參考文獻 |
1. Alshalalfa, M., Seldon, C., Franco, I., Vince, R., Carmona, R., Punnen, S.,
Kaochar, S., Dess, R., Kishan, A., Spratt, D. E., Sharma, J., Dal Pra, A., Pollack,
A., Abramowitz, M. C., & Mahal, B. A. (2022). Clinicogenomic characterization
of prostate cancer liver metastases. Prostate Cancer and Prostatic Diseases,
25(2), 366–369. https://doi.org/10.1038/s41391-021-00486-2
2. Alvarez, A., Barisone, G. A., & Diaz, E. (2014). Focus formation: a cell-based
assay to determine the oncogenic potential of a gene. Journal of Visualized
Experiments : JoVE, 94. https://doi.org/10.3791/51742
3. ARCHS4. (2024). WDYHV1.
https://maayanlab.cloud/archs4/gene/WDYHV1#tissueexpression
4. Asiedu, M. K., Thomas, C. F., Dong, J., Schulte, S. C., Khadka, P., Sun, Z., Kosari,
F., Jen, J., Molina, J., Vasmatzis, G., Kuang, R., Aubry, M. C., Yang, P., & Wigle,
D. A. (2018). Pathways impacted by genomic alterations in pulmonary carcinoid
tumors. Clinical Cancer Research, 24(7), 1691–1704.
https://doi.org/10.1158/1078-0432.CCR-17-0252
5. Aslan, M., Hsu, E. C., Liu, S., & Stoyanova, T. (2021). Quantifying the invasion
and migration ability of cancer cells with a 3D Matrigel drop invasion assay.
Biology Methods and Protocols, 6(1).
https://doi.org/10.1093/biomethods/bpab014
6. Banerjee, P. P., Banerjee, S., Brown, T. R., & Zirkin, B. R. (2018). Androgen
action in prostate function and disease. American Journal of Clinical and
Experimental Urology, 6(2), 62–77.
7. Basse, P., Hokland, P., Heron, I., & Hokland, M. (1988). Fate of tumor cells
injected into left ventricle of heart in BALB/c mice: Role of natural killer cells.
Journal of the National Cancer Institute, 80(9).
https://doi.org/10.1093/jnci/80.9.657
34
8. Belkahla, S., Nahvi, I., Biswas, S., Nahvi, I., & Ben Amor, N. (2022). Advances
and development of prostate cancer, treatment, and strategies: A systemic review.
Frontiers in Cell and Developmental Biology, 10(September), 1–11.
https://doi.org/10.3389/fcell.2022.991330
9. Borley, N., & Feneley, M. R. (2009). Prostate cancer: Diagnosis and staging.
Asian Journal of Andrology, 11(1), 74–80. https://doi.org/10.1038/aja.2008.19
10. Castel, P. (2022). Defective protein degradation in genetic disorders. Biochimica
et Biophysica Acta - Molecular Basis of Disease, 1868(5).
https://doi.org/10.1016/j.bbadis.2022.166366
11. Cheng, L., Montironi, R., Bostwick, D. G., Lopez-Beltran, A., & Berney, D. M.
(2012). Staging of prostate cancer. Histopathology, 60(1), 87–117.
https://doi.org/10.1111/j.1365-2559.2011.04025.x
12. Cooper, G. (2000). The Cell A Molecular Approach. 2nd edition. Sunderland
(MA) Sinauer Associates. In Biochemical Education.
13. Cornford, P., Tilki, D., Bergh, Van Den, R.C.N., Briers, E. et. al. (2024, April).
EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer.
https://d56bochluxqnz.cloudfront.net/documents/pocket-guidelines/EAUEANM-
ESTRO-ESUR-ISUP-SIOG-Pocket-on-Prostate-Cancer-2024_2024-04-
16-125527_rzmb.pdf
14. Dana, H., Chalbatani, G. M., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O.,
Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., Marmari, V.,
Ebrahimi, M., Rashno, M. M., Abadi, S. J., & Gharagouzlo, E. (2017). Molecular
Mechanisms and Biological Functions of siRNA. International Journal of
Biomedical Science : IJBS, 13(2), 48–57.
15. de Haan, K., Zhang, Y., Zuckerman, J. E., Liu, T., Sisk, A. E., Diaz, M. F. P., Jen,
K. Y., Nobori, A., Liou, S., Zhang, S., Riahi, R., Rivenson, Y., Wallace, W. D.,
& Ozcan, A. (2021). Deep learning-based transformation of H&E stained tissues
into special stains. Nature Communications, 12(1).
https://doi.org/10.1038/s41467-021-25221-2
35
16. Desarnaud, F., Geck, P., Parkin, C., Carpinito, G., & Makarovskiy, A. N. (2011).
Gene expression profiling of the androgen independent prostate cancer cells
demonstrates complex mechanisms mediating resistance to docetaxel. Cancer
Biology and Therapy, 11(2). https://doi.org/10.4161/cbt.11.2.13750
17. Detlefsen, A. J., Paulukinas, R. D., & Mesaros, C. (2023). Chapter Thirteen -
High sensitivity LC-MS methods for quantitation of hydroxy- and keto-androgens.
In T. M. Penning (Ed.), Steroid Biochemistry (Vol. 689, pp. 355–376). Academic
Press. https://doi.org/https://doi.org/10.1016/bs.mie.2023.04.009
18. Ferlay J, E. M. L. F. L. M. C. M. M. L. P. M. Z. A. S. I. B. F. (2024). Global
Cancer Observatory: Cancer Today. Lyon, France: International Agency for
Research on Cancer.
19. Gandaglia, G., Abdollah, F., Schiffmann, J., Trudeau, V., Shariat, S. F., Kim, S.
P., Perrotte, P., Montorsi, F., Briganti, A., Trinh, Q.-D., Karakiewicz, P. I., & Sun,
M. (2014). Distribution of metastatic sites in patients with prostate cancer:
A population-based analysis. The Prostate, 74(2), 210–216.
https://doi.org/10.1002/pros.22742
20. Glick, B. R., & Patten, C. L. (2017). Molecular biotechnology : principles and
applications of recombinant DNA / Bernard R. Glick, Cheryl L. Patten. Molecular
Biotechnology : Principles and Applications of Recombinant DNA.
21. Harshitha, R., & Arunraj, D. R. (2021). Real-time quantitative PCR: A tool for
absolute and relative quantification. Biochemistry and Molecular Biology
Education, 49(5), 800–812. https://doi.org/https://doi.org/10.1002/bmb.21552
22. Heiden, M. G. Vander, Cantley, L. C., & Thompson, C. B. (2009). Understanding
the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science,
324(5930), 1029–1033. https://doi.org/10.1126/science.1160809
23. Heo, A. J., Kim, S. Bin, Kwon, Y. T., & Ji, C. H. (2023). The N-degron pathway:
From basic science to therapeutic applications. In Biochimica et Biophysica Acta
- Gene Regulatory Mechanisms (Vol. 1866, Issue 2).
https://doi.org/10.1016/j.bbagrm.2023.194934
36
24. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. In Annual Review
of Biochemistry (Vol. 67). https://doi.org/10.1146/annurev.biochem.67.1.425
25. Jang, I. K., & Gu, H. (2003). Negative regulation of TCR signaling and T-cell
activation by selective protein degradation. Current Opinion in Immunology,
15(3), 315–320. https://doi.org/10.1016/S0952-7915(03)00048-7
26. Kawahata, I., & Fukunaga, K. (2020). Degradation of tyrosine hydroxylase by the
ubiquitin-proteasome system in the pathogenesis of Parkinson’s disease and
dopa-responsive dystonia. International Journal of Molecular Sciences, 21(11).
https://doi.org/10.3390/ijms21113779
27. Li, Y., Li, S., & Wu, H. (2022). Ubiquitination-Proteasome System (UPS) and
Autophagy Two Main Protein Degradation Machineries in Response to Cell
Stress. In Cells (Vol. 11, Issue 5). https://doi.org/10.3390/cells11050851
28. Liberti, M. V, & Locasale, J. W. (2016). The Warburg Effect: How Does it
Benefit Cancer Cells? Trends in Biochemical Sciences, 41(3), 211–218.
https://doi.org/10.1016/j.tibs.2015.12.001
29. Magi, B., & Liberatori, S. (2005). Immunoblotting techniques. Methods in
Molecular Biology (Clifton, N.J.), 295, 227–254. https://doi.org/10.1385/1-
59259-873-0:227
30. Mamiatis, T., Fritsch, E. F., Sambrook, J., & Engel, J. (1985). Molecular cloning–
A laboratory manual. New York: Cold Spring Harbor Laboratory. 1982, 545 S.,
42 $. Acta Biotechnologica, 5(1), 104.
https://doi.org/https://doi.org/10.1002/abio.370050118
31. Mašić, S., Pezelj, I., & Krušlin, B. (2019). Prostate-Spesific Antigen (PSA)
Values in Patients with Low- and High-Risk Prostatic Adenocarcinoma. Acta
Clinica Croatica, 58(Suppl 2), 12–15.
https://doi.org/10.20471/acc.2019.58.s2.02
32. Monies, D., Abouelhoda, M., AlSayed, M., Alhassnan, Z., Alotaibi, M., Kayyali,
H., Al-Owain, M., Shah, A., Rahbeeni, Z., Al-Muhaizea, M. A., Alzaidan, H. I.,
Cupler, E., Bohlega, S., Faqeih, E., Faden, M., Alyounes, B., Jaroudi, D., Goljan,
37
E., Elbardisy, H., … Alkuraya, F. S. (2017). The landscape of genetic diseases in
Saudi Arabia based on the first 1000 diagnostic panels and exomes. Human
Genetics, 136(8). https://doi.org/10.1007/s00439-017-1821-8
33. Moore, C. B., Guthrie, E. H., Huang, M. T. H., & Taxman, D. J. (2010). Short
hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown.
Methods in Molecular Biology (Clifton, N.J.), 629. https://doi.org/10.1007/978-
1-60761-657-3_10
34. Müller, M. M. (2018). Post-Translational Modifications of Protein Backbones:
Unique Functions, Mechanisms, and Challenges. In Biochemistry (Vol. 57, Issue
2). https://doi.org/10.1021/acs.biochem.7b00861
35. Ni, X., Wei, Y., Li, X., Pan, J., Fang, B., Zhang, T., Lu, Y., Ye, D., & Zhu, Y.
(2024). From biology to the clinic — exploring liver metastasis in prostate cancer.
Nature Reviews Urology. https://doi.org/10.1038/s41585-024-00875-x
36. Nolsøe, A. B., Jensen, C. F. S., Østergren, P. B., & Fode, M. (2021). Neglected
side effects to curative prostate cancer treatments. International Journal of
Impotence Research, 33(4), 428–438. https://doi.org/10.1038/s41443-020-
00386-4
37. Oh, J. H., Hyun, J. Y., Chen, S. J., & Varshavsky, A. (2020). Five enzymes of the
Arg/N-degron pathway form a targeting complex: The concept of
superchanneling. Proceedings of the National Academy of Sciences of the United
States of America, 117(20), 10778–10788.
https://doi.org/10.1073/pnas.2003043117
38. Park, M. S., Bitto, E., Kim, K. R., Bingman, C. A., Miller, M. D., Kim, H.-J., Han,
B. W., & Phillips, G. N. J. (2014). Crystal structure of human protein N-terminal
glutamine amidohydrolase, an initial component of the N-end rule pathway.
PloS One, 9(10), e111142. https://doi.org/10.1371/journal.pone.0111142
39. Paudel, R. R., Lu, D., Roy Chowdhury, S., Monroy, E. Y., & Wang, J. (2023).
Targeted Protein Degradation via Lysosomes. In Biochemistry (Vol. 62, Issue 3).
https://doi.org/10.1021/acs.biochem.2c00310
38
40. Peng, C., & Gao, F. (2014). Protein localization analysis of essential genes in
prokaryotes. Scientific Reports, 4. https://doi.org/10.1038/srep06001
41. Piatkov, K. I., Colnaghi, L., Békés, M., Varshavsky, A., & Huang, T. T. (2012).
The auto-generated fragment of the Usp1 deubiquitylase is a
physiological substrate of the N-end rule pathway. Molecular Cell, 48(6), 926–
933. https://doi.org/10.1016/j.molcel.2012.10.012
42. Pohl, C., & Dikic, I. (2019). Cellular quality control by the ubiquitin-proteasome
system and autophagy. Science, 366(6467), 818–822.
https://doi.org/10.1126/science.aax3769
43. Potocki, P. M., & Wysocki, P. J. (2022). Evolution of prostate cancer therapy.
Part 1. Oncology in Clinical Practice, 18(3), 177–188.
https://journals.viamedica.pl/oncology_in_clinical_practice/article/view/OCP.20
21.0001
44. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013).
Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11),
2281–2308. https://doi.org/10.1038/nprot.2013.143
45. Rawla, P. (2019). Epidemiology of Prostate Cancer. World Journal of Oncology,
10(2), 63–89. https://doi.org/10.14740/wjon1191
46. Ray, D., Cuneo, K. C., Rehemtulla, A., Lawrence, T. S., & Nyati, M. K. (2015).
Inducing oncoprotein degradation to improve targeted cancer therapy. In
Neoplasia (United States) (Vol. 17, Issue 9).
https://doi.org/10.1016/j.neo.2015.08.008
47. Rea, D., Del Vecchio, V., Palma, G., Barbieri, A., Falco, M., Luciano, A., De
Biase, D., Perdonà, S., Facchini, G., & Arra, C. (2016). Mouse Models in Prostate
Cancer Translational Research: From Xenograft to PDX. BioMed Research
International, 2016. https://doi.org/10.1155/2016/9750795
48. Resources, A. of G. (2024). NTAQ1.
https://doi.org/https://www.ncbi.nlm.nih.gov/gene/55093
39
49. Ruffalo, M., & Bar-Joseph, Z. (2019). Protein interaction disruption in cancer.
BMC Cancer, 19(1). https://doi.org/10.1186/s12885-019-5532-5
50. Singer, E. A., Kaushal, A., Turkbey, B., Couvillon, A., Pinto, P. A., & Parnes, H.
L. (2012). Active surveillance for prostate cancer: past, present and future.
Current Opinion in Oncology, 24(3), 243–250.
https://doi.org/10.1097/CCO.0b013e3283527f99
51. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
& Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of
Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A
Cancer Journal for Clinicians, 71(3), 209–249.
https://doi.org/10.3322/caac.21660
52. The Human Protein Atlas. (2024). WDYHV1.
https://v15.proteinatlas.org/ENSG00000156795-WDYHV1/subcellular
53. Townsend, M. H., Ence, Z. E., Cox, T. P., Lattin, J. E., Burrup, W., Boyer, M. K.,
Piccolo, S. R., Robison, R. A., & O’Neill, K. L. (2020). Evaluation of the
upregulation and surface expression of hypoxanthine guanine
phosphoribosyltransferase in acute lymphoblastic leukemia and Burkitt’s B cell
lymphoma. Cancer Cell International, 20(1). https://doi.org/10.1186/s12935-
020-01457-8
54. UniProt. (2024). Q96HA8 · NTAQ1_HUMAN.
https://www.uniprot.org/uniprotkb/Q96HA8/entry#names_and_taxonomy
55. Van, V., & Smith, A. T. (2020). ATE1-Mediated Post-Translational Arginylation
Is an Essential Regulator of Eukaryotic Cellular Homeostasis. In ACS Chemical
Biology (Vol. 15, Issue 12, pp. 3073–3085). American Chemical Society.
https://doi.org/10.1021/acschembio.0c00677
56. Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation.
Proceedings of the National Academy of Sciences, 116(2), 358–366.
https://doi.org/10.1073/pnas.1816596116
40
57. Vu, T. T. M., Mitchell, D. C., Gygi, S. P., & Varshavsky, A. (n.d.). The Arg/Ndegron
pathway targets transcription factors and regulates specific genes.
https://doi.org/10.1073/pnas.2020124117/-/DCSupplemental
58. Wasim, S. , P. J. , N. S. , and K. J. (2023). Prostate Cancer Patients. Cancers ,
15(5615), 1–27. https://doi.org/https://doi.org/10.3390/ cancers15235615
59. You, M., Xie, Z., Zhang, N., Zhang, Y., Xiao, D., Liu, S., Zhuang, W., Li, L., &
Tao, Y. (2023). Signaling pathways in cancer metabolism: mechanisms and
therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), 196.
https://doi.org/10.1038/s41392-023-01442-3
60. Zhang, S., Shen, T., & Zeng, Y. (2023). Epigenetic Modifications in Prostate
Cancer Metastasis and Microenvironment. Cancers, 15(8).
https://doi.org/10.3390/cancers15082243
61. Zubair, H., & Ahmad, A. (2017). Chapter 1 - Cancer Metastasis: An Introduction.
In A. Ahmad (Ed.), Introduction to Cancer Metastasis (pp. 3–12). Academic
Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804003-4.00001-3 |