博碩士論文 110821609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:173 、訪客IP:3.133.108.48
姓名 阮鳳桃(Nguyen Phuong Thao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 建立 Tetrahymena utriculariae 作為研究藻類-纖毛蟲共生的模型系統
(Establishment of Tetrahymena utriculariae as a model system for studying alga-ciliate symbiosis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在水生食肉植物Utricularia reflexa的捕蟲器中,發現了Tetrahymena(四膜)屬中唯一的綠色纖毛蟲Tetrahymena utriculariae。該纖毛蟲與微藻Micractinium tetrahymenae形成內共生關係,藻類在捕蟲器的厭氧環境中為纖毛蟲提供氧氣和其他光合產物,而纖毛蟲則為藻類提供保護,使它們免受掠食者的侵害。本研究旨在建立T. utriculariae與各種藻類之間的穩定內共生關係,並了解它們的代謝交互作用。此外,T. utriculariae具有獨特的非孟德爾機制,在食物匱乏期間選擇表達哪種交配型,但交配型決定的詳細分子途徑仍不清楚。內共生研究表明,T. utriculariae與其藻類內共生體之間的相互作用始於共生關係的胚胎階段,並且T. utriculariae能夠與多種藻類品系形成互利關係,尤其是Chlorella variabilis和Didymogenes-sphaerica類品系。當暴露於光下時,纖毛蟲與綠藻的內共生關係可以使其在厭氧條件下存活。此外,我們還以Tetrahymena屬的DRB3基因建立了幾個構築,旨在降低或剔除T. utriculariae關鍵代謝途徑中必要基因的表現量,為後續驗證藻類內共生體對纖毛蟲宿主在內共生過程中的影響建立系統。關於交配型決定研究,我們嘗試建立來自T. utriculariae微核的交配型基因對的構築,纖毛蟲的交配型是否影響其與藻類的內共生關係仍待進一步研究。
摘要(英) Tetrahymena utriculariae, the only recognized green ciliate within the Tetrahymena genus, was found in the traps of the aquatic carnivorous plant Utricularia reflexa. It forms an endosymbiotic relationship with the microalga Micractinium tetrahymenae, wherein the algae provide oxygen and other photosynthates to the ciliate in the anaerobic environment of the trap lumen, whilst the ciliate offers a protective habitat for the algae, shielding them from predators. This study aimed to establish a stable endosymbiotic relationship between T. utriculariae and various algae, examining their metabolic interactions. Moreover, T. utriculariae has a unique non-Mendelian mechanism to choose which mating type is expressed after conjugation during food scarcity, but the detailed molecular pathways underlying mating type determination (MTD) remain elusive. The study on endosymbiosis revealed that interactions between T. utriculariae and its algal endosymbionts begin at the early stage of their symbiotic relationships and T. utriculariae can form mutualistic relationships with various algal strains, especially Chlorella variabilis and Didymogenes-sphaerica¬-like strains. These relationships can extend the survival of the ciliates under anaerobic conditions when exposed to light. Furthermore, we also created several constructs inserted into the DRB3 gene of Tetrahymena utriculariae with the aim of knocking out specific genes and generating fusion proteins with a fluorescent marker. It paves the way for dissecting the genetic basis of endosymbiosis. For the MTD study, we try to create several constructs of mating type gene pairs collected from T. utriculariae‘s micronuclei. Demonstrating whether any of the particular mating types of ciliates favor their endosymbiosis with algae requires further studies.
關鍵字(中) ★ Tetrahymena utriculariae
★ 內共生
★ 交配型
關鍵字(英) ★ Tetrahymena utriculariae
★ endosymbiosis
★ mating type
論文目次
Chapter I
Introduction……………………………………………………………………1
Chapter II Research Context and Methods………………………………8
Chapter III Results………………………………………………………15
3-1 Endosymbiosis……………………………………………………………15
3-1-1 Comparable growth rate patterns of aposymbiotic and symbiotic
Tetrahymena utriculariae under aerobic conditions with light exposure………….15
3-1-2 Natural algal symbionts Micractinium tetrahymena assist their hosts
Tetrahymena utriculariae in surviving in anaerobic condition……………………17
3-1-3 Tetrahymena utriculariae could establish new endosymbiosis with
several microalgae………………………………………………………………19
3-1-4 Novel algal symbionts support the host Tetrahymena utriculariae in
coping with anoxic environments…………………………………………26
3-1-5 Construct 2 DRB3-KO-RPL21-GFP-Neo5 exhibited stronger GFP
signal………………………………………………………………………28
3-2 Mating types determination
3-2-1 Predicted rearrangement of mating type gene pairs based on MT 7 gene pair
configuration in micronuclei……………………………………………….32
3-2-2 Determine mating type expressing in macronuclei of Tetrahymena
utriculariae strain………………………………………………………….33
3-2-3 Replacement of MT 4 gene pair with MT 2 gene pair from Tetrahymena
thermophila ………………………………………………………………38
3-2-4 Mating assay between Tetrahymena utriculariae transformants with MT2 and
different mating types of Tetrahymena strains……………………………40
3-2-5 Micronuclei and macronuclei segregation………………………………..41
Chapter IV Discussion…………………………………………………….43
References……………………………………………………………………49
參考文獻 1. Pitsch, G. et al. The Green Tetrahymena utriculariae n. sp. (Ciliophora, Oligohymenophorea) with Its Endosymbiotic Algae (Micractinium sp.), Living in Traps of a Carnivorous Aquatic Plant. J. Eukaryot. Microbiol. 64, 322–335 (2017).
2. Ecological Traits of the Algae‐Bearing Tetrahymena utriculariae (Ciliophora) from Traps of the Aquatic Carnivorous Plant Utricularia reflexa - Šimek - 2017 - Journal of Eukaryotic Microbiology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jeu.12368.
3. Sirová, D. et al. Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant. Microbiome 6, 225 (2018).
4. Orias, E., Cervantes, M. D. & Hamilton, E. P. Tetrahymena thermophila, a unicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 162, 578–586 (2011).
5. Ruehle, M. D., Orias, E. & Pearson, C. G. Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics 203, 649–665 (2016).
6. Eisen, J. A. et al. Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLOS Biol. 4, e286 (2006).
7. Robinson, R. Ciliate Genome Sequence Reveals Unique Features of a Model Eukaryote. PLOS Biol. 4, e304 (2006).
8. Archibald, J. M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 25, R911–R921 (2015).
9. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).
10. Origin of Mitochondria | Learn Science at Scitable. https://www.nature.com/scitable/topicpage/the-origin-of-mitochondria-14232356/.
11. Gray, M. W. Mitochondrial Evolution. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).
12. Heyworth, E. R. & Ferrari, J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J. Evol. Biol. 28, 1753–1760 (2015).
13. Guo, J. et al. Nine facultative endosymbionts in aphids. A review. J. Asia-Pac. Entomol. 20, 794–801 (2017).
14. Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).
15. Kohl, K. D. & Dearing, M. D. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front. Microbiol. 7, (2016).
16. Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
17. Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
18. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
19. Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).
20. Adamec, L. Oxygen Concentrations Inside the Traps of the Carnivorous Plants Utricularia and Genlisea (Lentibulariaceae). Ann. Bot. 100, 849–856 (2007).
21. Valadez-Ingersoll, M. et al. Starvation differentially affects gene expression, immunity and pathogen susceptibility across symbiotic states in a model cnidarian. Proc. R. Soc. B Biol. Sci. 291, 20231685 (2024).
22. Carrión, P. J. A. et al. Starvation decreases immunity and immune regulatory factor NF-κB in the starlet sea anemone Nematostella vectensis. Commun. Biol. 6, 1–10 (2023).
23. Brockhurst, M. A., Cameron, D. D. & Beckerman, A. P. Fitness trade-offs and the origins of endosymbiosis. PLOS Biol. 22, e3002580 (2024).
24. Kawano, T., Irie, K. & Kadono, T. Oxidative Stress-Mediated Development of Symbiosis in Green Paramecia. in Symbioses and Stress: Joint Ventures in Biology (eds. Seckbach, J. & Grube, M.) 177–195 (Springer Netherlands, Dordrecht, 2010). doi:10.1007/978-90-481-9449-0_9.
25. Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
26. Lynn, D. H. & Doerder, F. P. The Life and Times of Tetrahymena. in Methods in Cell Biology (ed. Collins, K.) vol. 109 9–27 (Academic Press, 2012).
27. Arslanyolu, M. & Doerder, F. P. Genetic and Environmental Factors Affecting Mating Type Frequency in Natural Isolates of Tetrahymena thermophila. J. Eukaryot. Microbiol. 47, 412–418 (2000).
28. Karrer, K. M. Chapter 3 - Nuclear Dualism. in Methods in Cell Biology (ed. Collins, K.) vol. 109 29–52 (Academic Press, 2012).
29. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena | Annual Reviews. https://www.annualreviews.org/content/journals/10.1146/annurev-micro-090816-093342.
30. Zufall, R. A. Mating Systems and Reproductive Strategies in Tetrahymena. in Biocommunication of Ciliates (eds. Witzany, G. & Nowacki, M.) 221–233 (Springer International Publishing, Cham, 2016). doi:10.1007/978-3-319-32211-7_13.
31. Yan, G. et al. Evolution of the mating type gene pair and multiple sexes in Tetrahymena. iScience 24, 101950 (2021).
32. Cervantes, M. D. et al. Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila. PLOS Biol. 11, e1001518 (2013).
33. Booth, L., Wolfe, B. & Doerder, F. P. Molecular Polymorphism in the MTA and MTB Mating Type Genes of Tetrahymena thermophila and Related Asexual Species. J. Eukaryot. Microbiol. 62, 750–761 (2015).
34. Quirk, T. How a microbe chooses among seven sexes. Nature https://www.nature.com/articles/nature.2013.12684 (2013) doi:10.1038/nature.2013.12684.
35. Doerder, F. P., Gates, M. A., Eberhardt, F. P. & Arslanyolu, M. High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila. Proc. Natl. Acad. Sci. 92, 8715–8718 (1995).
36. Bruns, P. J. & Cassidy-Hanley, D. Chapter 27 Biolistic Transformation of Macro- and Micronuclei. in Methods in Cell Biology (eds. Asai, D. J. & Forney, J. D.) vol. 62 501–512 (Academic Press, 1999).
37. Catacora-Grundy, A. et al. Sweet and fatty symbionts: photosynthetic productivity and carbon storage boosted in microalgae within a host. 2023.12.22.572971 Preprint at https://doi.org/10.1101/2023.12.22.572971 (2023).
38. Yan, G. et al. A seven-sex species recognizes self and non-self mating-type via a novel protein complex. eLife 13, RP93770 (2024).
指導教授 呂俊毅 葉淑丹(Jun Yi Leu Shu-Dan Yeh) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明