參考文獻 |
[1] H.Z.Geng, T.H.Kim, S.C.Lim, H.K.Jeong, M.H.Jin, Y.W.Jo, Y.H.Lee, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 35 (2010) 2073–2082.
[2] IEA, World Energy Outlook 2021, 2021. https://www.iea.org/reports/world-energy-outlook-2021.
[3] I.S.Moosa, H.A.Kazem, L.M.R.Al-Iessi, Production Of Hydrogen Via Renewable Energy And Investigation Of Water Molecular Changes During Electrolysis Process, J. Renew. Energy Environ. 8 (2021) 19–28.
[4] O.Hydrogen and Fuel Cell Technologies Office, E.E.& R.ENERGY, Hydrogen Storage, 2023. https://www.energy.gov/eere/fuelcells/hydrogen-storage.
[5] E.Boateng, A.Chen, Recent Advances In Nanomaterial-Based Solid-State Hydrogen Storage, Mater. Today Adv. 6 (2020) 100022.
[6] L.Schlapbach, A.Züttel, Hydrogen-Storage Materials For Mobile Applications, Nature 414 (2001) 353–358.
[7] U.DoE, Target Explanation Document: Onboard Hydrogen Storage For Light-Duty Fuel Cell Vehicles, US Drive 1 (2017) 1–29.
[8] U.S.C. Read, G. Thomas, G. Ordaz, S. Satyapal, No Title, 2007. https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/on-board-vehicular-hydrogen-storage.
[9] BNEF, Hydrogen Economy Outlook, Bloom. New Energy Financ. (2020) 12. https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf.
[10] M.Ni, M.K.H.Leung, D.Y.C.Leung, K.Sumathy, A Review And Recent Developments In Photocatalytic Water-Splitting Using TiO2 For Hydrogen Production, Renew. Sustain. Energy Rev. 11 (2007) 401–425.
[11] Y.Liu, P.Zhou, B.Jeong, H.Wang, Design And Optimization Of A Type-C Tank For Liquid Hydrogen Marine Transport, Int. J. Hydrogen Energy 48 (2023) 34885–34896.
[12] L.S.Jensen, C.Kaul, N.B.Juncker, M.H.Thomsen, T.Chaturvedi, Biohydrogen Production In Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review, Energies 15 (2022).
[13] A.M.Elberry, J.Thakur, A.Santasalo-Aarnio, M.Larmi, Large-Scale Compressed Hydrogen Storage As Part Of Renewable Electricity Storage Systems, Int. J. Hydrogen Energy 46 (2021) 15671–15690.
[14] A.Rödl, C.Wulf, M.Kaltschmitt, Assessment Of Selected Hydrogen Supply Chains-Factors Determining The Overall GHG Emissions, Hydrog. Supply Chain Des. Deploy. Oper. (2018) 81–109.
[15] H.Yahashi, A.Yamashita, N.Shigemitsu, S.Goto, K.Kida, T.Inou, Development Of High-Pressure Hydrogen Storage System For New FCV, SAE Tech. Pap. (2021).
[16] X.Shen, X.Zhang, H.Liu, Research And Progress On Safety Issues Related To High-Pressure Hydrogen Leakage, Huagong Xuebao/CIESC J. 72 (2021) 1217–1229.
[17] Y.Su, H.Lv, W.Zhou, C.Zhang, Review Of The Hydrogen Permeability Of The Liner Material Of Type Iv On-Board Hydrogen Storage Tank, World Electr. Veh. J. 12 (2021) 1–19.
[18] Addcomposites, Types of Hydrogen Tanks: Technological Differences and Advantages Explained, 2023. https://www.addcomposites.com/post/what-is-a-hydrogen-tank-tank-types.
[19] M.Li, Y.Bai, C.Zhang, Y.Song, S.Jiang, D.Grouset, M.Zhang, Review On The Research Of Hydrogen Storage System Fast Refueling In Fuel Cell Vehicle, Int. J. Hydrogen Energy 44 (2019) 10677–10693.
[20] H.W.Langmi, N.Engelbrecht, P.M.Modisha, D.Bessarabov, Hydrogen Storage, Electrochem. Power Sources Fundam. Syst. Appl. Hydrog. Prod. by Water Electrolysis (2022) 455–486.
[21] R.Bardhan, A.M.Ruminski, A.Brand, J.J.Urban, Magnesium Nanocrystal-Polymer Composites: A New Platform For Designer Hydrogen Storage Materials, Energy Environ. Sci. 4 (2011) 4882–4895.
[22] Q.Lai, M.Paskevicius, D.A.Sheppard, C.E.Buckley, A.W.Thornton, M.R.Hill, Q.Gu, J.Mao, Z.Huang, H.K.Liu, Z.Guo, A.Banerjee, S.Chakraborty, R.Ahuja, K.F.Aguey-Zinsou, Hydrogen Storage Materials For Mobile And Stationary Applications: Current State Of The Art, ChemSusChem 8 (2015) 2789–2825.
[23] J.H.Park, S.J.Park, Expansion Of Effective Pore Size On Hydrogen Physisorption Of Porous Carbons At Low Temperatures With High Pressures, Carbon N. Y. 158 (2020) 364–371.
[24] G.Gizer, H.Cao, J.Puszkiel, C.Pistidda, A.Santoru, W.Zhang, T.He, P.Chen, T.Klassen, M.Dornheim, Enhancement Effect Of Bimetallic Amide K2Mn(NH2)4 And In-Situ Formed KH And Mn4N On The Dehydrogenation/Hydrogenation Properties Of Li–Mg–N–H System, Energies 12 (2019).
[25] Y.Luo, L.Sun, F.Xu, Z.Liu, Improved Hydrogen Storage Of LiBH4 And NH3BH3 By Catalysts, J. Mater. Chem. A 6 (2018) 7293–7309.
[26] G.Han, Y.Lu, H.Jia, Z.Ding, L.Wu, Y.Shi, G.Wang, Q.Luo, Y.Chen, J.Wang, G.Huang, X.Zhou, Q.Li, F.Pan, Magnesium-Based Energy Materials: Progress, Challenges, And Perspectives, J. Magnes. Alloy. 11 (2023) 3896–3925.
[27] W.S.Ko, K.B.Park, H.K.Park, Density Functional Theory Study On The Role Of Ternary Alloying Elements In TiFe-Based Hydrogen Storage Alloys, J. Mater. Sci. Technol. 92 (2021) 148–158.
[28] A.Etiemble, H.Idrissi, L.Roué, On The Decrepitation Mechanism Of MgNi And LaNi5-Based Electrodes Studied By In Situ Acoustic Emission, J. Power Sources 196 (2011) 5168–5173.
[29] K.Manoharan, V.K.Palaniswamy, K.Raman, R.Sundaram, Investigation Of Solid State Hydrogen Storage Performances Of Novel NaBH4/Ah-BN Nanocomposite As Hydrogen Storage Medium For Fuel Cell Applications, J. Alloys Compd. 860 (2021) 158444.
[30] S.Wei, J.Liu, Y.Xia, H.Zhang, R.Cheng, L.Sun, F.Xu, P.Huang, F.Rosei, A.A.Pimerzin, H.J.Seifert, H.Pan, Remarkable Catalysis Of Spinel Ferrite XFe2O4 (X = Ni, Co, Mn, Cu, Zn) Nanoparticles On The Dehydrogenation Properties Of LiAlH4: An Experimental And Theoretical Study, J. Mater. Sci. Technol. 111 (2022) 189–203.
[31] J.Zhu, Y.Mao, H.Wang, J.Liu, L.Ouyang, M.Zhu, Reaction Route Optimized LiBH4for High Reversible Capacity Hydrogen Storage By Tunable Surface-Modified AlN, ACS Appl. Energy Mater. 3 (2020) 11964–11973.
[32] D.Browning, M.Gerrard, J.Lakeman, I.Mellor, R.Mortimer, M.Turpin, Studies Into The Storage Of Hydrogen In Carbon Nanofibers: Proposal Of A Possible Reaction Mechanism, Nano Lett. 2 (2002).
[33] A.Sarkar, S.Saha, S.Ganguly, D.Banerjee, K.Kargupta, Hydrogen Storage On Graphene Using Benkeser Reaction, Int. J. Energy Res. 38 (2014).
[34] A.Züttel, P.Sudan, P.Mauron, T.Kiyobayashi, C.Emmenegger, L.Schlapbach, Hydrogen Storage In Carbon Nanostructures, Int. J. Hydrogen Energy 27 (2002) 203–212.
[35] J.Cheng, X.Yuan, L.Zhao, D.Huang, M.Zhao, L.Dai, R.Ding, GCMC Simulation Of Hydrogen Physisorption On Carbon Nanotubes And Nanotube Arrays, Carbon N. Y. 42 (2004) 2019–2024.
[36] E.Masika, R.Mokaya, Preparation Of Ultrahigh Surface Area Porous Carbons Templated Using Zeolite 13X For Enhanced Hydrogen Storage, Prog. Nat. Sci. Mater. Int. 23 (2013) 308–316.
[37] H.Kabbour, T.F.Baumann, Satcher Joe H., A.Saulnier, C.C.Ahn, Toward New Candidates For Hydrogen Storage: High-Surface-Area Carbon Aerogels, Chem. Mater. 18 (2006) 6085–6087.
[38] I.Cabria, M.J.López, J.A.Alonso, Simulation Of The Hydrogen Storage In Nanoporous Carbons With Different Pore Shapes, Int. J. Hydrogen Energy 36 (2011) 10748–10759.
[39] S.Gadipelli, Z.X.Guo, Graphene-Based Materials: Synthesis And Gas Sorption, Storage And Separation, Prog. Mater. Sci. 69 (2015) 1–60.
[40] M.R.Zakaria, M.F.Omar, M.S.Zainol Abidin, H.Md Akil, M.M.A.B.Abdullah, Recent Progress In The Three-Dimensional Structure Of Graphene-Carbon Nanotubes Hybrid And Their Supercapacitor And High-Performance Battery Applications, Compos. Part A Appl. Sci. Manuf. 154 (2022) 106756.
[41] A.Ariharan, B.Viswanathan, V.Nandhakumar, Nitrogen-Incorporated Carbon Nanotube Derived From Polystyrene And Polypyrrole As Hydrogen Storage Material, Int. J. Hydrogen Energy 43 (2018) 5077–5088.
[42] J.Chattopadhyay, T.S.Pathak, D.Pak, Heteroatom-Doped Metal-Free Carbon Nanomaterials As Potential Electrocatalysts, Molecules 27 (2022).
[43] G.Speranza, The Role Of Functionalization In The Applications Of Carbon Materials: An Overview, C 5 (2019).
[44] M.Oubenali, M.Kasbaji, M.Mennani, M.Mbarki, A.Moubarik, Introduction to Carbon Nanostructures: History, Classifications, and Recent Advances BT - Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications, in: A.Barhoum, K.Deshmukh (Eds.), Springer International Publishing, Cham, 2023: pp. 1–54.
[45] R.Guo, Y.-S.Tseng, I.Retita, G.Bahmanrokh, B.Arkhurst, S.L.I.Chan, A Detailed Experimental Comparison On The Hydrogen Storage Ability Of Different Forms Of Graphitic Carbon Nitride (Bulk, Nanotubes And Sheets) With Multiwalled Carbon Nanotubes, Mater. Today Chem. 30 (2023) 101508.
[46] P.Tsai, Processing, Modification And Characterisations Of Carbon-Based And Carbon/AB5 Composite Hydrogen Storage Materials, (2012). http://unsworks.unsw.edu.au/fapi/datastream/unsworks:10254/SOURCE02.
[47] F.J.Desai, M.N.Uddin, M.M.Rahman, R.Asmatulu, A Critical Review On Improving Hydrogen Storage Properties Of Metal Hydride Via Nanostructuring And Integrating Carbonaceous Materials, Int. J. Hydrogen Energy 48 (2023) 29256–29294.
[48] Y.-W.Lee, B.M.Clemens, K.J.Gross, Novel Sieverts’ Type Volumetric Measurements Of Hydrogen Storage Properties For Very Small Sample Quantities, J. Alloys Compd. 452 (2008) 410–413.
[49] M.P.Suh, H.J.Park, T.K.Prasad, D.-W.Lim, Hydrogen Storage In Metal–Organic Frameworks, Chem. Rev. 112 (2012) 782–835.
[50] D.P.Broom, C.J.Webb, Pitfalls In The Characterisation Of The Hydrogen Sorption Properties Of Materials, Int. J. Hydrogen Energy 42 (2017) 29320–29343.
[51] J.Felbinger, J.Haverich, I.Bürger, M.Linder, Thermodynamic Characterisation And Application Of The ZrNi–H Metal Hydride System In The Low-Pressure Regime, J. Mater. Chem. A (2024).
[52] G.Sandrock, A Panoramic Overview Of Hydrogen Storage Alloys From A Gas Reaction Point Of View, J. Alloys Compd. 293–295 (1999) 877–888.
[53] D.A.C., J.K. M., B.T. A., K.C. H., B.D. S., H.M. J., Storage Of Hydrogen In Single-Walled Carbon Nanotubes, Nature 386 (1997) 377–379.
[54] S.H.Barghi, T.T.Tsotsis, M.Sahimi, Chemisorption, Physisorption And Hysteresis During Hydrogen Storage In Carbon Nanotubes, Int. J. Hydrogen Energy 39 (2014) 1390–1397.
[55] R.Zacharia, K.Y.Kim, A.K.M.Fazle Kibria, K.S.Nahm, Enhancement Of Hydrogen Storage Capacity Of Carbon Nanotubes Via Spill-Over From Vanadium And Palladium Nanoparticles, Chem. Phys. Lett. 412 (2005) 369–375.
[56] Sai Li, Xiaodong Yang, Haiyan Zhu, Yan Liu, Yongning Liu, Hydrogen Storage Alloy And Carbon Nanotubes Mixed Catalyst In A Direct Borohydride Fuel Cell, J. Mater. Sci. Technol. 27 (2011).
[57] H.Yamaguchi, Y.Nejoh, Numerical Simulation Of Hydrogen Storage Into A Single-Walled Carbon Nanotube In A Plasma, IEEJ Trans. Electr. Electron. Eng. 3 (2008) 596–598.
[58] J.Li, T.Furuta, H.Goto, T.Ohashi, Y.Fujiwara, S.Yip, Theoretical Evaluation Of Hydrogen Storage Capacity In Pure Carbon Nanostructures, J. Chem. Phys. 119 (2003) 2376–2385.
[59] D.J.Durbin, C.Malardier-Jugroot, Review Of Hydrogen Storage Techniques For On Board Vehicle Applications, Int. J. Hydrogen Energy 38 (2013) 14595–14617.
[60] Z.Xiong, Y.S.Yun, H.J.Jin, Applications Of Carbon Nanotubes For Lithium Ion Battery Anodes, Materials (Basel). 6 (2013) 1138–1158.
[61] B.J.Landi, M.J.Ganter, C.D.Cress, R.A.DiLeo, R.P.Raffaelle, Carbon Nanotubes For Lithium Ion Batteries, Energy Environ. Sci. 2 (2009) 638–654.
[62] C.DeLas Casas, W.Li, A Review Of Application Of Carbon Nanotubes For Lithium Ion Battery Anode Material, J. Power Sources 208 (2012) 74–85.
[63] A.M.Rashidi, A.Nouralishahi, A.A.Khodadadi, Y.Mortazavi, A.Karimi, K.Kashefi, Modification Of Single Wall Carbon Nanotubes (SWNT) For Hydrogen Storage, Int. J. Hydrogen Energy 35 (2010) 9489–9495.
[64] R.S.Rajaura, S.Srivastava, P.K.Sharma, S.Mathur, R.Shrivastava, S.S.Sharma, Y.K.Vijay, Structural And Surface Modification Of Carbon Nanotubes For Enhanced Hydrogen Storage Density, Nano-Structures and Nano-Objects 14 (2018) 57–65.
[65] J.Lyu, V.Kudiiarov, A.Lider, An Overview Of The Recent Progress In Modifications Of Carbon Nanotubes For Hydrogen Adsorption, Nanomaterials 10 (2020).
[66] K.S.Rather, S.U., & Nahm, Hydrogen Uptake Of High-Energy Ball Milled Nickel-Multiwalled Carbon Nanotube Composites, Mater. Res. Bull. 49 (2014) 525–530.
[67] Y.Wang, W.Deng, X.Liu, X.Wang, Electrochemical Hydrogen Storage Properties Of Ball-Milled Multi-Wall Carbon Nanotubes, Int. J. Hydrogen Energy 34 (2009) 1437–1443.
[68] K.Awasthi, R.Kamalakaran, A.K.Singh, O.N.Srivastava, Ball-Milled Carbon And Hydrogen Storage, Int. J. Hydrogen Energy 27 (2002) 425–432.
[69] Y.Zhang, Q.Zhang, Q.Shi, Z.Cai, Z.Yang, Acid-Treated G-C3N4 With Improved Photocatalytic Performance In The Reduction Of Aqueous Cr(VI) Under Visible-Light, Sep. Purif. Technol. 142 (2015) 251–257.
[70] C.H.Chen, C.C.Huang, Hydrogen Storage By KOH-Modified Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 32 (2007) 237–246.
[71] R.Z.Ma, B.Q.Wei, C.L.Xu, J.Liang, D.H.Wu, Morphology Changes Of Carbon Nanotubes Under Laser Irradiation, Carbon N. Y. 38 (2000) 636–638.
[72] S.Renukadevi, A.P.Jeyakumari, A One-Pot Microwave Irradiation Route To Synthesis Of CoFe2O4-G-C3N4 Heterojunction Catalysts For High Visible Light Photocatalytic Activity: Exploration Of Efficiency And Stability, Diam. Relat. Mater. 109 (2020) 108012.
[73] J.Li, Y.Tang, R.Jin, Q.Meng, Y.Chen, X.Long, L.Wang, H.Guo, S.Zhang, Ultrasonic-Microwave Assisted Synthesis Of GO/G-C3N4 Composites For Efficient Photocatalytic H2 Evolution, Solid State Sci. 97 (2019) 105990.
[74] M.Wu, X.He, B.Jing, T.Wang, C.Wang, Y.Qin, Z.Ao, S.Wang, T.An, Novel Carbon And Defects Co-Modified G-C3N4 For Highly Efficient Photocatalytic Degradation Of Bisphenol A Under Visible Light, J. Hazard. Mater. 384 (2020) 121323.
[75] G.W.Xi He, Ling Lei, Jinglin Wen, Yufeng Zhao, Longzhe Cui, One-Pot Synthesis Of C-Doping And Defects Co-Modified G-C3N4 For Enhanced Visible-Light Photocatalytic Degradation Of Bisphenol A, J. Environ. Chem. Eng. 10 (2022).
[76] S.Luo, Q.Zhou, W.Xue, N.Liao, Effect Of Pt Doping On Sensing Performance Of G-C3N4 For Detecting Hydrogen Gas: A DFT Study, Vacuum 200 (2022) 111014.
[77] X.Zhang, X.Zhang, P.Yang, S.P.Jiang, Pt Clusters Embedded In G-C3N4 Nanosheets To Form Z-Scheme Heterostructures With Enhanced Photochemical Performance, Surfaces and Interfaces 27 (2021) 101450.
[78] Z.Jiang, X.Zhang, H.S.Chen, P.Yang, S.P.Jiang, Fusiform-Shaped G-C3N4 Capsules With Superior Photocatalytic Activity, Small 16 (2020) 1–10.
[79] Q.Hu, Y.He, F.Wang, J.Wu, Z.Ci, L.Chen, R.Xu, M.Yang, J.Lin, L.Han, D.Zhang, Microwave Technology: A Novel Approach To The Transformation Of Natural Metabolites, Chinese Med. (United Kingdom) 16 (2021) 1–22.
[80] Polshettiwar, Vivek & Mallikarjuna, Microwave-Assisted Chemistry: A Rapid And Sustainable Route To Synthesis Of Organics And Nanomaterials, Aust. J. Chem. 62 (2009) 16–26.
[81] Z.Wang, C.Yu, H.Huang, W.Guo, J.Yu, J.Qiu, Carbon-Enabled Microwave Chemistry: From Interaction Mechanisms To Nanomaterial Manufacturing, Nano Energy 85 (2021) 106027.
[82] H.J.Kitchen, S.R.Vallance, J.L.Kennedy, N.Tapia-Ruiz, L.Carassiti, A.Harrison, A.G.Whittaker, T.D.Drysdale, S.W.Kingman, D.H.Gregory, Modern Microwave Methods In Solid-State Inorganic Materials Chemistry: From Fundamentals To Manufacturing, Chem. Rev. 114 (2014) 1170–1206.
[83] S.A.Galema, Microwave Chemistry, Chem. Soc. Rev. 26 (1997) 233.
[84] Y.J.Zhu, F.Chen, Microwave-Assisted Preparation Of Inorganic Nanostructures In Liquid Phase, Chem. Rev. 114 (2014) 6462–6555.
[85] Y.T.Lee, P.J.Tsai, V.K.Peterson, B.Yang, K.S.Lin, M.Zhu, K.L.Lim, Y.S.Tseng, S.L.I.Chan, A Microstructural And Neutron-Diffraction Study On The Interactions Between Microwave-Irradiated Multiwalled Carbon Nanotubes And Hydrogen, J. Mater. Sci. 51 (2016) 1308–1315.
[86] C.-F.Chen, Chieng-Ming & Chen, Mi & Leu, Fang-Chin & Hsu, Shu-Yu & Wang, Sheng-Chuan & Shi, Shih-Chen & Chen, Purification Of Multi-Walled Carbon Nanotubes By Microwave Digestion Method. Diamond And Related Materials, Diam. Relat. Mater. 13 (2004) 1182–1186.
[87] A.MacKenzie, Kieran & Dunens, Oscar & Harris, A Review Of Carbon Nanotube Purification By Microwave Assisted Acid Digestion., Sep. Purif. Technol. 66 (2009) 209–222.
[88] X.Zeng, X.Cheng, R.Yu, G.D.Stucky, Electromagnetic Microwave Absorption Theory And Recent Achievements In Microwave Absorbers, Carbon N. Y. 168 (2020) 606–623.
[89] S.S.Pinto, M.C.Rezende, Performance Prediction Of Microwave Absorbers Based On POMA/Carbon Black Composites In The Frequency Range Of 8.2 To 20 GHz, J. Aerosp. Technol. Manag. 10 (2018) 1–9.
[90] S.O.Nelson, Dielectric Properties Measurement Techniques And Applications, Trans. Am. Soc. Agric. Eng. 42 (1999) 523–529.
[91] M.Green, X.Chen, Recent Progress Of Nanomaterials For Microwave Absorption, J. Mater. 5 (2019) 503–541.
[92] Wahyu Widanarto, Ananda Iqbal Ekaputra, Mukhtar Effendi, Wahyu Tri Cahyanto, Sib Krishna Ghoshal, Candra Kurniawan, Erfan Handoko, Mudrik Alaydrus, Neodymium Ions Activated Barium Ferrite Composites For Microwave X-Band Absorber Applications: Synthesis And Characterizations, Compos. Commun. 19 (2020).
[93] E.E.Mensah, Z.Abbas, R.S.Azis, A.M.Khamis, Effect Of Microstructure On Complex Permittivity And Microwave Absorption Properties Of Recycled α -Fe 2 O 3 Nanopowder Prepared By High-Energy Ball Milling Technique , Mater. Express 12 (2022) 319–326.
[94] N.Saifuddin, A.Z.Raziah, A.R.Junizah, Carbon Nanotubes : A Review On Structure And Their Interaction With Proteins, 2013 (2013).
[95] I.L.Dongzhi Zhang, Kyungmi Lee, Hierarchical Trajectory Clustering For Spatio-Temporal Periodic Pattern Mining, Expert Syst. Appl. 92 (2018) 1–11.
[96] Hualong Peng, Xiang Zhang, Huili Yang, Zhiqiang Xiong, Chongbo Liu, Yu Xie, Fabrication Of Core-Shell Nanoporous Carbon@chiral Polyschiff Base Iron(II) Composites For High-Performance Electromagnetic Wave Attenuationin The Low-Frequency, J. Alloys Compd. 850 (2021).
[97] Yijing Zhao, Yani Zhang, Chaoran Yang, Laifei Cheng, Ultralight And Flexible SiC Nanoparticle-Decorated Carbon Nanofiber Mats For Broad-Band Microwave Absorption, Carbon N. Y. 171 (2021) 474–483.
[98] Fanbin Meng, Huagao Wang, Fei Huang, Yifan Guo, Zeyong Wang, David Hui, Zuowan Zhou, Graphene-Based Microwave Absorbing Composites: A Review And Prospective, Compos. Part B Eng. (2018) 260–277.
[99] V.Singh, D.Das, Chapter 3 - Potential of Hydrogen Production From Biomass, in: P.E.V.B.T.-S. and E. of H.-B.E.T.deMiranda (Ed.), Academic Press, 2019: pp. 123–164.
[100] Y.Yuan, L.Yin, S.Cao, L.Gu, G.Xu, P.Du, H.Chai, Y.Liao, C.Xue, Microwave-Assisted Heating Synthesis: A General And Rapid Strategy For Large-Scale Production Of High Crystalline G-C3N4 With Enhanced Photocatalytic H2 Production, Green Chem. 16 (2014).
[101] A.Sarimeseli, M.Coskun, M.Yuceer, Modeling Microwave Drying Kinetics Of Thyme (Thymus Vulgaris L.) Leaves Using ANN Methodology And Dried Product Quality, J. Food Process. Preserv. 38 (2012).
[102] J.H.Hai Bang Truong, Sungjun Bae, Jinwoo Cho, Advances In Application Of G–C3N4–Based Materials For Treatment Of Polluted Water And Wastewater Via Activation Of Oxidants And Photoelectrocatalysis: A Comprehensive Review, Chemosphere 286 (2022). https://www.sciencedirect.com/science/article/pii/S0045653521022098.
[103] V.V.Quoc Dat Le, Phi Nguyen Ngoc, Ha Tran Huu, Thanh Huong Thi Nguyen, Thang Nguyen Van, Lan Nguyen Thi, Minh Kha Le, Van Man Tran, My Loan Phung Le, A Novel Anode Sn/G-C3N4 Composite For Lithium-Ion Batteries, Chem. Phys. Lett. 796 (2022).
[104] S.Arabia, G ‑ C 3 N 4 ‑ Based Photocatalysts For Hydrogen Generation, (2014).
[105] Mehreen Ashiq, Rao Aqil Shehzad, Javed Iqbal, Khurshid Ayub, Sensing Applications Of Graphitic Carbon Nitride (G-C3N4) For Sensing SO2 And SO3 – A DFT Study, Phys. B Condens. Matter 676 (2024). Sensing applications of graphitic carbon nitride (g-C3N4) for sensing SO2 and SO3 – A DFT study.
[106] X.Yang, L.Zhao, S.Wang, J.Li, B.Chi, Recent Progress Of G-C3N4 Applied In Solar Cells, J. Mater. 7 (2021) 728–741.
[107] J.Safaei, N.A.Mohamed, M.F.Mohamad Noh, M.F.Soh, N.A.Ludin, M.A.Ibrahim, W.N.Roslam Wan Isahak, M.A.Mat Teridi, Graphitic Carbon Nitride (G-C3N4) Electrodes For Energy Conversion And Storage: A Review On Photoelectrochemical Water Splitting, Solar Cells And Supercapacitors, J. Mater. Chem. A 6 (2018) 22346–22380.
[108] S.L.I.C.R. Guo, Y.-S. Tseng, I. Retita, G. Bahmanrokh, B. Arkhurst, A Detailed Experimental Comparison On The Hydrogen Storage Ability Of Different Forms Of Graphitic Carbon Nitride (Bulk, Nanotubes And Sheets) With Multiwalled Carbon Nanotubes, Mater. Today Chem. 30 (2023). https://www.sciencedirect.com/science/article/pii/S2468519423001350.
[109] L.Zhang, D.Ren, W.Ding, High Hydrogen Storage Ability Of A Decorated G-C3N4 Monolayer Decorated With Both Mg And Li: A Density Functional Theory (DFT) Study, Int. J. Hydrogen Energy 47 (2022) 28548–28555.
[110] Michio Inagaki, Tomoki Tsumura, Tarou Kinumoto, Masahiro Toyoda, Graphitic Carbon Nitrides (G-C3N4) With Comparative Discussion To Carbon Materials, Carbon N. Y. 141 (2019) 580–607. https://www.sciencedirect.com/science/article/pii/S0008622318309047.
[111] E.Kroke, M.Schwarz, E.Horath-Bordon, P.Kroll, B.Noll, A.D.Norman, Tri-S-Triazine Derivatives. Part I. From Trichloro-Tri-S-Triazine To Graphitic C3N4 Structures, New J. Chem. 26 (2002) 508–512.
[112] G.Koh, Y.W.Zhang, H.Pan, First-Principles Study On Hydrogen Storage By Graphitic Carbon Nitride Nanotubes, Int. J. Hydrogen Energy 37 (2012) 4170–4178.
[113] T.Wang, X., Zhou, C., Shi, R., Liu, Q., Waterhouse, G. I., Wu, L., Tung, C., Zhang, Supramolecular Precursor Strategy For The Synthesis Of Holey Graphitic Carbon Nitride Nanotubes With Enhanced Photocatalytic Hydrogen Evolution Performance, Nano Res. 12 (2019) 2385–2389.
[114] E.W.Lemmon, M.L.Huber, J.W.Leachman, Revised Standardized Equation For Hydrogen Gas Densities For Fuel Consumption Applications., J. Res. Natl. Inst. Stand. Technol. 113 (2008) 341–350.
[115] S. ullahRather, Preparation, Characterization And Hydrogen Storage Studies Of Carbon Nanotubes And Their Composites: A Review, Int. J. Hydrogen Energy 45 (2020) 4653–4672.
[116] J.Y.Geng HZ, Kim TH, Lim SC, Jeong HK, Jin MH, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes., Int J Hydrog. Energy 35 (2010).
[117] H.Z.Geng, T.H.Kim, S.C.Lim, H.K.Jeong, M.H.Jin, Y.W.Jo, Y.H.Lee, Hydrogen Storage In Microwave-Treated Multi-Walled Carbon Nanotubes, Int. J. Hydrogen Energy 35 (2010) 2073–2082.
[118] L.Xu, J.Zhang, J.Ding, T.Liu, G.Shi, X.Li, W.Dang, Y.Cheng, R.Guo, Pore Structure And Fractal Characteristics Of Different Shale Lithofacies In The Dalong Formation In The Western Area Of The Lower Yangtze Platform, Minerals 10 (2020).
[119] M.M.Labani, R.Rezaee, A.Saeedi, A.AlHinai, Evaluation Of Pore Size Spectrum Of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion And Mercury Porosimetry: A Case Study From The Perth And Canning Basins, Western Australia, J. Pet. Sci. Eng. 112 (2013) 7–16.
[120] W.Huang, X.Ma, X.Zhou, J.Liu, T.He, H.Tao, S.Li, L.Hao, Characteristics And Controlling Factors Of Pore Structure Of Shale In The 7th Member Of Yanchang Formation In Huachi Area, Ordos Basin, China, J. Nat. Gas Geosci. 8 (2023) 319–336.
[121] W.Ji, Y.Song, Z.Jiang, M.Meng, Q.Liu, F.Gao, Micron-To Nano-Pore Characteristics In The Shale Of Longmaxi Formation, Southeast Sichuan Basin, Pet. Res. 2 (2017) 156–168.
[122] Z.A.Alothman, A Review: Fundamental Aspects Of Silicate Mesoporous Materials, Materials (Basel). 5 (2012) 2874–2902.
[123] J.Cao, C.Qin, Y.Wang, H.Zhang, G.Sun, Z.Zhang, Solid-State Method Synthesis Of SnO2-Decorated G-C3N4 Nanocomposites With Enhanced Gas-Sensing Property To Ethanol, Materials (Basel). 10 (2017) 1–14.
[124] A.Yadav, S.-W.Kang, Y.Hunge, Photocatalytic Degradation Of Rhodamine B Using Graphitic Carbon Nitride Photocatalyst, J. Mater. Sci. Mater. Electron. 32 (2021).
[125] Y.S.Jun, E.Z.Lee, X.Wang, W.H.Hong, G.D.Stucky, A.Thomas, From Melamine-Cyanuric Acid Supramolecular Aggregates To Carbon Nitride Hollow Spheres, Adv. Funct. Mater. 23 (2013) 3661–3667.
[126] D.Minh, D.Tran, T.Quan, N.Nguyen, Q.Huong, D.Nguyen Minh, H.H.Nguyen, Phyto-Synthesis Of Tin Oxide Nanoparticles Using Diospyros Mollis Leaves Extract Doped Graphitic Carbon Nitride For Photocatalytic Methylene Blue Degradation And Hydrogen Peroxide Production, Colloids Surfaces A Physicochem. Eng. Asp. 687 (2024) 133454.
[127] H.Niu, W.Zhao, H.Lv, Y.Yang, Y.Cai, Accurate Design Of Hollow/Tubular Porous G-C3N4 From Melamine-Cyanuric Acid Supramolecular Prepared With Mechanochemical Method, Chem. Eng. J. 411 (2021) 128400.
[128] Y.C.Zhao, D.L.Yu, H.W.Zhou, Y.J.Tian, O.Yanagisawa, Turbostratic Carbon Nitride Prepared By Pyrolysis Of Melamine, J. Mater. Sci. 40 (2005) 2645–2647.
[129] X.Li, J.Zhang, L.Shen, maYanmei, W.Lei, Q.Cui, G.Zou, Preparation And Characterization Of Graphitic Carbon Nitride Through Pyrolysis Of Melamine, Appl. Phys. A 94 (2009) 387–392.
[130] M.Guiotoku, C.Rambo, C.Maia, D.Hotza, Synthesis of carbon-based materials by microwave-assisted hydrothermal process, in: U.Chandra (Ed.), IntechOpen, Rijeka, 2011: p. Ch. 13.
[131] P.Li, Y.Hu, D.Lu, J.Wu, Y.Lv, Study On G-C3N4/BiVO4 Binary Composite Photocatalytic Materials, Micromachines 14 (2023).
[132] S.Demirci, S.Sagbas, O.Neli, A.KOCA, N.Sahiner, B, P, And S Heteroatom Doped, Bio- And Hemo-Compatible 2D Graphitic-Carbon Nitride (G-C3N4) With Antioxidant, Light-Induced Antibacterial, And Bioimaging Endeavors, Nanotechnology 35 (2023).
[133] X.Wang, C.Zhou, R.Shi, Q.Liu, G.Waterhouse, L.-Z.Wu, C.-H.Tung, T.Zhang, Supramolecular Precursor Strategy For The Synthesis Of Holey Graphitic Carbon Nitride Nanotubes With Enhanced Photocatalytic Hydrogen Evolution Performance, Nano Res. (2019).
[134] D.McNulty, Q.Ramasse, C.O’Dwyer, The Structural Conversion From α-AgVO3 To β-AgVO3: Ag Nanoparticle Decorated Nanowires With Application As Cathode Materials For Li-Ion Batteries, Nanoscale 8 (2016).
[135] T.Zhang, X.Shao, D.Zhang, X.Pu, Y.Tang, J.Yin, B.Ge, W.Li, Synthesis Of Direct Z-Scheme G-C 3 N 4 /Ag 2 VO 2 PO 4 Photocatalysts With Enhanced Visible Light Photocatalytic Activity, Sep. Purif. Technol. 195 (2017).
[136] M.Prabhaharan, A.R.Prabakaran, S.Srinivasan, S.Gunasekaran, Density Functional Theory Studies On Molecular Structure, Vibrational Spectra And Electronic Properties Of Cyanuric Acid, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138 (2015) 711–722.
[137] T.Narkbuakaew, P.Sujaridworakun, Synthesis Of Tri-S-Triazine Based G-C3N4 Photocatalyst For Cationic Rhodamine B Degradation Under Visible Light, Top. Catal. 63 (2020) 1–11.
[138] Q.Xiang, J.Yu, M.Jaroniec, Preparation And Enhanced Visible-Light Photocatalytic H2- Production Activity Of Graphene/C3N4 Composites, J. Phys. Chem. C 115 (2011) 7355–7363.
[139] X.Bai, L.Wang, Y.Wang, W.-Q.Yao, Enhanced Oxidation Ability Of G-C3N4 Photocatalyst Via C60 Modification, Appl. Catal. B Environ. s 152–153 (2014) 262–270.
[140] Y.Hou, Z.Wen, S.Cui, X.Guo, J.Chen, Constructing 2D Porous Graphitic C 3 N 4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS 2 Ternary Nanojunction With Enhanced Photoelectrochemical Activity, Adv. Mater. 25 (2013).
[141] Y.Chen, J.Li, Z.Hong, B.Shen, B.Lin, B.Gao, Origin Of The Enhanced Visible-Light Photocatalytic Activity Of CNT Modified G-C3N4 For H2 Production, Phys. Chem. Chem. Phys. 16 (2014).
[142] D.Hollmann, M.Karnahl, S.Tschierlei, K.Kailasam, M.Schneider, J.Radnik, K.Grabow, U.Bentrup, H.Junge, M.Beller, S.Lochbrunner, A.Thomas, A.Brückner, Structure-Activity Relationships In Bulk Polymeric And Sol-Gel-Derived Carbon Nitrides During Photocatalytic Hydrogen Production, Chem. Mater. 26 (2014) 1727–1733.
[143] S.Tonda, S.Kumar, S.Kandula, V.Shanker, Fe-Doped And -Mediated Graphitic Carbon Nitride Nanosheets For Enhanced Photocatalytic Performance Under Natural Sunlight, J. Mater. Chem. A Mater. Energy Sustain. 2 (2014) 6772.
[144] B.Long, J.Lin, X.Wang, Thermally-Induced Desulfurization And Conversion Of Guanidine Thiocyanate Into Graphitic Carbon Nitride Catalysts For Hydrogen Photosynthesis, J. Mater. Chem. A 2 (2014) 2942–2951.
[145] A.J.Lachawiec, T.R.DiRaimondo, R.T.Yang, A Robust Volumetric Apparatus And Method For Measuring High Pressure Hydrogen Storage Properties Of Nanostructured Materials, Rev. Sci. Instrum. 79 (2008). |