參考文獻 |
1. Bagatell R, DuBois SG, Naranjo A, Belle J, Goldsmith KC, Park JR, Irwin MS, Committee CN: Children′s Oncology Group′s 2023 blueprint for research: Neuroblastoma. Pediatric Blood & Cancer 2023, 70:e30572.
2. Cheung N-KV, Dyer MA: Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nature Reviews Cancer 2013, 13(6):397-411.
3. Wright JH: Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. The Journal of experimental medicine 1910, 12(4):556.
4. Tsubota S, Kadomatsu K: Origin and initiation mechanisms of neuroblastoma. Cell and tissue research 2018, 372:211-221.
5. Park JR, Eggert A, Caron H: Neuroblastoma: biology, prognosis, and treatment. Pediatric Clinics of North America 2008, 55(1):97-120.
6. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, Nakagawara A, Berthold F, Schleiermacher G, Park JR: Advances in risk classification and treatment strategies for neuroblastoma. Journal of clinical oncology 2015, 33(27):3008.
7. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KM, Hogarty M, Committee CN: Children′s Oncology Group′s 2013 blueprint for research: neuroblastoma. Pediatric blood & cancer 2013, 60(6):985-993.
8. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D: The International Neuroblastoma Risk Group (INRG) classification system: an INRG task force report. Journal of clinical oncology 2009, 27(2):289.
9. Mueller S, Matthay KK: Neuroblastoma: biology and staging. Current oncology reports 2009, 11:431-438.
10. Liang WH, Federico SM, London WB, Naranjo A, Irwin MS, Volchenboum SL, Cohn SL: Tailoring therapy for children with neuroblastoma on the basis of risk group classification: past, present, and future. JCO Clinical Cancer Informatics 2020, 4:895-905.
11. Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW: Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 1983, 35(2):359-367.
12. Schwab M, Alitalo K, Klempnauer K-H, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 1983, 305(5931):245-248.
13. Knoepfler PS, Cheng PF, Eisenman RN: N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & development 2002, 16(20):2699-2712.
14. Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM: Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO journal 1997.
15. Huang M, Weiss WA: Neuroblastoma and MYCN. Cold Spring Harbor perspectives in medicine 2013, 3(10):a014415.
16. Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, Lunec J, Tweddle DA: p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer research 2010, 70(4):1377-1388.
17. Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A, Shohet JM: The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proceedings of the National Academy of Sciences 2005, 102(3):731-736.
18. Selmi A, de Saint-Jean M, Jallas A-C, Garin E, Hogarty MD, Bénard J, Puisieux A, Marabelle A, Valsesia-Wittmann S: TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer letters 2015, 357(1):412-418.
19. Evans L, Chen L, Milazzo G, Gherardi S, Perini G, Willmore E, Newell DR, Tweddle DA: SKP2 is a direct transcriptional target of MYCN and a potential therapeutic target in neuroblastoma. Cancer letters 2015, 363(1):37-45.
20. Gupta A, Williams BR, Hanash SM, Rawwas J: Cellular Retinoic Acid–Binding Protein II Is a Direct Transcriptional Target of MycN in Neuroblastoma. Cancer research 2006, 66(16):8100-8108.
21. Marshall GM, Gherardi S, Xu N, Neiron Z, Trahair T, Scarlett C, Chang DK, Liu PY, Jankowski K, Iraci N: Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene 2010, 29(44):5957-5968.
22. Iraci N, Diolaiti D, Papa A, Porro A, Valli E, Gherardi S, Herold S, Eilers M, Bernardoni R, Valle GD: A SP1/MIZ1/MYCN repression complex recruits HDAC1 at the TRKA and p75NTR promoters and affects neuroblastoma malignancy by inhibiting the cell response to NGF. Cancer research 2011, 71(2):404-412.
23. Ling H, Fabbri M, Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature reviews Drug discovery 2013, 12(11):847-865.
24. Tang XX, Zhao H, Kung B, Kim DY, Hicks SL, Cohn SL, Cheung N-K, Seeger RC, Evans AE, Ikegaki N: The MYCN enigma: significance of MYCN expression in neuroblastoma. Cancer research 2006, 66(5):2826-2833.
25. Tetreault M-P, Yang Y, Katz JP: Krüppel-like factors in cancer. Nature Reviews Cancer 2013, 13(10):701-713.
26. Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, Chen J, Jauch R, Bogu GK, Nolden T: Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nature communications 2014, 5(1):3719.
27. Shields JM, Yang VW: Two potent nuclear localization signals in the gut-enriched Krüppel-like factor define a subfamily of closely related Krüppel proteins. Journal of Biological Chemistry 1997, 272(29):18504-18507.
28. Song A, Patel A, Thamatrakoln K, Liu C, Feng D, Clayberger C, Krensky AM: Functional domains and DNA-binding sequences of RFLAT-1/KLF13, a Krüppel-like transcription factor of activated T lymphocytes. Journal of Biological Chemistry 2002, 277(33):30055-30065.
29. Zhu Y, Wu D, Wang M, Li W: C-terminus of E1A binding protein 1 stimulates malignant phenotype in human hepatocellular carcinoma. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 2019, 25:8660.
30. Adams MK, Banks CA, Thornton JL, Kempf CG, Zhang Y, Miah S, Hao Y, Sardiu ME, Killer M, Hattem GL: Differential complex formation via paralogs in the human Sin3 protein interaction network. Molecular & Cellular Proteomics 2020, 19(9):1468-1484.
31. Piskacek M, Havelka M, Jendruchova K, Knight A, Keegan LP: The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs. Cellular and molecular life sciences 2020, 77:1793-1810.
32. Schuetz A, Nana D, Rose C, Zocher G, Milanovic M, Koenigsmann J, Blasig R, Heinemann U, Carstanjen D: The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cellular and Molecular Life Sciences 2011, 68:3121-3131.
33. Shields JM, Christy RJ, Yang VW: Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. Journal of Biological Chemistry 1996, 271(33):20009-20017.
34. He Z, He J, Xie K: KLF4 transcription factor in tumorigenesis. Cell Death Discovery 2023, 9(1):118.
35. Yu T, Chen X, Zhang W, Liu J, Avdiushko R, Napier D, Liu A, Neltner J, Wang C, Cohen D: KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death & Differentiation 2016, 23(2):207-215.
36. Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, Huang J, Li L-C: Prognostic value and function of KLF4 in prostate cancer: RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer research 2010, 70(24):10182-10191.
37. Siu M, Suau F, Chen W, Tsai Y, Tsai H, Yeh H, Liu Y: KLF4 functions as an activator of the androgen receptor through reciprocal feedback. Oncogenesis 2016, 5(12):e282-e282.
38. Garrett-Sinha LA, Eberspaecher H, Seldin MF, de Crombrugghe B: A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. Journal of Biological Chemistry 1996, 271(49):31384-31390.
39. Yang VW, Liu Y, Kim J, Shroyer KR, Bialkowska AB: Increased genetic instability and accelerated progression of colitis-associated colorectal cancer through intestinal epithelium–specific deletion of Klf4. Molecular Cancer Research 2019, 17(1):165-176.
40. Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W: Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011, 30(18):2161-2172.
41. Riverso M, Montagnani V, Stecca B: KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene 2017, 36(23):3322-3333.
42. Wei D, Wang L, Yan Y, Jia Z, Gagea M, Li Z, Zuo X, Kong X, Huang S, Xie K: KLF4 is essential for induction of cellular identity change and acinar-to-ductal reprogramming during early pancreatic carcinogenesis. Cancer cell 2016, 29(3):324-338.
43. Prasad NB, Biankin AV, Fukushima N, Maitra A, Dhara S, Elkahloun AG, Hruban RH, Goggins M, Leach SD: Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer research 2005, 65(5):1619-1626.
44. Liu M, Li X, Peng K-Z, Gao T, Cui Y, Ma N, Zhou Y, Hou G: Subcellular localization of Klf4 in non-small cell lung cancer and its clinical significance. Biomedicine & pharmacotherapy 2018, 99:480-485.
45. Taracha-Wisniewska A, Kotarba G, Dworkin S, Wilanowski T: Recent discoveries on the involvement of Krüppel-like factor 4 in the most common cancer types. International Journal of Molecular Sciences 2020, 21(22):8843.
46. Wei D, Kanai M, Jia Z, Le X, Xie K: Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer research 2008, 68(12):4631-4639.
47. Yan Y, Li Z, Kong X, Jia Z, Zuo X, Gagea M, Huang S, Wei D, Xie K: KLF4-mediated suppression of CD44 signaling negatively impacts pancreatic cancer stemness and metastasis. Cancer research 2016, 76(8):2419-2431.
48. Zhu Z, Yu Z, Wang J, Zhou L, Zhang J, Yao B, Dou J, Qiu Z, Huang C: Krüppel-like factor 4 inhibits pancreatic cancer epithelial-to-mesenchymal transition and metastasis by down-regulating caveolin-1 expression. Cellular Physiology and Biochemistry 2018, 46(1):238-252.
49. Guo K, Cui J, Quan M, Xie D, Jia Z, Wei D, Wang L, Gao Y, Ma Q, Xie K: The novel KLF4/MSI2 signaling pathway regulates growth and metastasis of pancreatic cancer. Clinical Cancer Research 2017, 23(3):687-696.
50. Kong X, Li L, Li Z, Le X, Huang C, Jia Z, Cui J, Huang S, Wang L, Xie K: Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer. Cancer research 2013, 73(13):3987-3996.
51. Shi M, Cui J, Du J, Wei D, Jia Z, Zhang J, Zhu Z, Gao Y, Xie K: A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clinical Cancer Research 2014, 20(16):4370-4380.
52. Wei D, Kanai M, Huang S, Xie K: Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 2005, 27(1):23-31.
53. Ghaleb AM, Yang VW: Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017, 611:27-37.
54. Shum C, Lau S, Tsoi L, Chan L, Yam J, Ohira M, Nakagawara A, Tam P, Ngan E: Krüppel-like factor 4 (KLF4) suppresses neuroblastoma cell growth and determines non-tumorigenic lineage differentiation. Oncogene 2013, 32(35):4086-4099.
55. Ray SK: The transcription regulator Kruppel-like factor 4 and its dual roles of oncogene in glioblastoma and tumor suppressor in neuroblastoma. Onco Therapeutics 2016, 7(1-2).
56. Mohan N, Ai W, Chakrabarti M, Banik NL, Ray SK: KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells. Molecular oncology 2013, 7(3):464-474.
57. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366(6456):701-704.
58. Abbas T, Dutta A: p21 in cancer: intricate networks and multiple activities. Nature Reviews Cancer 2009, 9(6):400-414.
59. Kreis N, Louwen F, Yuan J: Less understood issues: p21Cip1 in mitosis and its therapeutic potential. Oncogene 2015, 34(14):1758-1767.
60. Roninson IB: Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer letters 2002, 179(1):1-14.
61. Follis AV, Galea CA, Kriwacki RW: Intrinsic protein flexibility in regulation of cell proliferation: advantages for signaling and opportunities for novel therapeutics. Fuzziness: Structural Disorder in Protein Complexes 2012:27-49.
62. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 1993, 75(4):817-825.
63. Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Developmental cell 2008, 14(2):159-169.
64. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes & development 1997, 11(7):847-862.
65. Dash BC, El-Deiry WS: Phosphorylation of p21 in G2/M promotes cyclin B-Cdc2 kinase activity. Molecular and cellular biology 2005.
66. Gartel AL, Tyner AL: Transcriptional regulation of the p21 (WAF1/CIP1) gene. Experimental cell research 1999, 246(2):280-289.
67. Mitchell KO, El-Deiry WS: Overexpression of c-Myc inhibits p21WAF1/CIP1 expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. 1999.
68. Kitaura H, Shinshi M, Uchikoshi Y, Ono T, Tsurimoto T, Yoshikawa H, Iguchi-Ariga SM, Ariga H: Reciprocal regulation via protein-protein interaction between c-Myc and p21 cip1/waf1/sdi1 in DNA replication and transcription. Journal of Biological Chemistry 2000, 275(14):10477-10483.
69. Waga S, Hannon GJ, Beach D, Stillman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 1994, 369(6481):574-578.
70. Engeland K: Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death & Differentiation 2018, 25(1):114-132.
71. Chang B-D, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences 2000, 97(8):4291-4296.
72. Teramen H, Tsukuda K, Tanaka N, Ueno T, Kubo T, Ando M, Soh J, Asano H, Pass HI, Toyooka S: Aberrant methylation of p21 gene in lung cancer and malignant pleural mesothelioma. Acta Medica Okayama 2011, 65(3):179-184.
73. Bott S, Arya M, Kirby R, Williamson M: p21WAF1/CIP1 gene is inactivated in metastatic prostatic cancer cell lines by promoter methylation. Prostate cancer and prostatic diseases 2005, 8(4):321-326.
74. Askari M, Sobti RC, Nikbakht M, Sharma SC: Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer. Molecular and cellular biochemistry 2013, 382:19-26.
75. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez MdC, Barrios M, Maldonado J, Torres A: 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21CIP1/WAF1/SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood, The Journal of the American Society of Hematology 2002, 99(7):2291-2296.
76. Liu R, Wettersten HI, Park S-H, Weiss RH: Small-molecule inhibitors of p21 as novel therapeutics for chemotherapy-resistant kidney cancer. Future medicinal chemistry 2013, 5(9):991-994.
77. Tanaka T, Slamon DJ, Shimada H, Shimoda H, Fujisawa T, Ida N, Seeger RC: A significant association of Ha‐ras p21 in neuroblastoma cells with patient prognosis. A retrospective study of 103 cases. Cancer 1991, 68(6):1296-1302.
78. Seçme M, Eroğlu C, Dodurga Y, Bağcı G: Investigation of anticancer mechanism of oleuropein via cell cycle and apoptotic pathways in SH-SY5Y neuroblastoma cells. Gene 2016, 585(1):93-99.
79. Torkin R, Lavoie J-F, Kaplan DR, Yeger H: Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Molecular cancer therapeutics 2005, 4(1):1-11.
80. Yoon HS, Chen X, Yang VW: Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. Journal of Biological Chemistry 2003, 278(4):2101-2105.
81. Chen X, Johns DC, Geiman DE, Marban E, Dang DT, Hamlin G, Sun R, Yang VW: Krüppel-like factor 4 (gut-enriched Krüppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. Journal of Biological Chemistry 2001, 276(32):30423-30428.
82. Rowland BD, Bernards R, Peeper DS: The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature cell biology 2005, 7(11):1074-1082.
83. Rowland BD, Peeper DS: KLF4, p21 and context-dependent opposing forces in cancer. Nature Reviews Cancer 2006, 6(1):11-23.
84. Stadtman TC: Selenocysteine. Annual review of biochemistry 1996, 65(1):83-100.
85. Björnstedt M, Kumar S, Björkhem L, Spyrou G, Holmgren A: Selenium and the thioredoxin and glutaredoxin systems. Biomedical and environmental sciences: BES 1997, 10(2-3):271-279.
86. Rayman MP: The importance of selenium to human health. The lancet 2000, 356(9225):233-241.
87. Tapiero H, Townsend D, Tew K: The antioxidant role of selenium and seleno-compounds. Biomedicine & pharmacotherapy 2003, 57(3-4):134-144.
88. El-Bayoumy K, Sinha R: Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004, 551(1-2):181-197.
89. Sinha R, El-Bayoumy K: Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Current cancer drug targets 2004, 4(1):13-28.
90. Chen T, Zheng W, Wong Y-S, Yang F: Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative. Biomedicine & pharmacotherapy 2008, 62(2):77-84.
91. Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG: Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: a randomized controlled trial. Jama 1996, 276(24):1957-1963.
92. Yu Yu S, Zhu YJ, Li WG: Protective role of selenium against hepatitis B virus and primary liver cancer in Qidong. Biological trace element research 1997, 56:117-124.
93. Abdulah R, Miyazaki K, Nakazawa M, Koyama H: Chemical forms of selenium for cancer prevention. Journal of Trace Elements in Medicine and Biology 2005, 19(2-3):141-150.
94. Whanger P: Selenium and its relationship to cancer: an update. British journal of nutrition 2004, 91(1):11-28.
95. Zhao R, Xiang N, Domann FE, Zhong W: Expression of p53 enhances selenite-induced superoxide production and apoptosis in human prostate cancer cells. Cancer research 2006, 66(4):2296-2304.
96. F Jr CG: Current evidence and research needs to support a health claim for selenium and cancer prevention. The Journal of Nutrition 2005, 135(2):343-347.
97. Wang Z, Jiang C, Lü J: Induction of caspase‐mediated apoptosis and cell‐cycle G1 arrest by selenium metabolite methylselenol. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center 2002, 34(3):113-120.
98. Lanfear J, Fleming J, Wu L, Webster G, Harrison PR: The selenium metabolite selenodiglutathione induces p53 and apoptosis: relevance to the chemopreventive effects of selenium? Carcinogenesis 1994, 15(7):1387-1392.
99. Sanmartín C, Plano D, Sharma AK, Palop JA: Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. International journal of molecular sciences 2012, 13(8):9649-9672.
100. Fernandes AP, Gandin V: Selenium compounds as therapeutic agents in cancer. Biochimica et Biophysica Acta (BBA)-General Subjects 2015, 1850(8):1642-1660.
101. Chen T, Wong Y-S: Selenocystine induces reactive oxygen species–mediated apoptosis in human cancer cells. Biomedicine & Pharmacotherapy 2009, 63(2):105-113.
102. Chen T, Wong Y-S: Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. The international journal of biochemistry & cell biology 2009, 41(3):666-676.
103. Chen T, Wong Y: Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cellular and molecular life sciences 2008, 65:2763-2775.
104. Wahyuni EA, Yii C-Y, Liang H-L, Luo Y-H, Yang S-H, Wu P-Y, Hsu W-L, Nien C-Y, Chen S-C: Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chemico-Biological Interactions 2022, 365:110046.
105. Fan C, Chen J, Wang Y, Wong Y-S, Zhang Y, Zheng W, Cao W, Chen T: Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radical Biology and Medicine 2013, 65:305-316.
106. Fan C, Zheng W, Fu X, Li X, Wong Y-S, Chen T: Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget 2014, 5(9):2853.
107. Anders S: Analysing RNA-Seq data with the DESeq package. Mol Biol 2010, 43(4):1-17.
108. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014, 15:1-21.
109. Yu G: Statistical analysis and visualization of functional profiles for genes and gene clusters. J Integr Biol 2012, 16(5):284-287.
110. Fan C-d, Fu X-y, Zhang Z-y, Cao M-z, Sun J-y, Yang M-f, Fu X-t, Zhao S-j, Shao L-r, Zhang H-f: Selenocysteine induces apoptosis in human glioma cells: evidence for TrxR1-targeted inhibition and signaling crosstalk. Scientific Reports 2017, 7(1):6465.
111. Long M, Wu J, Hao J, Liu W, Tang Y, Li X, Su H, Qiu W: Selenocystine-induced cell apoptosis and S-phase arrest inhibit human triple-negative breast cancer cell proliferation. In Vitro Cellular & Developmental Biology-Animal 2015, 51:1077-1084.
112. Shimada H, Chatten J, Newton WA, Sachs N, Hamoudi AB, Chiba T, Marsden HB, Misugi K: Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. JNCI: Journal of the National Cancer Institute 1984, 73(2):405-416.
113. Walton JD, Kattan DR, Thomas SK, Spengler BA, Guo H-F, Biedler JL, Cheung N-KV, Ross RA: Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 2004, 6(6):838-845.
114. Spengler BA, Lazarova DL, Ross RA, Biedler JL: Cell lineage and differentiation state are primary determinants of MYCN gene expression and malignant potential in human neuroblastoma cells. Oncology research 1997, 9(9):467-476. |