3945-3952. https://doi.org/10.1021/es025528d.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M., Löffler, F.E., 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ. Microbiol. 7(9), 1442-1450. https://doi.org/10.1111/j.1462-2920.2005.00830.x.
He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., Criddle, C., Zhou, J., 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1(1), 67-77. https://doi.org/10.1038/ismej.2007.2.
Heimann, A.C., Batstone, D.J., Jakobsen, R., 2006. Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Appl. Environ. Microbiol. 72(4), 2942-2949. https://doi.org/10.1128/aem.72.4.2942-2949.2006.
Hellmold, N., Eberwein, M., Phan, M.H.T., Kümmel, S., Einsle, O., Deobald, D., Adrian, L., 2023. Dehalococcoides mccartyi strain CBDB1 takes up protons from the cytoplasm to reductively dehalogenate organohalides indicating a new modus of proton motive force generation. Front Microbiol 14, 1305108. https://doi.org/10.3389/fmicb.2023.1305108.
Hermon, L., Hellal, J., Denonfoux, J., Vuilleumier, S., Imfeld, G., Urien, C., Ferreira, S., Joulian, C., 2019. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater. Front Microbiol 10, 89. https://doi.org/10.3389/fmicb.2019.00089.
Huang, S.-W., Hussain, B., Chen, J.-S., Asif, A., Hsu, B.-M., 2024. Evaluating groundwater ecosystem dynamics in response to post in-situ remediation of mixed chlorinated volatile organic compounds (CVOCs): An insight into microbial community resilience, adaptability, and metabolic functionality for sustainable remediation and ecosystem restoration. Sci. Total Environ. 920, 170874. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170874.
Huang, Y.-T., Liu, P.-Y., Shih, P.-W., 2021. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biology 22(1), 95. https://doi.org/10.1186/s13059-021-02282-6.
Huung, W.P., Lin, T.a.L., Ren, S.S., Chen, J.C., Chen, Y.R., Kao, C.H., 1988. Senescence of Rice Leaves XVIII. Changes of Stomatal Aperture during Senescence. Plant and Cell Physiology 29(1), 27-31. https://doi.org/10.1093/oxfordjournals.pcp.a077469.
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9.
Jin, Y.O., Mattes, T.E., 2010. A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater. Environ. Sci. Technol. 44(23), 9036-9041. https://doi.org/10.1021/es102232m.
Johnson, D.R., Nemir, A., Andersen, G.L., Zinder, S.H., Alvarez-Cohen, L., 2009. Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol. Lett. 294(2), 198-206. https://doi.org/10.1111/j.1574-6968.2009.01569.x.
Kanehisa, M., Goto, S., 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27.
Kasi, M., Wadhawan, T., Simsek, H., McEvoy, J., Padmanabhan, G., Sletten, D., Khan, E., 2013. Enricher reactor – Permeable reactive biobarrier approach for removing a mixture of contaminants with substrate interactions. Bioresour. Technol. 146, 336-344. https://doi.org/https://doi.org/10.1016/j.biortech.2013.07.089.
Kidane, D., Sanchez, H., Alonso, J.C., Graumann, P.L., 2004. Visualization of DNA double‐strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol. Microbiol. 52(6), 1627-1639.
Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37(8), 907-915. https://doi.org/10.1038/s41587-019-0201-4.
Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A., 2019. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540-546. https://doi.org/10.1038/s41587-019-0072-8.
Koner, S., Chen, J.-S., Hsu, B.-M., Rathod, J., Huang, S.-W., Chien, H.-Y., Hussain, B., Chan, M.W.Y., 2022. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy. J. Hazard. Mater. 424, 127266. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127266.
Kruse, S., Türkowsky, D., Birkigt, J., Matturro, B., Franke, S., Jehmlich, N., von Bergen, M., Westermann, M., Rossetti, S., Nijenhuis, I., Adrian, L., Diekert, G., Goris, T., 2021. Interspecies metabolite transfer and aggregate formation in a co-culture of Dehalococcoides and Sulfurospirillum dehalogenating tetrachloroethene to ethene. The ISME Journal 15(6), 1794-1809. https://doi.org/10.1038/s41396-020-00887-6.
Kucharzyk, K.H., Meisel, J.E., Kara-Murdoch, F., Murdoch, R.W., Higgins, S.A., Vainberg, S., Bartling, C.M., Mullins, L., Hatzinger, P.B., Löffler, F.E., 2020. Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the Dehalococcoides mccartyi-Containing Consortium SDC-9. J. Proteome Res. 19(4), 1812-1823. https://doi.org/10.1021/acs.jproteome.0c00072.
Kucharzyk, K.H., Meisel, J.E., Kara-Murdoch, F., Murdoch, R.W., Higgins, S.A., Vainberg, S., Bartling, C.M., Mullins, L., Hatzinger, P.B., Löffler, F.E., 2020. Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the Dehalococcoides mccartyi-Containing Consortium SDC-9. J Proteome Res 19(4), 1812-1823. https://doi.org/10.1021/acs.jproteome.0c00072.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096.
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357-359. https://doi.org/10.1038/nmeth.1923.
Lee, H.-C., Chen, S.-C., Sheu, Y.-T., Yao, C.-L., Lo, K.-H., Kao, C.-M., 2024. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. Environ. Pollut. 348, 123768. https://doi.org/https://doi.org/10.1016/j.envpol.2024.123768.
Lee, P.K., Cheng, D., West, K.A., Alvarez-Cohen, L., He, J., 2013. Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ. Microbiol. 15(8), 2293-2305. https://doi.org/10.1111/1462-2920.12099.
Li, H., 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094-3100. https://doi.org/10.1093/bioinformatics/bty191.
Li, W., O′Neill, K.R., Haft, D.H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F., Derbyshire, M.K., Durkin, A.S., Gonzales, N.R., Gwadz, M., Lanczycki, C.J., Song, J.S., Thanki, N., Wang, J., Yamashita, R.A., Yang, M., Zheng, C., Marchler-Bauer, A., Thibaud-Nissen, F., 2021. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 49(D1), D1020-d1028. https://doi.org/10.1093/nar/gkaa1105.
Li, Y., Li, B., Wang, C.P., Fan, J.Z., Sun, H.W., 2014. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates. Int J Mol Sci 15(5), 9134-9148. https://doi.org/10.3390/ijms15059134.
Li, Z.-T., Song, X., Yuan, S., Zhao, H.-P., 2024. Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: Kinetics and microbial responses. Water Res. 253, 121328. https://doi.org/https://doi.org/10.1016/j.watres.2024.121328.
Li, Z.-T., Yang, S.-Y., Zhao, H.-P., 2023. The effects of arsenic on dechlorination of trichloroethene by consortium DH: Microbial response and resistance. Sci. Total Environ. 896, 165219. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.165219.
Liang, S.H., Kuo, Y.C., Chen, S.H., Chen, C.Y., Kao, C.M., 2013. Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. J. Hazard. Mater. 254-255, 107-115. https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.03.047.
Liang, X., Molenda, O., Tang, S., Edwards, E.A., 2015. Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes. Appl. Environ. Microbiol. 81(14), 4626-4633. https://doi.org/10.1128/aem.00536-15.
Liao, H.Y., Chien, C.C., Tang, P., Chen, C.C., Chen, C.Y., Chen, S.C., 2018. The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2, 4, 6-trinitrotoluene by Citrobacter sp. J. Hazard. Mater. 349, 79-90. https://doi.org/10.1016/j.jhazmat.2018.01.039.
Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923-930. https://doi.org/10.1093/bioinformatics/btt656.
Limbu, M.S., Xiong, T., Wang, S., 2024. A review of Ribosome profiling and tools used in Ribo-seq data analysis. Comput Struct Biotechnol J 23, 1912-1918. https://doi.org/10.1016/j.csbj.2024.04.051.
Lin, W.H., Chien, C.C., Lu, C.W., Hou, D., Sheu, Y.T., Chen, S.C., Kao, C.M., 2021. Growth inhibition of methanogens for the enhancement of TCE dechlorination. Sci. Total Environ. 787, 147648. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147648.
Liu, D., Yang, X., Zhang, L., Tang, Y., He, H., Liang, M., Tu, Z., Zhu, H., 2022. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater. Int. J. Env. Res. Public Health 19(21). https://doi.org/10.3390/ijerph192113830.
Liu, X., Zhang, L., Shen, R., Lu, Q., Zeng, Q., Zhang, X., He, Z., Rossetti, S., Wang, S., 2023. Reciprocal Interactions of Abiotic and Biotic Dechlorination of Chloroethenes in Soil. Environ. Sci. Technol. 57(37), 14036-14045. https://doi.org/10.1021/acs.est.3c04262.
Lo, K.-H., Lu, C.-W., Chien, C.-C., Sheu, Y.-T., Lin, W.-H., Chen, S.-C., Kao, C.-M., 2022. Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. J. Environ. Manage. 311, 114836. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114836.
Lo, K.-H., Lu, C.-W., Lin, W.-H., Chien, C.-C., Chen, S.-C., Kao, C.-M., 2020. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Chemosphere 238, 124596. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.124596.
Löffler, F.E., Sanford, R.A., Tiedje, J.M., 1996. Initial Characterization of a Reductive Dehalogenase from Desulfitobacterium chlororespirans Co23. Appl. Environ. Microbiol. 62(10), 3809-3813. https://doi.org/10.1128/aem.62.10.3809-3813.1996.
Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H., Spormann, A.M., 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63(Pt 2), 625-635. https://doi.org/10.1099/ijs.0.034926-0.
Love, M., Anders, S., Huber, W., 2014. Differential analysis of count data–the DESeq2 package. Genome Biol 15(550), 10-1186.
Lowe, R., Shirley, N., Bleackley, M., Dolan, S., Shafee, T., 2017. Transcriptomics technologies. PLoS Comp. Biol. 13(5), e1005457. https://doi.org/10.1371/journal.pcbi.1005457.
Lu, C.-W., Kao, C.-M., Le, N.N., Lin, C.-C., Chen, S.-C., 2022. Long-term dechlorination of cis-DCE to ethene with co-immobilized Dehalococcoides mccartyi BAV1 and Clostridium butyricum in silica gel system. J. Hazard. Mater. 430, 128355. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128355.
Lu, C.-W., Lo, K.-H., Wang, S.-C., Kao, C.-M., Chen, S.-C., 2024. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. Sci. Total Environ. 920, 170885. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170885.
Lu, Q., Zhu, R.L., Yang, J., Li, H., Liu, Y.D., Lu, S.G., Luo, Q.S., Lin, K.F., 2015. Natural attenuation model and biodegradation for 1,1,1-trichloroethane contaminant in shallow groundwater. Front. Microbiol. 6, 839. https://doi.org/10.3389/fmicb.2015.00839.
Luo, M., Zhang, X., Zhu, X., Long, T., Cao, S., Yu, R., 2024. Bioremediation of chlorinated ethenes contaminated groundwater and the reactive transport modeling – A review. Environ. Res. 240, 117389. https://doi.org/https://doi.org/10.1016/j.envres.2023.117389.
Ma, J., Xie, M., Zhao, N., Wang, Y., Lin, Q., Zhu, Y., Chao, Y., Ni, Z., Qiu, R., 2023. Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbon‑iron materials. Sci. Total Environ. 878, 162720. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162720.
Malla, M.A., Dubey, A., Yadav, S., Kumar, A., Hashem, A., Abd_Allah, E.F., 2018. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front. Microbiol. 9.
Mao, X., Polasko, A., Alvarez-Cohen, L., 2017. Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Appl. Environ. Microbiol. 83(8). https://doi.org/10.1128/aem.03384-16.
Mattes, T.E., Alexander, A.K., Coleman, N.V., 2010. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol. Rev. 34(4), 445-475. https://doi.org/10.1111/j.1574-6976.2010.00210.x.
McMurdie, P.J., Behrens, S.F., Müller, J.A., Göke, J., Ritalahti, K.M., Wagner, R., Goltsman, E., Lapidus, A., Holmes, S., Löffler, F.E., Spormann, A.M., 2009. Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genet. 5(11), e1000714. https://doi.org/10.1371/journal.pgen.1000714.
McMurdie, P.J., Hug, L.A., Edwards, E.A., Holmes, S., Spormann, A.M., 2011. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides. BMC Genomics 12(1), 287. https://doi.org/10.1186/1471-2164-12-287.
Men, Y., Feil, H., VerBerkmoes, N.C., Shah, M.B., Johnson, D.R., Lee, P.K.H., West, K.A., Zinder, S.H., Andersen, G.L., Alvarez-Cohen, L., 2012. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. The ISME Journal 6(2), 410-421. https://doi.org/10.1038/ismej.2011.111.
Mena, E., Ruiz, C., Villaseñor, J., Rodrigo, M.A., Cañizares, P., 2015. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. J. Hazard. Mater. 283, 131-139. https://doi.org/https://doi.org/10.1016/j.jhazmat.2014.08.069.
Meng, L., Tomita, R., Yoshida, T., Yoshida, N., 2023. Soil organic matter and nutrient availability affect the applicability of low-carbon energy source in Dehalococcoides-augmented soil. J. Hazard. Mater. 459, 132251. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132251.
Meng, L., Yoshida, N., Li, Z., 2022. Soil microorganisms facilitated the electrode-driven trichloroethene dechlorination to ethene by Dehalococcoides species in a bioelectrochemical system. Environ. Res. 209, 112801. https://doi.org/https://doi.org/10.1016/j.envres.2022.112801.
Miller, E., Menashe, O., Dosoretz, C.G., 2022. A tailored permeable reactive bio-barrier for in situ groundwater remediation: removal of 3-chlorophenol as a case study. Environ. Technol. 43(8), 1200-1210. https://doi.org/10.1080/09593330.2020.1822922.
Min, Y., Mei, S.-C., Pan, X.-Q., Chen, J.-J., Yu, H.-Q., Xiong, Y., 2023. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat. Commun. 14(1), 5134. https://doi.org/10.1038/s41467-023-40906-6.
Moench, T.T., Zeikus, J.G., 1983. An improved preparation method for a titanium (III) media reductant. J. Microbiol. Methods 1(4), 199-202. https://doi.org/https://doi.org/10.1016/0167-7012(83)90024-6.
Molenda, O., Puentes Jácome, L.A., Cao, X., Nesbø, C.L., Tang, S., Morson, N., Patron, J., Lomheim, L., Wishart, D.S., Edwards, E.A., 2020. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. Environ Sci Process Impacts 22(3), 663-678. https://doi.org/10.1039/c9em00605b.
Molenda, O., Tang, S., Edwards, E.A., 2016. Complete Genome Sequence of Dehalococcoides mccartyi Strain WBC-2, Capable of Anaerobic Reductive Dechlorination of Vinyl Chloride. Genome Announc 4(6). https://doi.org/10.1128/genomeA.01375-16.
Molenda, O., Tang, S., Lomheim, L., Gautam, V.K., Lemak, S., Yakunin, A.F., Maxwell, K.L., Edwards, E.A., 2019. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes. Isme j 13(1), 24-38. https://doi.org/10.1038/s41396-018-0254-2.
Morson, N., Molenda, O., Picott, K.J., Richardson, R.E., Edwards, E.A., 2022. Long-term survival of Dehalococcoides mccartyi strains in mixed cultures under electron acceptor and ammonium limitation. FEMS Microbes 3. https://doi.org/10.1093/femsmc/xtac021.
Němeček, J., Marková, K., Špánek, R., Antoš, V., Kozubek, P., Lhotský, O., Černík, M., 2020. Hydrochemical Conditions for Aerobic/Anaerobic Biodegradation of Chlorinated Ethenes—A Multi-Site Assessment, Water.
Niño de Guzmán, G.T., Hapeman, C.J., Millner, P.D., Torrents, A., Jackson, D., Kjellerup, B.V., 2018. Presence of organohalide-respiring bacteria in and around a permeable reactive barrier at a trichloroethylene-contaminated Superfund site. Environ. Pollut. 243, 766-776. https://doi.org/https://doi.org/10.1016/j.envpol.2018.08.095.
Obiri-Nyarko, F., Grajales-Mesa, S.J., Malina, G., 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111, 243-259. https://doi.org/https://doi.org/10.1016/j.chemosphere.2014.03.112.
Orlygsson, J., Kristjansson, J.K., 2014. The Family Hydrogenophilaceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, 859-868. https://doi.org/10.1007/978-3-642-30197-1_244.
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114.
Peredo, E.L., Cardon, Z.G., 2020. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proc Natl Acad Sci U S A 117(29), 17438-17445. https://doi.org/10.1073/pnas.1906904117.
Pérez-de-Mora, A., Lacourt, A., McMaster, M.L., Liang, X., Dworatzek, S.M., Edwards, E.A., 2018. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi) Strains in Dechlorinating Enrichment Cultures and Groundwater Environments. Front Microbiol 9, 812. https://doi.org/10.3389/fmicb.2018.00812.
Phillips, D.H., 2009. Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination 248(1), 352-359. https://doi.org/https://doi.org/10.1016/j.desal.2008.05.075.
Pitsikas, P., Polosina, Y.Y., Cupples, C.G., 2009. Interaction between the mismatch repair and nucleotide excision repair pathways in the prevention of 5-azacytidine-induced CG-to-GC mutations in Escherichia coli. DNA Repair (Amst) 8(3), 354-359. https://doi.org/10.1016/j.dnarep.2008.11.015.
Prensner, J.R., Abelin, J.G., Kok, L.W., Clauser, K.R., Mudge, J.M., Ruiz-Orera, J., Bassani-Sternberg, M., Moritz, R.L., Deutsch, E.W., van Heesch, S., 2023. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol. Cell. Proteomics 22(9), 100631. https://doi.org/10.1016/j.mcpro.2023.100631.
Puentes Jácome, L.A., Wang, P.-H., Molenda, O., Li, Y.X., Islam, M.A., Edwards, E.A., 2019. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. Environ. Sci. Technol. 53(19), 11364-11374. https://doi.org/10.1021/acs.est.9b02339.
Ren, X., Ruan, J., Lan, X., Yang, S., Wu, D., Huang, X., Zhang, H., Liu, J., Huang, H., 2023. SET-mediated epigenetic dysregulation of p53 impairs trichloroethylene-induced DNA damage response. Toxicol. Lett. 387, 76-83. https://doi.org/10.1016/j.toxlet.2023.09.008.
Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., Peplies, J., 2016. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6), 929-931. https://doi.org/10.1093/bioinformatics/btv681.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S., Löffler, F.E., 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72(4), 2765-2774. https://doi.org/10.1128/aem.72.4.2765-2774.2006.
Ritalahti, K.M., Amos, B.K., Sung, Y., Wu, Q., Koenigsberg, S.S., Löffler, F.E., 2006. Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Appl. Environ. Microbiol. 72(4), 2765-2774. https://doi.org/10.1128/AEM.72.4.2765-2774.2006.
Ritalahti, K.M., Hatt, J.K., Lugmayr, V., Henn, K., Petrovskis, E.A., Ogles, D.M., Davis, G.A., Yeager, C.M., Lebrón, C.A., Löffler, F.E., 2010. Comparing On-Site to Off-Site Biomass Collection for Dehalococcoides Biomarker Gene Quantification To Predict in Situ Chlorinated Ethene Detoxification Potential. Environ. Sci. Technol. 44(13), 5127-5133. https://doi.org/10.1021/es100408r.
Ritalahti, K.M., Löffler, F.E., Rasch, E.E., Koenigsberg, S.S., 2005. Bioaugmentation for chlorinated ethene detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Industrial Biotechnology 1(2), 114-118. https://doi.org/10.1089/ind.2005.1.114.
Saiyari, D.M., Chuang, H.-P., Senoro, D.B., Lin, T.-F., Whang, L.-M., Chiu, Y.-T., Chen, Y.-H., 2018. A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustain. Environ. Res. 28(4), 149-157. https://doi.org/https://doi.org/10.1016/j.serj.2018.01.006.
Sakr, M., El Agamawi, H., Klammler, H., Mohamed, M.M., 2023. A review on the use of permeable reactive barriers as an effective technique for groundwater remediation. Groundw. Sustain. Dev. 21, 100914. https://doi.org/https://doi.org/10.1016/j.gsd.2023.100914.
Samatova, E., Daberger, J., Liutkute, M., Rodnina, M.V., 2020. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Front Microbiol 11, 619430. https://doi.org/10.3389/fmicb.2020.619430.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537-7541. https://doi.org/10.1128/aem.01541-09.
Seidel, K., Kühnert, J., Adrian, L., 2018. The Complexome of Dehalococcoides mccartyi Reveals Its Organohalide Respiration-Complex Is Modular. Front Microbiol 9, 1130. https://doi.org/10.3389/fmicb.2018.01130.
Semkiw, E.S., Barcelona, M.J., 2011. Field Study of Enhanced TCE Reductive Dechlorination by a Full-Scale Whey PRB. Ground Water Monit. Remediat. 31(1), 68-78. https://doi.org/https://doi.org/10.1111/j.1745-6592.2010.01321.x.
Sexton, D.L., Chen, G., Kara Murdoch, F., Hashimi, A., Löffler, F.E., Tocheva, E.I., 2022. Ultrastructure of Organohalide-Respiring Dehalococcoidia Revealed by Cryo-Electron Tomography. Appl. Environ. Microbiol. 88(2), e0190621. https://doi.org/10.1128/aem.01906-21.
Shapiro, A.M., Evans, C.E., Hayes, E.C., 2017. Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents. J. Contam. Hydrol. 203, 70-84. https://doi.org/10.1016/j.jconhyd.2017.06.006.
Sharma, P., Singh, S.P., Iqbal, H.M.N., Tong, Y.W., 2022. Omics approaches in bioremediation of environmental contaminants: An integrated approach for environmental safety and sustainability. Environ. Res. 211, 113102. https://doi.org/https://doi.org/10.1016/j.envres.2022.113102.
Shi, C., Tong, M., Cai, Q., Li, Z., Li, P., Lu, Y., Cao, Z., Liu, H., Zhao, H.-P., Yuan, S., 2023. Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity. Environ. Sci. Technol. 57(12), 5046-5055. https://doi.org/10.1021/acs.est.3c00278.
Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351.
Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. Sci. Total Environ. 770, 144561. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144561.
Skinner, J., Delgado, A.G., Hyman, M., Chu, M.-Y.J., 2024. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. Sci. Total Environ., 171667. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.171667.
Song, Y., Tang, H., Yan, Y., Guo, Y., Wang, H., Bian, Z., 2022. Combining electrokinetic treatment with modified zero-valent iron nanoparticles for rapid and thorough dechlorination of trichloroethene. Chemosphere 292, 133443. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133443.
Striggow, B., 2017. Groundwater Sampling. Operating Procedure. EPA SESDA, SESDPROC-301-R303.
Stupperich, E., Eisinger, H.J., Kräutler, B., 1988. Diversity of corrinoids in acetogenic bacteria. P-cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii. Eur. J. Biochem. 172(2), 459-464. https://doi.org/10.1111/j.1432-1033.1988.tb13910.x.
Sung, Y., Fletcher, K.E., Ritalahti, K.M., Apkarian, R.P., Ramos-Hernández, N., Sanford, R.A., Mesbah, N.M., Löffler, F.E., 2006a. Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl. Environ. Microbiol. 72(4), 2775-2782. https://doi.org/10.1128/aem.72.4.2775-2782.2006.
Sung, Y., Ritalahti, K.M., Apkarian, R.P., Löffler, F.E., 2006b. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72(3), 1980-1987. https://doi.org/10.1128/aem.72.3.1980-1987.2006.
Tang, S., Chan, W.W., Fletcher, K.E., Seifert, J., Liang, X., Löffler, F.E., Edwards, E.A., Adrian, L., 2013. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl. Environ. Microbiol. 79(3), 974-981. https://doi.org/10.1128/aem.01873-12.
Tang, Z., Song, X., Xu, M., Yao, J., Ali, M., Wang, Q., Zeng, J., Ding, X., Wang, C., Zhang, Z., Liu, X., 2022. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. J. Hazard. Mater. 435, 128969. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.128969.
Tarnawski, S.-E., Rossi, P., Brennerova, M.V., Stavelova, M., Holliger, C., 2016. Validation of an Integrative Methodology to Assess and Monitor Reductive Dechlorination of Chlorinated Ethenes in Contaminated Aquifers. Frontiers in Environmental Science 4. https://doi.org/10.3389/fenvs.2016.00007.
Taş, N., van Eekert, M.H., de Vos, W.M., Smidt, H., 2010. The little bacteria that can - diversity, genomics and ecophysiology of ′Dehalococcoides′ spp. in contaminated environments. Microb Biotechnol 3(4), 389-402. https://doi.org/10.1111/j.1751-7915.2009.00147.x.
Türkowsky, D., Jehmlich, N., Diekert, G., Adrian, L., von Bergen, M., Goris, T., 2018. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol. Ecol. 94(3), fiy013. https://doi.org/10.1093/femsec/fiy013.
Uchino, Y., Miura, T., Hosoyama, A., Ohji, S., Yamazoe, A., Ito, M., Takahata, Y., Suzuki, K., Fujita, N., 2015. Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci 10, 102. https://doi.org/10.1186/s40793-015-0095-9.
Upadhyay, S., Sinha, A., 2018. Role of Microorganisms in Permeable Reactive Bio-Barriers (PRBBs) for Environmental Clean-Up: A Review. Glob. Nest J. 20(2), 269-280. https://doi.org/10.30955/gnj.002525.
Vainberg, S., Condee, C.W., Steffan, R.J., 2009. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J. Ind. Microbiol. Biotechnol. 36(9), 1189-1197. https://doi.org/10.1007/s10295-009-0600-5.
Valdivia-Rivera, S., Ayora-Talavera, T., Lizardi-Jiménez, M.A., García-Cruz, U., Cuevas-Bernardino, J.C., Pacheco, N., 2021. Encapsulation of microorganisms for bioremediation: Techniques and carriers. Rev. Environ. Sci. Biotechnol. 20(3), 815-838. https://doi.org/10.1007/s11157-021-09577-x.
van Hylckama, V.J., de Koning, W., Janssen, D.B., 1996. Transformation Kinetics of Chlorinated Ethenes by Methylosinus trichosporium OB3b and Detection of Unstable Epoxides by On-Line Gas Chromatography. Appl. Environ. Microbiol. 62(9), 3304-3312. https://doi.org/10.1128/aem.62.9.3304-3312.1996.
Vaser, R., Sović, I., Nagarajan, N., Šikić, M., 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5), 737-746. https://doi.org/10.1101/gr.214270.116.
Viamajala, S., Peyton, B.M., Gerlach, R., Sivaswamy, V., Apel, W.A., Petersen, J.N., 2008. Permeable reactive biobarriers for in situ Cr(VI) reduction: bench scale tests using Cellulomonas sp. strain ES6. Biotechnol. Bioeng. 101(6), 1150-1162. https://doi.org/10.1002/bit.22020.
Vogel, T.M., McCarty, P.L., 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49(5), 1080-1083. https://doi.org/10.1128/aem.49.5.1080-1083.1985.
Wang, S., Chng, K.R., Wilm, A., Zhao, S., Yang, K.L., Nagarajan, N., He, J., 2014. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci U S A 111(33), 12103-12108. https://doi.org/10.1073/pnas.1404845111.
Wang, W., Gong, T., Li, H., Liu, Y., Dong, Q., Zan, R., Wu, Y., 2022. The multi-process reaction model and underlying mechanisms of 2,4,6-trichlorophenol removal in lab-scale biochar-microorganism augmented ZVI PRBs and field-scale PRBs performance. Water Res. 217, 118422. https://doi.org/https://doi.org/10.1016/j.watres.2022.118422.
Wang, W., Wu, Y., 2019. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater. Environ. Sci. Pollut. Res. 26(12), 12042-12054. https://doi.org/10.1007/s11356-019-04676-3.
Wen, L.L., Zhang, Y., Pan, Y.W., Wu, W.Q., Meng, S.H., Zhou, C., Tang, Y., Zheng, P., Zhao, H.P., 2015. The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors. Environ. Sci. Pollut. Res. 22(23), 19039-19047. https://doi.org/10.1007/s11356-015-5117-z.
Wickham, H., 2016. ggplot2. Use R!
Wolin, E.A., Wolin, M.J., Wolfe, R.S., 1963. Formation of Methane by Bacterial Extracts. J. Biol. Chem. 238(8), 2882-2886. https://doi.org/https://doi.org/10.1016/S0021-9258(18)67912-8.
Wu, R., Shen, R., Liang, Z., Zheng, S., Yang, Y., Lu, Q., Adrian, L., Wang, S., 2023. Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites. Environ. Sci. Technol. 57(45), 17338-17352. https://doi.org/10.1021/acs.est.3c05932.
Wu, Y.-J., Liu, P.-W.G., Hsu, Y.-S., Whang, L.-M., Lin, T.-F., Hung, W.-N., Cho, K.-C., 2019. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation. Chemosphere 233, 697-704. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.05.203.
Xiao, Z., Jiang, W., Chen, D., Xu, Y., 2020. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: A review. Ecotoxicol. Environ. Saf. 202, 110925. https://doi.org/https://doi.org/10.1016/j.ecoenv.2020.110925.
Xu, G., Ng, H.L., Chen, C., Rogers, M.J., He, J., 2024. Combatting multiple aromatic organohalide pollutants by bioaugmentation with a single Dehalococcoides in sediments. Water Res., 121447. https://doi.org/https://doi.org/10.1016/j.watres.2024.121447.
Xu, G., Zhao, S., Chen, C., Zhang, N., He, J., 2023a. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. Environ. Sci. Technol. 57(40), 15112-15122. https://doi.org/10.1021/acs.est.3c04535.
Xu, G., Zhao, X., Zhao, S., Rogers, M.J., He, J., 2023b. Salinity determines performance, functional populations, and microbial ecology in consortia attenuating organohalide pollutants. ISME J. 17(5), 660-670. https://doi.org/10.1038/s41396-023-01377-1.
Xu, Y., Wang, Y., Zheng, A., Yuan, Y., Xu, L., Tang, Y., Qin, Q., 2024. Efficient biostimulation of microbial dechlorination of polychlorinated biphenyls by acetate and lactate under nitrate reducing conditions: Insights into dechlorination pathways and functional genes. J. Hazard. Mater. 468, 133775. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.133775.
Yamazaki, Y., Kitamura, G., Tian, X., Suzuki, I., Kobayashi, T., Shimizu, T., Inoue, D., Ike, M., 2022. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere 287, 131989. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131989.
Yan, J., Im, J., Yang, Y., Löffler, F.E., 2013. Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1616), 20120320.
Yan, J., Şimşir, B., Farmer, A.T., Bi, M., Yang, Y., Campagna, S.R., Löffler, F.E., 2016. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi. The ISME Journal 10(5), 1092-1101. https://doi.org/10.1038/ismej.2015.197.
Yan, J., Wang, J., Villalobos Solis, M.I., Jin, H., Chourey, K., Li, X., Yang, Y., Yin, Y., Hettich, R.L., Löffler, F.E., 2021. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. Environ. Sci. Technol. 55(8), 4831-4841. https://doi.org/10.1021/acs.est.0c07354.
Yan, X., Gao, B., Wang, J., Zhu, X., Zhang, M., 2023. Insights into remediation effects and bacterial diversity of different remediation measures in rare earth mine soil with SO42- and heavy metals. Front. Microbiol. 14, 1050635. https://doi.org/10.3389/fmicb.2023.1050635.
Yang, Y., Cápiro, N.L., Yan, J., Marcet, T.F., Pennell, K.D., Löffler, F.E., 2017. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiol. Ecol. 93(12), fix130. https://doi.org/10.1093/femsec/fix130.
Yang, Y., Higgins, S.A., Yan, J., Şimşir, B., Chourey, K., Iyer, R., Hettich, R.L., Baldwin, B., Ogles, D.M., Löffler, F.E., 2017. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME J. 11(12), 2767-2780. https://doi.org/10.1038/ismej.2017.127.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., Glöckner, F.O., 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42(D1), D643-D648. https://doi.org/10.1093/nar/gkt1209.
Yohda, M., Ikegami, K., Aita, Y., Kitajima, M., Takechi, A., Iwamoto, M., Fukuda, T., Tamura, N., Shibasaki, J., Koike, S., Komatsu, D., Miyagi, S., Nishimura, M., Uchino, Y., Shiroma, A., Shimoji, M., Tamotsu, H., Ashimine, N., Shinzato, M., Ohki, S., Nakano, K., Teruya, K., Satou, K., Hirano, T., Yagi, O., 2017. Isolation and genomic characterization of a Dehalococcoides strain suggests genomic rearrangement during culture. Sci Rep 7(1), 2230. https://doi.org/10.1038/s41598-017-02381-0.
Yu, Y., Zhang, Y., Liu, Y., Lv, M., Wang, Z., Wen, L.-l., Li, A., 2023. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. J. Hazard. Mater. 452, 131243. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131243.
Zhang, H., Ziv-El, M., Rittmann, B.E., Krajmalnik-Brown, R., 2010. Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ. Sci. Technol. 44(13), 5159-5164. https://doi.org/10.1021/es100695n.
Zhang, M., Dong, J., Cai, P., 2020. Mechanisms of mass transfer enhancement by phase-transfer catalysis for permanganate oxidizing dense non-aqueous phase liquid (DNAPL) TCE. Chemosphere 240, 124867. https://doi.org/10.1016/j.chemosphere.2019.124867.
Zhang, S., Wen, W., Xia, X., Ouyang, W., Mai, B.-x., Adrian, L., Schüürmann, G., 2023. Insight into the Mechanism Underlying Dehalococcoides mccartyi Strain CBDB1-Mediated B12-Dependent Aromatic Reductive Dehalogenation. Environ. Sci. Technol. 57(29), 10773-10781. https://doi.org/10.1021/acs.est.3c00364.
Zhang, Z., Ali, M., Tang, Z., Sun, Q., Wang, Q., Liu, X., Yin, L., Yan, S., Xu, M., Coulon, F., Song, X., 2024. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. J. Hazard. Mater. 469, 134034. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.134034.
Zhang, Z., Fan, Z., Zhang, G., Qin, L., Fang, J., 2021. Application Progress of Microbial Immobilization Technology Based on Biomass Materials. Bioresour. 16(4), 8509-8524. https://doi.org/10.15376/biores.16.4.Zhang.
Zhao, J., Qin, B., Nikolay, R., Spahn, C.M.T., Zhang, G., 2019. Translatomics: The Global View of Translation. International Journal of Molecular Sciences 20(1), 212.
Zhao, S., Ding, C., He, J., 2017. Genomic characterization of Dehalococcoides mccartyi strain 11a5 reveals a circular extrachromosomal genetic element and a new tetrachloroethene reductive dehalogenase gene. FEMS Microbiol. Ecol. 93(4). https://doi.org/10.1093/femsec/fiw235.
Zhao, S., He, J., 2019. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiol. Ecol. 95(1). https://doi.org/10.1093/femsec/fiy209.
指導教授 陳師慶 羅秀容(Ssu-Ching Chen Hsiu-Jung Lo) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明