參考文獻 |
1. Pitsch, G. et al. The Green Tetrahymena utriculariae n. sp. (Ciliophora, Oligohymenophorea) with Its Endosymbiotic Algae (Micractinium sp.), Living in Traps of a Carnivorous Aquatic Plant. J. Eukaryot. Microbiol. 64, 322–335 (2017).
2. Ecological Traits of the Algae‐Bearing Tetrahymena utriculariae (Ciliophora) from Traps of the Aquatic Carnivorous Plant Utricularia reflexa - Šimek - 2017 - Journal of Eukaryotic Microbiology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jeu.12368.
3. Sirová, D. et al. Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant. Microbiome 6, 225 (2018).
4. Orias, E., Cervantes, M. D. & Hamilton, E. P. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 162, 578–586 (2011).
5. Ruehle, M. D., Orias, E. & Pearson, C. G. Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics 203, 649–665 (2016).
6. Eisen, J. A. et al. Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLOS Biol. 4, e286 (2006).
7. Robinson, R. Ciliate Genome Sequence Reveals Unique Features of a Model Eukaryote. PLOS Biol. 4, e304 (2006).
8. Archibald, J. M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 25, R911–R921 (2015).
9. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).
10. Origin of Mitochondria | Learn Science at Scitable. https://www.nature.com/scitable/topicpage/the-origin-of-mitochondria-14232356/.
11. Gray, M. W. Mitochondrial Evolution. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).
12. Heyworth, E. R. & Ferrari, J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J. Evol. Biol. 28, 1753–1760 (2015).
13. Guo, J. et al. Nine facultative endosymbionts in aphids. A review. J. Asia-Pac. Entomol. 20, 794–801 (2017).
14. Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).
15. Kohl, K. D. & Dearing, M. D. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front. Microbiol. 7, (2016).
16. Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
17. Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
18. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
19. Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).
20. Adamec, L. Oxygen Concentrations Inside the Traps of the Carnivorous Plants Utricularia and Genlisea (Lentibulariaceae). Ann. Bot. 100, 849–856 (2007).
21. Valadez-Ingersoll, M. et al. Starvation differentially affects gene expression, immunity and pathogen susceptibility across symbiotic states in a model cnidarian. Proc. R. Soc. B Biol. Sci. 291, 20231685 (2024).
22. Carrión, P. J. A. et al. Starvation decreases immunity and immune regulatory factor NF-κB in the starlet sea anemone Nematostella vectensis. Commun. Biol. 6, 1–10 (2023).
23. Brockhurst, M. A., Cameron, D. D. & Beckerman, A. P. Fitness trade-offs and the origins of endosymbiosis. PLOS Biol. 22, e3002580 (2024).
24. Kawano, T., Irie, K. & Kadono, T. Oxidative Stress-Mediated Development of Symbiosis in Green Paramecia. in Symbioses and Stress: Joint Ventures in Biology (eds. Seckbach, J. & Grube, M.) 177–195 (Springer Netherlands, Dordrecht, 2010). doi:10.1007/978-90-481-9449-0_9.
25. Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
26. Lynn, D. H. & Doerder, F. P. The Life and Times of Tetrahymena. in Methods in Cell Biology (ed. Collins, K.) vol. 109 9–27 (Academic Press, 2012).
27. Arslanyolu, M. & Doerder, F. P. Genetic and Environmental Factors Affecting Mating Type Frequency in Natural Isolates of Tetrahymena thermophila. J. Eukaryot. Microbiol. 47, 412–418 (2000).
28. Karrer, K. M. Chapter 3 - Nuclear Dualism. in Methods in Cell Biology (ed. Collins, K.) vol. 109 29–52 (Academic Press, 2012).
29. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena | Annual Reviews. https://www.annualreviews.org/content/journals/10.1146/annurev-micro-090816-093342.
30. Zufall, R. A. Mating Systems and Reproductive Strategies in Tetrahymena. in Biocommunication of Ciliates (eds. Witzany, G. & Nowacki, M.) 221–233 (Springer International Publishing, Cham, 2016). doi:10.1007/978-3-319-32211-7_13.
31. Yan, G. et al. Evolution of the mating type gene pair and multiple sexes in Tetrahymena. iScience 24, 101950 (2021).
32. Cervantes, M. D. et al. Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila. PLOS Biol. 11, e1001518 (2013).
33. Booth, L., Wolfe, B. & Doerder, F. P. Molecular Polymorphism in the MTA and MTB Mating Type Genes of Tetrahymena thermophila and Related Asexual Species. J. Eukaryot. Microbiol. 62, 750–761 (2015).
34. Quirk, T. How a microbe chooses among seven sexes. Nature https://www.nature.com/articles/nature.2013.12684 (2013) doi:10.1038/nature.2013.12684.
35. Doerder, F. P., Gates, M. A., Eberhardt, F. P. & Arslanyolu, M. High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila. Proc. Natl. Acad. Sci. 92, 8715–8718 (1995).
36. Bruns, P. J. & Cassidy-Hanley, D. Chapter 27 Biolistic Transformation of Macro- and Micronuclei. in Methods in Cell Biology (eds. Asai, D. J. & Forney, J. D.) vol. 62 501–512 (Academic Press, 1999).
37. Catacora-Grundy, A. et al. Sweet and fatty symbionts: photosynthetic productivity and carbon storage boosted in microalgae within a host. 2023.12.22.572971 Preprint at https://doi.org/10.1101/2023.12.22.572971 (2023).
38. Yan, G. et al. A seven-sex species recognizes self and non-self mating-type via a novel protein complex. eLife 13, RP93770 (2024). |