參考文獻 |
1 Chen, Y. H. et al. MEHP interferes with mitochondrial functions and homeostasis in skeletal muscle cells. Biosci Rep 40, doi:10.1042/BSR20194404 (2020).
2 Chen, S. L., Wu, C. C., Li, N. & Weng, T. H. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 45, 21-39, doi:10.1007/s10974-023-09663-3 (2024).
3 Koch, H. M., Preuss, R. & Angerer, J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int J Androl 29, 155-165; discussion 181-155, doi:10.1111/j.1365-2605.2005.00607.x (2006).
4 Asfour, H. A., Allouh, M. Z. & Said, R. S. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 243, 118-128, doi:10.1177/1535370217749494 (2018).
5 Buckingham, M. & Rigby, P. W. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28, 225-238, doi:10.1016/j.devcel.2013.12.020 (2014).
6 Yokoyama, S. & Asahara, H. The myogenic transcriptional network. Cell Mol Life Sci 68, 1843-1849, doi:10.1007/s00018-011-0629-2 (2011).
7 Lassar, A. B. et al. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66, 305-315, doi:10.1016/0092-8674(91)90620-e (1991).
8 Zanou, N. & Gailly, P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70, 4117-4130, doi:10.1007/s00018-013-1330-4 (2013).
9 Jagarlapudi, S. S., Cross, H. S., Das, T. & Goddard, W. A., 3rd. Thermomechanical Properties of Nontoxic Plasticizers for Polyvinyl Chloride Predicted from Molecular Dynamics Simulations. ACS Appl Mater Interfaces 15, 24858-24867, doi:10.1021/acsami.3c02354 (2023).
10 Zota, A. R., Calafat, A. M. & Woodruff, T. J. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ Health Perspect 122, 235-241, doi:10.1289/ehp.1306681 (2014).
11 Roslev, P., Madsen, P. L., Thyme, J. B. & Henriksen, K. Degradation of phthalate and Di-(2-Ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl Environ Microbiol 64, 4711-4719, doi:10.1128/AEM.64.12.4711-4719.1998 (1998).
12 Koch, H. M., Bolt, H. M. & Angerer, J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 78, 123-130, doi:10.1007/s00204-003-0522-3 (2004).
13 Serrano, S. E., Braun, J., Trasande, L., Dills, R. & Sathyanarayana, S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health 13, 43, doi:10.1186/1476-069X-13-43 (2014).
14 Inoue, K. et al. Evaluation and analysis of exposure levels of di(2-ethylhexyl) phthalate from blood bags. Clin Chim Acta 358, 159-166, doi:10.1016/j.cccn.2005.02.019 (2005).
15 Dhanapal, R., Saraswathi, T. & Govind, R. N. Cancer cachexia. J Oral Maxillofac Pathol 15, 257-260, doi:10.4103/0973-029X.86670 (2011).
16 Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12, 489-495, doi:10.1016/S1470-2045(10)70218-7 (2011).
17 Ozola Zalite, I. et al. Influence of cachexia and sarcopenia on survival in pancreatic ductal adenocarcinoma: a systematic review. Pancreatology 15, 19-24, doi:10.1016/j.pan.2014.11.006 (2015).
18 Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 16, 153-166, doi:10.1016/j.cmet.2012.06.011 (2012).
19 Martignoni, M. E. et al. Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol Rep 21, 363-369 (2009).
20 Barber, M. D., Fearon, K. C. & Ross, J. A. Relationship of serum levels of interleukin-6, soluble interleukin-6 receptor and tumour necrosis factor receptors to the acute-phase protein response in advanced pancreatic cancer. Clin Sci (Lond) 96, 83-87 (1999).
21 Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat Rev Dis Primers 4, 17105, doi:10.1038/nrdp.2017.105 (2018).
22 Argiles, J. M., Lopez-Soriano, F. J. & Busquets, S. Mediators of cachexia in cancer patients. Nutrition 66, 11-15, doi:10.1016/j.nut.2019.03.012 (2019).
23 Guttridge, D. C., Mayo, M. W., Madrid, L. V., Wang, C. Y. & Baldwin, A. S., Jr. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289, 2363-2366, doi:10.1126/science.289.5488.2363 (2000).
24 Ramamoorthy, S., Donohue, M. & Buck, M. Decreased Jun-D and myogenin expression in muscle wasting of human cachexia. Am J Physiol Endocrinol Metab 297, E392-401, doi:10.1152/ajpendo.90529.2008 (2009).
25 Tran, T., Andersen, R., Sherman, S. P. & Pyle, A. D. Insights into skeletal muscle development and applications in regenerative medicine. Int Rev Cell Mol Biol 300, 51-83, doi:10.1016/B978-0-12-405210-9.00002-3 (2013).
26 Cao, P. R., Kim, H. J. & Lecker, S. H. Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 37, 2088-2097, doi:10.1016/j.biocel.2004.11.010 (2005).
27 Ventadour, S. & Attaix, D. Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol 18, 631-635, doi:10.1097/01.bor.0000245731.25383.de (2006).
28 Penna, F., Ballaro, R. & Costelli, P. The Redox Balance: A Target for Interventions Against Muscle Wasting in Cancer Cachexia? Antioxid Redox Signal 33, 542-558, doi:10.1089/ars.2020.8041 (2020).
29 Khalil, R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. Adv Exp Med Biol 1088, 235-248, doi:10.1007/978-981-13-1435-3_10 (2018).
30 Bodine, S. C. & Baehr, L. M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307, E469-484, doi:10.1152/ajpendo.00204.2014 (2014).
31 Hughes, D. C. et al. Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. Am J Physiol Cell Physiol 320, C45-C56, doi:10.1152/ajpcell.00432.2020 (2021).
32 Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704-1708, doi:10.1126/science.1065874 (2001).
33 Clavel, S. et al. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30, 470-480, doi:10.1128/MCB.00666-09 (2010).
34 Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399-412, doi:10.1016/s0092-8674(04)00400-3 (2004).
35 Latres, E. et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 280, 2737-2744, doi:10.1074/jbc.M407517200 (2005).
36 Li, Y. P. et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19, 362-370, doi:10.1096/fj.04-2364com (2005).
37 Karayiannakis, A. J. et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res 21, 1355-1358 (2001).
38 Llovera, M., Garcia-Martinez, C., Agell, N., Lopez-Soriano, F. J. & Argiles, J. M. TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun 230, 238-241, doi:10.1006/bbrc.1996.5827 (1997).
39 Centner, T. et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306, 717-726, doi:10.1006/jmbi.2001.4448 (2001).
40 Laughter, A. R. et al. Role of the peroxisome proliferator-activated receptor alpha (PPARalpha) in responses to trichloroethylene and metabolites, trichloroacetate and dichloroacetate in mouse liver. Toxicology 203, 83-98, doi:10.1016/j.tox.2004.06.014 (2004).
41 Martinelli, M. I., Mocchiutti, N. O. & Bernal, C. A. Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals. Hum Exp Toxicol 25, 531-538, doi:10.1191/0960327106het651oa (2006).
42 Srinivasan, C., Khan, A. I., Balaji, V., Selvaraj, J. & Balasubramanian, K. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat. Toxicol Appl Pharmacol 257, 155-164, doi:10.1016/j.taap.2011.08.022 (2011).
43 Kavlock, R. et al. NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol 22, 291-399, doi:10.1016/j.reprotox.2006.04.007 (2006).
44 Huber, W. W., Grasl-Kraupp, B. & Schulte-Hermann, R. Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit Rev Toxicol 26, 365-481, doi:10.3109/10408449609048302 (1996).
45 Doull, J. et al. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Regul Toxicol Pharmacol 29, 327-357, doi:10.1006/rtph.1999.1296 (1999).
46 Bonetto, A., Rupert, J. E., Barreto, R. & Zimmers, T. A. The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J Vis Exp, doi:10.3791/54893 (2016).
47 Liu, X. et al. Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology 474, 153226, doi:10.1016/j.tox.2022.153226 (2022).
48 Reid, M. B. & Li, Y. P. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2, 269-272, doi:10.1186/rr67 (2001).
49 Haddad, F., Zaldivar, F., Cooper, D. M. & Adams, G. R. IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985) 98, 911-917, doi:10.1152/japplphysiol.01026.2004 (2005).
50 Zamir, O., Hasselgren, P. O., Higashiguchi, T., Frederick, J. A. & Fischer, J. E. Tumour necrosis factor (TNF) and interleukin-1 (IL-1) induce muscle proteolysis through different mechanisms. Mediators Inflamm 1, 247-250, doi:10.1155/S0962935192000371 (1992).
51 McClung, J. M., Judge, A. R., Talbert, E. E. & Powers, S. K. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol 296, C363-371, doi:10.1152/ajpcell.00497.2008 (2009).
52 Dodd, S. L., Gagnon, B. J., Senf, S. M., Hain, B. A. & Judge, A. R. Ros-mediated activation of NF-kappaB and Foxo during muscle disuse. Muscle Nerve 41, 110-113, doi:10.1002/mus.21526 (2010).
53 Smuder, A. J., Hudson, M. B., Nelson, W. B., Kavazis, A. N. & Powers, S. K. Nuclear factor-kappaB signaling contributes to mechanical ventilation-induced diaphragm weakness*. Crit Care Med 40, 927-934, doi:10.1097/CCM.0b013e3182374a84 (2012).
54 McClung, J. M., Judge, A. R., Powers, S. K. & Yan, Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 298, C542-549, doi:10.1152/ajpcell.00192.2009 (2010).
55 Miller, B. F., Robinson, M. M., Bruss, M. D., Hellerstein, M. & Hamilton, K. L. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11, 150-161, doi:10.1111/j.1474-9726.2011.00769.x (2012).
56 Conley, K. E., Jubrias, S. A. & Esselman, P. C. Oxidative capacity and ageing in human muscle. J Physiol 526 Pt 1, 203-210, doi:10.1111/j.1469-7793.2000.t01-1-00203.x (2000).
57 Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612-616, doi:10.1126/science.1175202 (2009).
58 Eftimie, R., Brenner, H. R. & Buonanno, A. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 88, 1349-1353, doi:10.1073/pnas.88.4.1349 (1991).
59 Moresi, V. et al. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143, 35-45, doi:10.1016/j.cell.2010.09.004 (2010).
60 Macpherson, P. C., Wang, X. & Goldman, D. Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J Cell Biochem 112, 2149-2159, doi:10.1002/jcb.23136 (2011).
61 Ciciliot, S., Rossi, A. C., Dyar, K. A., Blaauw, B. & Schiaffino, S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45, 2191-2199, doi:10.1016/j.biocel.2013.05.016 (2013).
62 Tian, M., Asp, M. L., Nishijima, Y. & Belury, M. A. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int J Oncol 39, 1321-1326, doi:10.3892/ijo.2011.1150 (2011).
63 Swynghedauw, B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66, 710-771, doi:10.1152/physrev.1986.66.3.710 (1986). |