參考文獻 |
Adrian, L., & Löffler, F. E. (Eds.). (2016). Organohalide-respiring bacteria (Vol. 85). Berlin: Springer.
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental science & technology, 53(7), 3568-3578.
Akbari, Z., Dijojin, R. T., Zamani, Z., Hosseini, R. H., & Arjmand, M. (2021). Aromatic amino acids play a harmonizing role in prostate cancer: A metabolomics-based cross-sectional study. International Journal of Reproductive BioMedicine, 19(8), 741.
Amorim Franco, T. M., & Blanchard, J. S. (2017). Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry, 56(44), 5849-5865.
Aoyagi, T., Kashiwabara, Y., Kurasawa, H., Amachi, S., Nakajima, N., Hori, T., & Yamamura, S. (2019). Draft genome sequence of a novel lactate-fermenting bacterial strain of the family sporomusaceae within the class negativicutes. Microbiology Resource Announcements, 8(10), 10-1128.
Aulenta, F., Beccari, M., Majone, M., Papini, M. P., & Tandoi, V. (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43(2), 161-168.
Aulenta, F., Pera, A., Rossetti, S., Papini, M. P., & Majone, M. (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41(1), 27-38.
Balabanova, L., Averianova, L., Marchenok, M., Son, O., & Tekutyeva, L. (2021). Microbial and genetic resources for cobalamin (vitamin B12) biosynthesis: From ecosystems to industrial biotechnology. International journal of molecular sciences, 22(9), 4522.
Berns-Herrboldt, E. C., You, X., Lin, J., Sanford, R. A., Valocchi, A. J., Strathmann, T. J., ... & Werth, C. J. (2022). Sulfate-Reducing Bacteria Enhance Abiotic Trichloroethene Reduction by Iron–Sulfur Mineral Precipitates. ACS ES&T Water, 2(9), 1500-1510.
Börsig, N., Scheinost, A. C., Shaw, S., Schild, D., & Neumann, T. (2018). Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron (II) hydroxide and green rust. Dalton Transactions, 47(32), 11002-11015.
Brumovský, M., Filip, J., Malina, O., Oborná, J., Sracek, O., Reichenauer, T. G., Andrýsková, P., & Zbořil, R. (2020). Core-Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal. ACS applied materials & interfaces, 12(31), 35424–35434.
Cai, Q., Shi, C., Cao, Z., Li, Z., Zhao, H. P., & Yuan, S. (2024). Electrokinetic bioremediation of trichloroethylene and Cr/As co-contaminated soils with elevated sulfate. Journal of Hazardous Materials, 133761.
Carpenter, J., Bi, Y., & Hayes, K. F. (2015). Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments. Environmental science & technology, 49(2), 1078–1085.
Chen, C., Xu, G., & He, J. (2023). Substrate-dependent strategies to mitigate sulfate inhibition on microbial reductive dechlorination of polychlorinated biphenyls. Chemosphere, 342, 140063.
Chen, Y. C., & Chang, J. E. (2022). Removal of chlorine-contaminated groundwater by two-stage ozonation and biostimulation methods. Journal of Environmental Management, 317, 115417.
Chioccioli, S., Del Duca, S., Vassallo, A., Castronovo, L. M., & Fani, R. (2020). Exploring the role of the histidine biosynthetic hisF gene in cellular metabolism and in the evolution of (ancestral) genes: from LUCA to the extant (micro) organisms. Microbiological Research, 240, 126555.
Chiu, W. A., Caldwell, J. C., Keshava, N., & Scott, C. S. (2006). Key scientific issues in the health risk assessment of trichloroethylene. Environmental health perspectives, 114(9), 1445-1449.
Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - a review. The Science of the total environment, 407(8), 2474–2492.
Christ, J. A., Lemke, L. D., & Abriola, L. M. (2009). The influence of dimensionality on simulations of mass recovery from nonuniform dense non-aqueous phase liquid (DNAPL) source zones. Advances in water resources, 32(3), 401-412.
Cord-Ruwisch, R. (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1), 33-36.
Dai, Z., Zhu, Y., Dong, H., Zhao, C., Zhang, Y., & Li, Y. (2021). Enforcing ATP hydrolysis enhanced anaerobic glycolysis and promoted solvent production in Clostridium acetobutylicum. Microbial Cell Factories, 20, 1-11.
Deng, X., Dohmae, N., Kaksonen, A. H., & Okamoto, A. (2020). Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate‐reducing bacteria. Angewandte Chemie, 132(15), 6051-6055.
Deutsch, W. J., & Siegel, R. (2020). Groundwater geochemistry: fundamentals and applications to contamination. CRC press.
Dezfulian, M. H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R. K., Roberto, D. K. A., ... & Crosby, W. L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC plant biology, 17, 1-13.
Dubinsky, A. J., Wilks, R. P., & Buhay, W. M. (2020). Confirming the source of high-sulfate concentrations in Dead Horse Creek, Winkler, Manitoba, Canada, using a dual-isotope Bayesian probability mixing model. Water, Air, & Soil Pollution, 231, 1-14.
Dutta, N., Thomsen, K., & Ahring, B. K. (2022). Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory. Chemosphere, 298, 134115.
Duverger, A., Berg, J. S., Busigny, V., Guyot, F., Bernard, S., & Miot, J. (2020). Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture. Frontiers in Earth Science, 8, 588310.
Ednacot, E. M. Q., & Morehouse, B. R. (2024). An OLD protein teaches us new tricks: prokaryotic antiviral defense. nature communications, 15(1), 2527.
El Houari, A., Ranchou-Peyruse, M., Ranchou-Peyruse, A., Dakdaki, A., Guignard, M., Idouhammou, L., ... & Qatibi, A. I. (2017). Desulfobulbus oligotrophicus sp. nov., a sulfate-reducing and propionate-oxidizing bacterium isolated from a municipal anaerobic sewage sludge digester. International journal of systematic and evolutionary microbiology, 67(2), 275-281.
Fan, M. Y., Zhang, Y. L., Lin, Y. C., Li, J., Cheng, H., An, N., ... & Fu, P. (2020). Roles of sulfur oxidation pathways in the variability in stable sulfur isotopic composition of sulfate aerosols at an urban site in Beijing, China. Environmental Science & Technology Letters, 7(12), 883-888.
Figueiredo, M. C., Lobo, S. A., Carita, J. N., Nobre, L. S., & Saraiva, L. M. (2012). Bacterioferritin protects the anaerobe Desulfovibrio vulgaris Hildenborough against oxygen. Anaerobe, 18(4), 454-458.
Fontecave, M., & Ollagnier-de-Choudens, S. (2008). Iron–sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Archives of biochemistry and biophysics, 474(2), 226-237.
Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., & Glover, L. A. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental microbiology, 7(3), 301-313.
Gittel, A., Mußmann, M., Sass, H., Cypionka, H., & Könneke, M. (2008). Identity and abundance of active sulfate‐reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD‐FISH analysis. Environmental microbiology, 10(10), 2645-2658.
Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water research, 89, 309-320.
Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water research, 89, 309-320.
Guha, N., Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Baan, R., Mattock, H., Straif, K., & International Agency for Research on Cancer Monograph Working Group (2012). Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. The Lancet. Oncology, 13(12), 1192–1193.
Guidotti, T. L. (2010). Hydrogen sulfide: advances in understanding human toxicity. International journal of toxicology, 29(6), 569-581.
Gushgari-Doyle, S., Olivares, C. I., Sun, M., & Alvarez-Cohen, L. (2023). Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi. Environmental Science & Technology, 57(38), 14237-14247.
Gushgari-Doyle, S., Olivares, C. I., Sun, M., & Alvarez-Cohen, L. (2023). Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi. Environmental science & technology, 57(38), 14237–14247.
He, J., Holmes, V. F., Lee, P. K., & Alvarez-Cohen, L. (2007). Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied and environmental microbiology, 73(9), 2847-2853.
He, Y. T., Wilson, J. T., Su, C., & Wilkin, R. T. (2015). Review of abiotic degradation of chlorinated solvents by reactive iron minerals in aquifers. Groundwater Monitoring & Remediation, 35(3), 57-75.
Heimann, A. C., Friis, A. K., & Jakobsen, R. (2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water research, 39(15), 3579-3586.
Hidalgo-Ulloa, A., Buisman, C., & Weijma, J. (2022). Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor. Hydrometallurgy, 213, 105950.
Hoelen, T. P., & Reinhard, M. (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15(6), 395-403.
Honetschlägerová, L., Martinec, M., & Škarohlíd, R. (2019). Coupling in situ chemical oxidation with bioremediation of chloroethenes: a review. Reviews in Environmental Science and Bio/Technology, 18, 699-714.
Hungate, R. E. (1944). Studies on cellulose fermentation: I. The culture and physiology of an anaerobic cellulose-digesting bacterium. Journal of bacteriology, 48(5), 499-513.
IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. (1995). IARC monographs on the evaluation of carcinogenic risks to humans, 63, 33–477
Janda, J. M., & Abbott, S. L. (2021). The changing face of the family Enterobacteriaceae (Order:“Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clinical microbiology reviews, 34(2), 10-1128.
Jeong, H. Y., Anantharaman, K., Han, Y. S., & Hayes, K. F. (2011). Abiotic reductive dechlorination of cis-dichloroethylene by Fe species formed during iron-or sulfate-reduction. Environmental science & technology, 45(12), 5186-5194.
Karamanev, D. G., Nikolov, L. N., & Mamatarkova, V. (2002). Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering, 15(5), 341-346.
Kim, H. J., Li, Y., Zimmermann, M., Lee, Y., Lim, H. W., Tan, A. S. L., ... & Pethe, K. (2022). Pharmacological perturbation of thiamine metabolism sensitizes Pseudomonas aeruginosa to multiple antibacterial agents. Cell Chemical Biology, 29(8), 1317-1324.
Kim, H., Kang, S., & Sang, B. I. (2022). Metabolic cascade of complex organic wastes to medium-chain carboxylic acids: A review on the state-of-the-art multi-omics analysis for anaerobic chain elongation pathways. Bioresource Technology, 344, 126211.
Kueper, B. H., Stroo, H. F., Vogel, C. M., & Ward, C. H. (Eds.). (2014). Chlorinated solvent source zone remediation (pp. 528-530). Springer New York.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution, 35(6), 1547–1549.
Kushkevych, I., Dordević, D., & Vítězová, M. (2019). Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Medicine, 14(1), 66-74.
Kushkevych, I., Dordević, D., & Vítězová, M. (2019). Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Archives of microbiology, 201, 389-397.
Lan, Y., & Butler, E. C. (2014). Monitoring the transformation of mackinawite to greigite and pyrite on polymer supports. Applied geochemistry, 50, 1-6.
Lan, Y., & Butler, E. C. (2016). Iron-sulfide-associated products formed during reductive dechlorination of carbon tetrachloride. Environmental science & technology, 50(11), 5489-5497.
Lan, Y., Madden, A. S. E., & Butler, E. C. (2016). Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene. Environmental Science: Processes & Impacts, 18(10), 1266-1273.
Lee, H. C., Chen, S. C., Sheu, Y. T., Yao, C. L., Lo, K. H., & Kao, C. M. (2024). Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. Environmental Pollution, 123768.
Lemming, G., Hauschild, M. Z., Chambon, J., Binning, P. J., Bulle, C., Margni, M., & Bjerg, P. L. (2010). Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environmental science & technology, 44(23), 9163–9169.
Li, Y., Dong, H., Li, L., Tang, L., Tian, R., Li, R., ... & Zeng, G. (2021). Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Research, 192, 116850.
Li, Y., Liu, G., He, J., & Zhong, H. (2023). Activation of persulfate for groundwater remediation: from bench studies to application. Applied Sciences, 13(3), 1304.
Li, Y., Zhao, H. P., & Zhu, L. (2021). Iron sulfide enhanced the dechlorination of trichloroethene by Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 12, 665281.
Li, Z. T., Song, X., Yuan, S., & Zhao, H. P. (2024). Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: kinetics and microbial responses. Water Research, 121328.
Li, Z., Zhang, P., Qiu, Y., Zhang, Z., Wang, X., Yu, Y., & Feng, Y. (2021). Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Science of the total environment, 762, 143142.
Lin, W. H., Chen, C. C., Sheu, Y. T., Tsang, D. C., Lo, K. H., & Kao, C. M. (2020). Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement. Environmental Research, 187, 109629.
Liu, M. H., Hsiao, C. M., Lin, C. E., & Leu, J. (2021). Application of combined in situ chemical reduction and enhanced bioremediation to accelerate TCE treatment in groundwater. Applied Sciences, 11(18), 8374.
Liu, P., Pommerenke, B., & Conrad, R. (2018). Identification of Syntrophobacteraceae as major acetate‐degrading sulfate reducing bacteria in Italian paddy soil. Environmental microbiology, 20(1), 337-354.
Liu, X., Zhang, L., Shen, R., Lu, Q., Zeng, Q., Zhang, X., ... & Wang, S. (2023). Reciprocal interactions of abiotic and biotic dechlorination of chloroethenes in soil. Environmental Science & Technology, 57(37), 14036-14045.
Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., & Boone, D. R. (1999). Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology, 49(2), 545-556.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., ... & Spormann, A. M. (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary microbiology, 63(Pt_2), 625-635.
Mao, X., Oremland, R. S., Liu, T., Gushgari, S., Landers, A. A., Baesman, S. M., & Alvarez-Cohen, L. (2017). Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia. Environmental science & technology, 51(4), 2366-2372.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, 83(8), e03384-16.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, 83(8), e03384-16.
Men, Y., Feil, H., VerBerkmoes, N. C., Shah, M. B., Johnson, D. R., Lee, P. K., ... & Alvarez-Cohen, L. (2012). Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. The ISME journal, 6(2), 410-421.
Miles, Z. D., Myers, W. K., Kincannon, W. M., Britt, R. D., & Bandarian, V. (2015). Biochemical and spectroscopic studies of epoxyqueuosine reductase: a novel iron–sulfur cluster-and cobalamin-containing protein involved in the biosynthesis of queuosine. Biochemistry, 54(31), 4927-4935.
Mingchai, C., Sakunphun, S., Palas, S., & Samposree, S. (2019). Hydrogen Sulfide Removal by Iron Oxide-Based Clay from Biogas for Community Use. Applied Mechanics and Materials, 886, 159-165.
Minton, N. P., & Clarke, D. J. (Eds.). (2013). Clostridia (Vol. 3). Springer Science & Business Media.
Myhr, S., & Torsvik, T. (2000). Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. International journal of systematic and evolutionary microbiology, 50(4), 1611-1619.
Nelson, D. K., Hozalski, R. M., Clapp, L. W., Semmens, M. J., & Novak, P. J. (2002). Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Bioremediatio Journal, 6(3), 225-236.
Nguyen, T. M., Chen, H. H., Chang, Y. C., Ning, T. C., & Chen, K. F. (2023). Remediation of groundwater contaminated with trichloroethylene (TCE) using a long-lasting persulfate/biochar barrier. Chemosphere, 333, 138954.
Nie, Z., Wang, N., Xia, X., Xia, J., Liu, H., Zhou, Y., Deng, Y., & Xue, Z. (2020). Biogenic FeS promotes dechlorination and thus de-cytotoxity of trichloroethylene. Bioprocess and biosystems engineering, 43(10), 1791–1800.
Ohtsu, I., Kawano, Y., Suzuki, M., Morigasaki, S., Saiki, K., Yamazaki, S., ... & Takagi, H. (2015). Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PloS one, 10(4), e0120619.
Panagiotakis, I., Mamais, D., Pantazidou, M., Rossetti, S., Aulenta, F., & Tandoi, V. (2014). Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water, Air, & Soil Pollution, 225, 1-14.
Pantazidou, M., Panagiotakis, I., Mamais, D., & Zikidi, V. (2012). Chloroethene biotransformation in the presence of different sulfate concentrations. Groundwater Monitoring & Remediation, 32(1), 106-119.
Paul, L., & Smolders, E. (2014). Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere, 111, 471-477.
Piper, P. W., Ortiz-Calderon, C., Holyoak, C., Coote, P., & Cole, M. (1997). Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell stress & chaperones, 2(1), 12–24.
Plugge, C. M., & Zoetendal, E. G. (2014). The family victivallaceae. In The prokaryotes: Other major lineages of bacteria and the archaea (pp. 1019-1021). Springer.
Porowski, A., Porowska, D., & Halas, S. (2019). Identification of sulfate sources and biogeochemical processes in an aquifer affected by Peatland: Insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland. Water, 11(7), 1388.
Puentes Jácome, L. A., Wang, P. H., Molenda, O., Li, Y. X., Islam, M. A., & Edwards, E. A. (2019). Sustained dechlorination of vinyl chloride to ethene in Dehalococcoides-enriched cultures grown without addition of exogenous vitamins and at low pH. Environmental Science & Technology, 53(19), 11364-11374.
Rapala-Kozik, M. (2011). Vitamin B1 (thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. In Advances in botanical research (Vol. 58, pp. 37-91). Academic Press.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and environmental microbiology, 72(4), 2765-2774.
Rosnow, J. J., Hwang, S., Killinger, B. J., Kim, Y. M., Moore, R. J., Lindemann, S. R., ... & Wright, A. T. (2018). A cobalamin activity-based probe enables microbial cell growth and finds new cobalamin-protein interactions across domains. Applied and Environmental Microbiology, 84(18), e00955-18.
Ross, D. E., Marshall, C. W., Gulliver, D., May, H. D., & Norman, R. S. (2020). Defining genomic and predicted metabolic features of the Acetobacterium genus. Msystems, 5(5), 10-1128.
Sanden, S. A., , Szilagyi, R. K., , Li, Y., , Kitadai, N., , Webb, S. M., , Yano, T., , Nakamura, R., , Hara, M., , & McGlynn, S. E., (2021). Electrochemically induced metal- vs. ligand-based redox changes in mackinawite: identification of a Fe3+- and polysulfide-containing intermediate. Dalton transactions (Cambridge, England : 2003), 50(34), 11763–11774.
Schwentner, A., Feith, A., Münch, E., Stiefelmaier, J., Lauer, I., Favilli, L., ... & Blombach, B. (2019). Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. Biotechnology for biofuels, 12, 1-21.
Schwille, F., & Pankow, J. F. (1988). Dense chlorinated solvents in porous and fractured media-model experiments.
Sharma, M. K., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: an overview. Environmental monitoring and assessment, 192, 1-10.
Shimizu, K., & Matsuoka, Y. (2022). Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnology Advances, 55, 107887.
Song, Q., Kong, F., Liu, B. F., Song, X., & Ren, H. Y. (2024). Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environmental Science and Ecotechnology, 100420.
Sperandeo, P., Martorana, A. M., & Polissi, A. (2019). Lipopolysaccharide biosynthesis and transport to the outer membrane of Gram-negative bacteria. Bacterial cell walls and membranes, 9-37.
Spring, S., Rohde, M., Bunk, B., Spröer, C., Will, S. E., & Neumann‐Schaal, M. (2022). New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environmental Microbiology, 24(5), 2543-2575.
Sun, L., Toyonaga, M., Ohashi, A., Tourlousse, D. M., Matsuura, N., Meng, X. Y., ... & Sekiguchi, Y. (2016). Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. International journal of systematic and evolutionary microbiology, 66(7), 2635-2642.
Suzuki, T., Nakamura, A., Kato, K., Söll, D., Tanaka, I., Sheppard, K., & Yao, M. (2015). Structure of the Pseudomonas aeruginosa transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis. Proceedings of the National Academy of Sciences, 112(2), 382-387.
Thiel, J., Byrne, J. M., Kappler, A., Schink, B., & Pester, M. (2019). Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences, 116(14), 6897-6902.
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut bacteroidetes: the food connection. Frontiers in microbiology, 2, 93.
Tollerson, R., & Ibba, M. (2020). Translational regulation of environmental adaptation in bacteria. Journal of Biological Chemistry, 295(30), 10434-10445.
Troshina, O., Oshurkova, V., Suzina, N., Machulin, A., Ariskina, E., Vinokurova, N., ... & Shcherbakova, V. (2015). Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_12), 4315-4322.
Türkowsky, D., Jehmlich, N., Diekert, G., Adrian, L., von Bergen, M., & Goris, T. (2018). An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS microbiology ecology, 94(3), fiy013.
Villemur, R., Lanthier, M., Beaudet, R., & Lépine, F. (2006). The desulfitobacterium genus. FEMS microbiology reviews, 30(5), 706-733.
Wan, Y. Y., Luo, N., Liu, X. L., Lai, Q. L., & Goodfellow, M. (2021). Cupidesulfovibrio liaohensis gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 71(2), 004618.
Wang, L., & Lowary, T. L. (2021). Synthesis of structurally-defined polymeric glycosylated phosphoprenols as potential lipopolysaccharide biosynthetic probes. Chemical Science, 12(36), 12192-12200.
Wang, X., Xin, J., Yuan, M., & Zhao, F. (2020). Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: a review. Water Research, 183, 116060.
Ward, B. (2015). Bacterial energy metabolism. In Molecular medical microbiology (pp. 201-233). Academic Press.
Ward, L. M., Bertran, E., & Johnston, D. T. (2021). Expanded genomic sampling refines current understanding of the distribution and evolution of sulfur metabolisms in the Desulfobulbales. Frontiers in Microbiology, 12, 666052.
Wu, Z., Man, Q., Niu, H., Lyu, H., Song, H., Li, R., ... & Ma, X. (2022). Recent advances and trends of trichloroethylene biodegradation: A critical review. Frontiers in Microbiology, 13, 1053169.
Xi, Y., Lan, S., Li, X., Wu, Y., Yuan, X., Zhang, C., ... & Wu, S. (2020). Bioremediation of antimony from wastewater by sulfate-reducing bacteria: Effect of the coexisting ferrous ion. International Biodeterioration & Biodegradation, 148, 104912.
Yan, J., Wang, J., Villalobos Solis, M. I., Jin, H., Chourey, K., Li, X., Yang, Y., Yin, Y., Hettich, R. L., & Löffler, F. E. (2021). Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. Environmental science & technology, 55(8), 4831–4841.
Yang, Y., & McCarty, P. L. (1998). Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environmental Science & Technology, 32(22), 3591-3597.
Yoshikawa, M., Zhang, M., Kawabe, Y., & Katayama, T. (2021). Effects of ferrous iron supplementation on reductive dechlorination of tetrachloroethene and on methanogenic microbial community. FEMS Microbiology Ecology, 97(5), fiab069.
Yutin, N., & Galperin, M. Y. (2013). A genomic update on clostridial phylogeny: G ram‐negative spore formers and other misplaced clostridia. Environmental microbiology, 15(10), 2631-2641.
Zaa, C. L. Y., McLean, J. E., Dupont, R. R., Norton, J. M., & Sorensen, D. L. (2010). Dechlorinating and iron reducing bacteria distribution in a TCE‐contaminated aquifer. Groundwater Monitoring & Remediation, 30(1), 46-57.
Zhang, J., Song, L., Wang, Y., Liu, C., Zhang, L., Zhu, S., ... & Duan, L. (2019). Beneficial effect of butyrate‐producing Lachnospiraceae on stress‐induced visceral hypersensitivity in rats. Journal of gastroenterology and hepatology, 34(8), 1368-1376.
Zhang, S., Cui, J., Zhang, M., Liu, J., Wang, L., Zhao, J., & Bao, Z. (2021). Diversity of active anaerobic ammonium oxidation (ANAMMOX) and nirK-type denitrifying bacteria in macrophyte roots in a eutrophic wetland. Journal of Soils and Sediments, 21, 2465-2473.
Zheng, C., & Dos Santos, P. C. (2018). Metallocluster transactions: dynamic protein interactions guide the biosynthesis of Fe–S clusters in bacteria. Biochemical Society Transactions, 46(6), 1593-1603.
Zhou, C., Vannela, R., Hayes, K. F., & Rittmann, B. E. (2014). Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. Journal of Hazardous Materials, 272, 28-35.
Zhou, L., Liu, J., & Dong, F. (2017). Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 544-548.
Zhu, F., Huang, Y., Ni, H., Tang, J., Zhu, Q., Long, Z. E., & Zou, L. (2022). Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. Chemosphere, 288, 132661.
Zhu, F., Peng, X., Hu, X., & Kong, L. (2022). H2S release rate strongly affects particle size and settling performance of metal sulfides in acidic wastewater: The role of homogeneous and heterogeneous nucleation. Journal of Hazardous Materials, 438, 129484.
Zou, C., Guo, B., Zhuang, X., Ren, L., Ni, S. Q., Ahmad, S., ... & Hong, J. (2020). Achieving fast start-up of anammox process by promoting the growth of anammox bacteria with FeS addition. npj Clean Water, 3(1), 41.
水利署. (2024). 各用水量統計資料庫. 取自 http://www.wra.gov.tw
行政院環保署. (2024). 土壤及地下水污染整治網. 取自 https://sgw.moenv.gov.tw |