參考文獻 |
1. Alzahrani, S.M., H.A. Al Doghaither, and A.B. Al-Ghafari, General insight into cancer: An overview of colorectal cancer (Review). Mol Clin Oncol, 2021. 15(6): p. 271.
2. Organization, W.H. Colorectal cancer. 2023; Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
3. Colucci, G., et al., Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell′Italia Meridionale. J Clin Oncol, 2005. 23(22): p. 4866-75.
4. Goldberg, R.M., et al., A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol, 2004. 22(1): p. 23-30.
5. Xie, Y.H., Y.X. Chen, and J.Y. Fang, Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther, 2020. 5(1): p. 22.
6. Stein, A., et al., Immuno-oncology in GI tumours: Clinical evidence and emerging trials of PD-1/PD-L1 antagonists. Crit Rev Oncol Hematol, 2018. 130: p. 13-26.
7. Kang, D., et al., The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med, 2020. 52(8): p. 1198-1208.
8. Rayman, M.P., Selenium and human health. Lancet, 2012. 379(9822): p. 1256-68.
9. Howard, M.T., et al., Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem, 2013. 288(27): p. 19401-13.
10. Shrimali, R.K., et al., Selenoprotein expression is essential in endothelial cell development and cardiac muscle function. Neuromuscul Disord, 2007. 17(2): p. 135-42.
11. Kim, H.Y. and V.N. Gladyshev, Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol, 2005. 3(12): p. e375.
12. Lu, J. and A. Holmgren, Selenoproteins. J Biol Chem, 2009. 284(2): p. 723-7.
13. Carlisle, A.E., et al., Selenium detoxification is required for cancer-cell survival. Nat Metab, 2020. 2(7): p. 603-611.
14. Lee, N., A.E. Carlisle, and D. Kim, Examining xCT-mediated selenium uptake and selenoprotein production capacity in cells. Methods Enzymol, 2022. 662: p. 1-24.
15. Olm, E., et al., Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci U S A, 2009. 106(27): p. 11400-5.
16. Burk, R.F. and K.E. Hill, Regulation of Selenium Metabolism and Transport. Annu Rev Nutr, 2015. 35: p. 109-34.
17. Rayman, M.P., Selenium intake, status, and health: a complex relationship. Hormones (Athens), 2020. 19(1): p. 9-14.
18. Wrobel, J.K., R. Power, and M. Toborek, Biological activity of selenium: Revisited. IUBMB Life, 2016. 68(2): p. 97-105.
19. Hsu, W.L., et al., Blockage of Nrf2 and autophagy by L-selenocystine induces selective death in Nrf2-addicted colorectal cancer cells through p62-Keap-1-Nrf2 axis. Cell Death Dis, 2022. 13(12): p. 1060.
20. Vinceti, M., et al., Selenium for preventing cancer. Cochrane Database Syst Rev, 2018. 1(1): p. CD005195.
21. Wahyuni, E.A., et al., Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chem Biol Interact, 2022. 365: p. 110046.
22. Chen, T. and Y.S. Wong, Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell Mol Life Sci, 2008. 65(17): p. 2763-75.
23. Fan, C., et al., Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis, 2014. 5(4): p. e1191.
24. Cao, L., et al., Selenite induced breast cancer MCF7 cells apoptosis through endoplasmic reticulum stress and oxidative stress pathway. Chem Biol Interact, 2021. 349: p. 109651.
25. Fontana, F., et al., The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer, 2020. 1873(2): p. 188338.
26. Wallenberg, M., et al., Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med, 2014. 18(4): p. 671-84.
27. Chen, T. and Y.S. Wong, Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother, 2009. 63(2): p. 105-13.
28. Long, M., et al., Selenocystine-induced cell apoptosis and S-phase arrest inhibit human triple-negative breast cancer cell proliferation. In Vitro Cell Dev Biol Anim, 2015. 51(10): p. 1077-84.
29. Li, L., et al., Chemopreventive activity of selenocysteine prodrugs against tobacco-derived nitrosamine (NNK) induced lung tumors in the A/J mouse. J Biochem Mol Toxicol, 2005. 19(6): p. 396-405.
30. Almanza, A., et al., Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J, 2019. 286(2): p. 241-278.
31. Corazzari, M., et al., Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front Oncol, 2017. 7: p. 78.
32. Urra, H., et al., Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer, 2016. 2(5): p. 252-262.
33. Gorman, A.M., et al., Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther, 2012. 134(3): p. 306-16.
34. Tabas, I. and D. Ron, Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol, 2011. 13(3): p. 184-90.
35. Cubillos-Ruiz, J.R., S.E. Bettigole, and L.H. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 2017. 168(4): p. 692-706.
36. Yadav, R.K., et al., Endoplasmic reticulum stress and cancer. J Cancer Prev, 2014. 19(2): p. 75-88.
37. Lin, Y., et al., Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother, 2019. 118: p. 109249.
38. Harding, H.P., Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-4.
39. Mori, K., et al., A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell, 1993. 74(4): p. 743-56.
40. Walter, P. and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011. 334(6059): p. 1081-6.
41. Bertolotti, A., et al., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000. 2(6): p. 326-32.
42. Cox, J.S., C.E. Shamu, and P. Walter, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993. 73(6): p. 1197-206.
43. Tirasophon, W., A.A. Welihinda, and R.J. Kaufman, A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev, 1998. 12(12): p. 1812-24.
44. Wang, X.Z., et al., Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J, 1998. 17(19): p. 5708-17.
45. Calfon, M., et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 2002. 415(6867): p. 92-6.
46. Cox, J.S. and P. Walter, A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 1996. 87(3): p. 391-404.
47. Sidrauski, C. and P. Walter, The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell, 1997. 90(6): p. 1031-9.
48. Han, J., et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 2013. 15(5): p. 481-90.
49. Lin, J.H., et al., IRE1 signaling affects cell fate during the unfolded protein response. Science, 2007. 318(5852): p. 944-9.
50. Harding, H.P., et al., Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol, 2002. 18: p. 575-99.
51. Patil, C. and P. Walter, Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol, 2001. 13(3): p. 349-55.
52. Hamanaka, R.B., et al., PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell, 2005. 16(12): p. 5493-501.
53. Jousse, C., et al., Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol, 2003. 163(4): p. 767-75.
54. Rozpedek, W., et al., The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med, 2016. 16(6): p. 533-44.
55. Li, Y., et al., New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai), 2015. 47(2): p. 146-7.
56. Mukherjee, D., et al., Regulation of cellular immunity by activating transcription factor 4. Immunol Lett, 2020. 228: p. 24-34.
57. Hirsch, I., et al., ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6-CHOP pathway of stress response. Apoptosis, 2014. 19(5): p. 801-15.
58. Oyadomari, S., et al., Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest, 2002. 109(4): p. 525-32.
59. Hata, A.N., J.A. Engelman, and A.C. Faber, The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov, 2015. 5(5): p. 475-87.
60. Iurlaro, R. and C. Munoz-Pinedo, Cell death induced by endoplasmic reticulum stress. FEBS J, 2016. 283(14): p. 2640-52.
61. Tsukano, H., et al., The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol, 2010. 30(10): p. 1925-32.
62. Hu, H., et al., The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol, 2018. 9: p. 3083.
63. Tuzlak, S., T. Kaufmann, and A. Villunger, Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev, 2016. 30(19): p. 2133-2151.
64. Wei, M.C., et al., Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 2001. 292(5517): p. 727-30.
65. Balch, W.E., et al., Adapting proteostasis for disease intervention. Science, 2008. 319(5865): p. 916-9.
66. Anelli, T. and R. Sitia, Protein quality control in the early secretory pathway. EMBO J, 2008. 27(2): p. 315-27.
67. Bonifacino, J.S. and B.S. Glick, The mechanisms of vesicle budding and fusion. Cell, 2004. 116(2): p. 153-66.
68. Walter, P. and G. Blobel, Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol, 1981. 91(2 Pt 1): p. 557-61.
69. Braakman, I. and D.N. Hebert, Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol, 2013. 5(5): p. a013201.
70. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002. 82(2): p. 373-428.
71. Hetz, C. and F.R. Papa, The Unfolded Protein Response and Cell Fate Control. Mol Cell, 2018. 69(2): p. 169-181.
72. Schubert, U., et al., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 2000. 404(6779): p. 770-4.
73. Hetz, C., E. Chevet, and S.A. Oakes, Proteostasis control by the unfolded protein response. Nat Cell Biol, 2015. 17(7): p. 829-38.
74. Werner, E.D., J.L. Brodsky, and A.A. McCracken, Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13797-801.
75. Schwartz, A.L. and A. Ciechanover, Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol, 2009. 49: p. 73-96.
76. Rodrigo-Brenni, M.C. and D.O. Morgan, Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell, 2007. 130(1): p. 127-39.
77. Bard, J.A.M., et al., Structure and Function of the 26S Proteasome. Annu Rev Biochem, 2018. 87: p. 697-724.
78. Manasanch, E.E. and R.Z. Orlowski, Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol, 2017. 14(7): p. 417-433.
79. Plemper, R.K. and D.H. Wolf, Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci, 1999. 24(7): p. 266-70.
80. Sitia, R. and I. Braakman, Quality control in the endoplasmic reticulum protein factory. Nature, 2003. 426(6968): p. 891-4.
81. Rutkowski, D.T. and R.J. Kaufman, A trip to the ER: coping with stress. Trends Cell Biol, 2004. 14(1): p. 20-8.
82. Hitomi, J., et al., Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol, 2004. 165(3): p. 347-56.
83. Nakagawa, T., et al., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000. 403(6765): p. 98-103.
84. Sperandio, S., et al., Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ, 2004. 11(10): p. 1066-75.
85. Hanson, S., et al., Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol, 2023. 14: p. 1159409.
86. Sperandio, S., I. de Belle, and D.E. Bredesen, An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14376-81.
87. Kim, S.H., et al., The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochem Biophys Res Commun, 2014. 454(1): p. 36-41.
88. Yoon, M.J., et al., Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis, 2014. 5(3): p. e1112.
89. Mandula, J.K., et al., Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 2022. 40(10): p. 1145-1160 e9.
90. Seo, M.J., et al., Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis, 2023. 14(1): p. 42.
91. Yoon, M.J., et al., Simultaneous mitochondrial Ca(2+) overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett, 2012. 324(2): p. 197-209.
92. Wu, D., et al., Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis, 2023. 14(7): p. 473.
93. Zheng, R.R., et al., Paraptosis Inducer to Effectively Trigger Immunogenic Cell Death for Metastatic Tumor Immunotherapy with IDO Inhibition. ACS Nano, 2023. 17(11): p. 9972-9986.
94. Kroemer, G., et al., Immunogenic cell stress and death. Nat Immunol, 2022. 23(4): p. 487-500.
95. Mardi, A., et al., Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int, 2022. 22(1): p. 168.
96. Lin, S.Y., et al., Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy, 2018. 14(5): p. 778-795.
97. Solari, J.I.G., et al., Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer, 2020. 20(1): p. 474.
98. Givord, C., et al., Activation of the endoplasmic reticulum stress sensor IRE1alpha by the vaccine adjuvant AS03 contributes to its immunostimulatory properties. NPJ Vaccines, 2018. 3: p. 20.
99. Krysko, D.V., et al., Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer, 2012. 12(12): p. 860-75.
100. van Vliet, A.R., A.D. Garg, and P. Agostinis, Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum. Biol Chem, 2016. 397(7): p. 649-56.
101. Xu, Z., et al., miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun, 2016. 7: p. 11422.
102. Yang, H., et al., ATF6 Is a Critical Determinant of CHOP Dynamics during the Unfolded Protein Response. iScience, 2020. 23(2): p. 100860.
103. Apostolou, A., et al., Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res, 2008. 314(13): p. 2454-67.
104. Tsai, Y.C. and A.M. Weissman, The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer, 2010. 1(7): p. 764-778.
105. Kaneko, M., et al., Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett, 2002. 532(1-2): p. 147-52.
106. Wang, M. and R.J. Kaufman, The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer, 2014. 14(9): p. 581-97.
107. Zhang, Z., et al., Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol, 2019. 25: p. 101047.
108. Kim, E., et al., Intracellular Ca(2 +) Imbalance Critically Contributes to Paraptosis. Front Cell Dev Biol, 2020. 8: p. 607844.
109. Yoon, M.J., et al., Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget, 2014. 5(16): p. 6816-31.
110. Zachari, M., et al., Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform. Dev Cell, 2019. 50(5): p. 627-643 e5.
111. Gonzalez, A., et al., Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature, 2023. 618(7964): p. 394-401.
112. Di Blasio, S., et al., Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology, 2016. 5(8): p. e1192739.
113. Oyadomari, S. and M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 2004. 11(4): p. 381-9.
114. Feng, X., et al., Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2alpha pathway under PTT/CDT combined therapy. Acta Biomater, 2023. 160: p. 211-224.
115. Jin, L., et al., CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun, 2019. 10(1): p. 4016.
116. Liu, P., et al., Cryo-thermal therapy inducing MI macrophage polarization created CXCL10 and IL-6-rich pro-inflammatory environment for CD4(+) T cell-mediated anti-tumor immunity. Int J Hyperthermia, 2019. 36(1): p. 408-420.
117. Castano, Z., et al., IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol, 2018. 20(9): p. 1084-1097.
118. House, I.G., et al., Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res, 2020. 26(2): p. 487-504.
119. Mowat, C., et al., Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med, 2021. 218(9).
120. Fucikova, J., et al., Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis, 2020. 11(11): p. 1013.
121. Parker, J.L., et al., Molecular basis for redox control by the human cystine/glutamate antiporter system xc(). Nat Commun, 2021. 12(1): p. 7147.
122. Yan, Y., et al., SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun, 2023. 14(1): p. 3673.
123. Ji, X., et al., xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 2018. 37(36): p. 5007-5019.
124. Bonifacino, J.S. and R. Rojas, Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol, 2006. 7(8): p. 568-79.
125. Wang, Y.N., et al., COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun, 2010. 399(4): p. 498-504. |