參考文獻 |
1. Miao, Y.; P. Hynan; A. von JouanneA. Yokochi, Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 2019, 12(6).
2. Wu, W.; Y. Bo; D. Li; Y. Liang; J. Zhang; M. Cao; R. Guo; Z. Zhu; L. CiM. Li, Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Letters, 2022, 14(1), 44.
3. Maurya, D.K.; R. Dhanusuraman; Z. GuoS. Angaiah, Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Advanced Composites and Hybrid Materials, 2022, 5(4), 2651-2674.
4. Sun, Y.-Y.; Q. Zhang; L. Fan; D.-D. Han; L. Li; L. YanP.-Y. Hou, Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries. Journal of Colloid and Interface Science, 2022, 628, 877-885.
5. Zhang, Z.; S. Zhang; S. Geng; S. Zhou; Z. HuJ. Luo, Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 51, 19-28.
6. Aziz, T.; A. Ullah; H. Fan; M.I. Jamil; F.U. Khan; R. Ullah; M. Iqbal; A. AliB. Ullah, Recent progress in silane coupling agent with its emerging applications. Journal of Polymers and the Environment, 2021, 1-17.
7. Wu, L.; Y. Wang; M. Tang; Y. Liang; Z. Lin; P. Ding; Z. Zhang; B. Wang; S. LiuL. Li, Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy Storage Materials, 2023, 58, 40-47.
8. Xia, W.; B. Xu; H. Duan; X. Tang; Y. Guo; H. Kang; H. LiH. Liu, Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society, 2017, 100(7), 2832-2839.
9. Zhang, T.; T.D. Christopher; S. Huang; Y.g. Liu; W. Gao; T. SӧhnelP. Cao, Pressureless sintering of Al-free Ta-doped lithium garnets Li7-xLa3Zr2-xTaxO12 and the degradation mechanism in humid air. Ceramics International, 2019, 45(16), 20954-20960.
10. Liang, H.; L. Wang; A. Wang; Y. Song; Y. Wu; Y. YangX. He, Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Letters, 2023, 15(1), 42.
11. Arkles, B., Tailoring surfaces with silanes. Chemtech, 1977, 7, 766-778.
12. Julien, C.M.A. Mauger, NCA, NCM811, and the route to Ni-richer lithium-ion batteries. Energies, 2020, 13(23), 6363.
13. Zhang, H.J. Zhang, An overview of modification strategies to improve LiNi0· 8Co0· 1Mn0· 1O2 (NCM811) cathode performance for automotive lithium-ion batteries. ETransportation, 2021, 7, 100105.
14. Reuter, F.; A. Baasner; J. Pampel; M. Piwko; S. Dörfler; H. AlthuesS. Kaskel, Importance of capacity balancing on the electrochemical performance of Li [Ni0. 8Co0. 1Mn0. 1] O2 (NCM811)/silicon full cells. Journal of The Electrochemical Society, 2019, 166(14), A3265.
15. Sun, H.; G. Zhu; Y. Zhu; M.C. Lin; H. Chen; Y.Y. Li; W.H. Hung; B. Zhou; X. WangY. Bai, High‐safety and high‐energy‐density lithium metal batteries in a novel ionic‐liquid electrolyte. Advanced Materials, 2020, 32(26), 2001741.
16. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006, 42(1), 21-42.
17. Vincent, C.A., Ion transport in polymer electrolytes. Electrochimica Acta, 1995, 40(13-14), 2035-2040.
18. Aziz, S.B., Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iranian Polymer Journal, 2013, 22(12), 877-883.
19. Aziz, S.B.; Z.H.Z. AbidinM. Kadir, Innovative method to avoid the reduction of silver ions to silver nanoparticles in silver ion conducting based polymer electrolytes. Physica Scripta, 2015, 90(3), 035808.
20. Aziz, S.B.; Z.H.Z. AbidinA.K. Arof, Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Physica B: Condensed Matter, 2010, 405(21), 4429-4433.
21. Borgohain, M.M.; T. JoykumarS. Bhat, Studies on a nanocomposite solid polymer electrolyte with hydrotalcite as a filler. Solid State Ionics, 2010, 181(21-22), 964-970.
22. Ngai, K.S.; S. Ramesh; K. RameshJ.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics, 2016, 22, 1259-1279.
23. Wen, Z.; T. Itoh; Y. Ichikawa; M. KuboO. Yamamoto, Blend-based polymer electrolytes of poly (ethylene oxide) and hyperbranched poly [bis (triethylene glycol) benzoate] with terminal acetyl groups. Solid state ionics, 2000, 134(3-4), 281-289.
24. Itoh, T.; Y. Ichikawa; T. Uno; M. KuboO. Yamamoto, Composite polymer electrolytes based on poly (ethylene oxide), hyperbranched polymer, BaTiO3 and LiN (CF3SO2) 2. Solid State Ionics, 2003, 156(3-4), 393-399.
25. Nicotera, I.; L. Coppola; C. Oliviero; M. CastriotaE. Cazzanelli, Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes. Solid State Ionics, 2006, 177(5-6), 581-588.
26. Ramesh, S.K.N. Bing, Conductivity, mechanical and thermal studies on poly (methyl methacrylate)-based polymer electrolytes complexed with lithium tetraborate and propylene carbonate. Journal of materials engineering and performance, 2012, 21, 89-94.
27. Jacob, M.A. Arof, FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochimica Acta, 2000, 45(10), 1701-1706.
28. Ramesh, S.; T.S. YinC.-W. Liew, Effect of dibutyl phthalate as plasticizer on high-molecular weight poly (vinyl chloride)–lithium tetraborate-based solid polymer electrolytes. Ionics, 2011, 17, 705-713.
29. Luo, S.; X. Liu; L. Gao; N. Deng; X. Sun; Y. Li; Q. Zeng; H. Wang; B. ChengW. Kang, A review on modified polymer composite electrolytes for solid-state lithium batteries. Sustainable Energy & Fuels, 2022, 6(22), 5019-5044.
30. Chiang, C.-Y.; M.J. ReddyP.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics, 2004, 175(1-4), 631-635.
31. Ramesh, S.S. Lu, Enhancement of ionic conductivity and structural properties by BMIMTf ionic liquid in P (VdF-HFP)-based polymer electrolytes. J Appl Polym Sci, 2012, 126, 484-492.
32. Kim, K.M.; K.S. Ryu; S.G. Kang; S.H. ChangI.J. Chung, The Effect of Silica Addition on the Properties of Poly ((vinylidene fluoride)‐co‐hexafluoropropylene)‐Based Polymer Electrolytes. Macromolecular Chemistry and Physics, 2001, 202(6), 866-872.
33. Saikia, D.A. Kumar, Ionic conduction in P (VdF-HFP)/PVdF–(PC+ DEC)–LiClO4 polymer gel electrolytes. Electrochimica acta, 2004, 49(16), 2581-2589.
34. Zhang, J.; J. Yang; T. Dong; M. Zhang; J. Chai; S. Dong; T. Wu; X. ZhouG. Cui, Aliphatic polycarbonate‐based solid‐state polymer electrolytes for advanced lithium batteries: advances and perspective. Small, 2018, 14(36), 1800821.
35. Zhang, J.; J. Zhao; L. Yue; Q. Wang; J. Chai; Z. Liu; X. Zhou; H. Li; Y. GuoG. Cui, Safety‐reinforced poly (propylene carbonate)‐based all‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Advanced Energy Materials, 2015, 5(24), 1501082.
36. Yu, X.Y.; M. Xiao; S.J. Wang; Q.Q. ZhaoY.Z. Meng, Fabrication and characterization of PEO/PPC polymer electrolyte for lithium‐ion battery. Journal of applied polymer science, 2010, 115(5), 2718-2722.
37. Huang, X.; S. Zeng; J. Liu; T. He; L. Sun; D. Xu; X. Yu; Y. Luo; W. ZhouJ. Wu, High-performance electrospun poly (vinylidene fluoride)/poly (propylene carbonate) gel polymer electrolyte for lithium-ion batteries. The Journal of Physical Chemistry C, 2015, 119(50), 27882-27891.
38. Wang, C.; H. Zhang; J. Li; J. Chai; S. DongG. Cui, The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. Journal of Power Sources, 2018, 397, 157-161.
39. Luo, K.; L. Yi; X. Chen; L. Yang; C. Zou; X. Tao; H. Li; T. WuX. Wang, PVDF-HFP-modified gel polymer electrolyte for the stable cycling lithium metal batteries. Journal of Electroanalytical Chemistry, 2021, 895, 115462.
40. Liang, Y.; Y. Xia; S. Zhang; X. Wang; X. Xia; C. Gu; J. WuJ. Tu, A preeminent gel blending polymer electrolyte of poly (vinylidene fluoride-hexafluoropropylene)-poly (propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 2019, 296, 1064-1069.
41. Mohapatra, S.R.; A.K. ThakurR. Choudhary, Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. Journal of Power Sources, 2009, 191(2), 601-613.
42. Mulmi, S.; C.H. Park; H.K. Kim; C.H. Lee; H.B. ParkY.M. Lee, Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. Journal of Membrane Science, 2009, 344(1-2), 288-296.
43. Li, Z.; H. Zhang; P. Zhang; G. Li; Y. WuX. Zhou, Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. Journal of Membrane Science, 2008, 322(2), 416-422.
44. Kontos, G.; A. Soulintzis; P. Karahaliou; G. Psarras; S. Georga; C. KrontirasM. Pisanias, Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett, 2007, 1(12), 781-789.
45. Yang, Q.; N. Deng; Y. Zhao; L. Gao; B. ChengW. Kang, A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2023, 451, 138532.
46. Feng, J.; L. Wang; Y. Chen; P. Wang; H. ZhangX. He, PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence, 2021, 8, 1-12.
47. Li, Y.; Z. Wang; C. Li; Y. CaoX. Guo, Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. Journal of Power sources, 2014, 248, 642-646.
48. Liu, H.; J. Xu; B. GuoX. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceramics International, 2014, 40(9), 14105-14110.
49. Polu, A.R.H.-W. Rhee, Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. Journal of Industrial and Engineering Chemistry, 2016, 37, 347-353.
50. Wang, C.; K. Fu; S.P. Kammampata; D.W. McOwen; A.J. Samson; L. Zhang; G.T. Hitz; A.M. Nolan; E.D. WachsmanY. Mo, Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020, 120(10), 4257-4300.
51. Bachman, J.C.; S. Muy; A. Grimaud; H.-H. Chang; N. Pour; S.F. Lux; O. Paschos; F. Maglia; S. LupartP. Lamp, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2016, 116(1), 140-162.
52. Sakuda, A.; A. HayashiM. Tatsumisago, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Scientific reports, 2013, 3(1), 2261.
53. Wu, F.; W. Fitzhugh; L. Ye; J. NingX. Li, Advanced sulfide solid electrolyte by core-shell structural design. Nature communications, 2018, 9(1), 4037.
54. Wu, J.; S. Liu; F. Han; X. YaoC. Wang, Lithium/sulfide all‐solid‐state batteries using sulfide electrolytes. Advanced Materials, 2021, 33(6), 2000751.
55. Tachez, M.; J.-P. Malugani; R. MercierG. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics, 1984, 14(3), 181-185.
56. Kamaya, N.; K. Homma; Y. Yamakawa; M. Hirayama; R. Kanno; M. Yonemura; T. Kamiyama; Y. Kato; S. HamaK. Kawamoto, A lithium superionic conductor. Nature materials, 2011, 10(9), 682-686.
57. Kanno, R.M. Murayama, Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society, 2001, 148(7), A742.
58. Deng, Y.; C. Eames; J.-N. Chotard; F. Lalère; V. Seznec; S. Emge; O. Pecher; C.P. Grey; C. MasquelierM.S. Islam, Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes. Journal of the American Chemical Society, 2015, 137(28), 9136-9145.
59. Murayama, M.; R. Kanno; M. Irie; S. Ito; T. Hata; N. SonoyamaY. Kawamoto, Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. Journal of Solid State Chemistry, 2002, 168(1), 140-148.
60. Itoh, M.; Y. Inaguma; W.-H. Jung; L. ChenT. Nakamura, High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm). Solid State Ionics, 1994, 70, 203-207.
61. Inaguma, Y.; C. Liquan; M. Itoh; T. Nakamura; T. Uchida; H. IkutaM. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 1993, 86(10), 689-693.
62. Thangadurai, V.; A. ShuklaJ. Gopalakrishnan, LiSr1. 650.35 B1. 3B ‘1.7 O9 (B= Ti, Zr; B ‘= Nb, Ta): New lithium ion conductors based on the perovskite structure. Chemistry of materials, 1999, 11(3), 835-839.
63. Morata-Orrantia, A.; S. García-Martín; E. MoránM.Á. Alario-Franco, A New La2/3Li x Ti1-x Al x O3 Solid Solution: Structure, Microstructure, and Li+ Conductivity. Chemistry of materials, 2002, 14(7), 2871-2875.
64. Gao, Y.; X. Wang; W. WangQ. Fang, Sol–gel synthesis and electrical properties of Li5La3Ta2O12 lithium ionic conductors. Solid State Ionics, 2010, 181(1-2), 33-36.
65. Buschmann, H.; J. Dölle; S. Berendts; A. Kuhn; P. Bottke; M. Wilkening; P. Heitjans; A. Senyshyn; H. EhrenbergA. Lotnyk, Structure and dynamics of the fast lithium ion conductor “Li 7 La 3 Zr 2 O 12”. Physical Chemistry Chemical Physics, 2011, 13(43), 19378-19392.
66. Peng, H.; Q. WuL. Xiao, Low temperature synthesis of Li 5 La 3 Nb 2 O 12 with cubic garnet-type structure by sol–gel process. Journal of sol-gel science and technology, 2013, 66, 175-179.
67. Bernuy-Lopez, C.; W. Manalastas Jr; J.M. Lopez del Amo; A. Aguadero; F. AguesseJ.A. Kilner, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chemistry of materials, 2014, 26(12), 3610-3617.
68. Thangadurai, V.W. Weppner, Li6ALa2Ta2O12 (A= Sr, Ba): novel garnet‐like oxides for fast lithium ion conduction. Advanced Functional Materials, 2005, 15(1), 107-112.
69. Gonzalez Puente, P.; S. Song; S. Cao; L.Z. Rannalter; Z. Pan; X. Xiang; Q. ShenF. Chen, Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. Journal of Advanced Ceramics, 2021, 1-40.
70. Awaka, J.; N. Kijima; H. HayakawaJ. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry, 2009, 182(8), 2046-2052.
71. Ramaswamy, M.W. Werner, Solid Electrolytes for Advanced Applications. 2019, Springer Nature Switzerland.
72. Kobi, S.A. Mukhopadhyay, Structural (in) stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere. Journal of the European Ceramic Society, 2018, 38(14), 4707-4718.
73. Hu, Z.; H. Liu; H. Ruan; R. Hu; Y. SuL. Zhang, High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceramics International, 2016, 42(10), 12156-12160.
74. El-Shinawi, H.; G.W. Paterson; D.A. MacLaren; E.J. CussenS.A. Corr, Low-temperature densification of Al-doped Li₇La₃Zr₂O₁₂: a reliable and controllable synthesis of fast-ion conducting garnets. Journal of materials chemistry A, 2016, 5(1).
75. Djenadic, R.; M. Botros; C. Benel; O. Clemens; S. Indris; A. Choudhary; T. BergfeldtH. Hahn, Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications. Solid State Ionics, 2014, 263, 49-56.
76. Wu, M.; J. Song; X. Zhu; H. Zhan; T. Tian; R. Wang; J. LeiH. Tang, Three-dimensional hierarchical composite polymer electrolyte with enhanced interfacial compatibility for all-solid-state lithium metal batteries. Science China Materials, 2023, 66(2), 522-530.
77. Wang, H.; X. Liu; S. Yu; T. ShiS. Jiang, Preparation of P (AN‐MMA)/SiO2 hybrid solid electrolytes. Journal of applied polymer science, 2009, 114(3), 1365-1369.
78. Fan, L.; C.-W. NanS. Zhao, Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics, 2003, 164(1-2), 81-86.
79. Chai, J.; J. Zhang; P. Hu; J. Ma; H. Du; L. Yue; J. Zhao; H. Wen; Z. LiuG. Cui, A high-voltage poly (methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of materials chemistry A, 2016, 4(14), 5191-5197.
80. Xie, Y.; L. HuangY. Chen, A porous garnet Li7La3Zr2O12 scaffold with interfacial modification for enhancing ionic conductivity in PEO-based composite electrolyte. Journal of Membrane Science, 2023, 683, 121784.
81. Wang, T.; X. Liu; L. Xie; Y. He; H. Ji; L. Wang; X. NiuJ. Gao, 3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6. 4La3Zr1. 4Ta0. 6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries. Journal of Alloys and Compounds, 2023, 945, 168877.
82. Liew, C.-W.; S. RameshR. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics. Journal of Materials Research, 2012, 27(23), 2996-3004.
83. Khurana, R.; J.L. Schaefer; L.A. ArcherG.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society, 2014, 136(20), 7395-7402.
84. An, S.J.; J. Li; C. Daniel; H.M. Meyer III; S.E. Trask; B.J. PolzinD.L. Wood III, Electrolyte volume effects on electrochemical performance and solid electrolyte interphase in Si-graphite/NMC lithium-ion pouch cells. ACS applied materials & interfaces, 2017, 9(22), 18799-18808.
85. Zugmann, S.; M. Fleischmann; M. Amereller; R.M. Gschwind; H.D. WiemhöferH.J. Gores, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta, 2011, 56(11), 3926-3933.
86. Bruce, P.G.C.A. Vincent, Steady state current flow in solid binary electrolyte cells. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 225(1-2), 1-17.
87. Guo, S.; Y. SunA. Cao, Garnet-type solid-state electrolyte Li7La3Zr2O12: crystal structure, element doping and interface strategies for solid-state lithium batteries. Chemical Research in Chinese Universities, 2020, 36(3), 329-342.
88. Zhang, X.; T. Liu; S. Zhang; X. Huang; B. Xu; Y. Lin; B. Xu; L. Li; C.-W. NanY. Shen, Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139(39), 13779-13785.
89. Yan, C.; P. Zhu; H. Jia; Z. Du; J. Zhu; R. Orenstein; H. Cheng; N. Wu; M. DiricanX. Zhang, Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.
90. Zhao, L.; X. Yu; J. Jiao; X. Song; X. Cheng; M. Liu; L.-l. Wang; J. Zheng; W. LvG. Zhong, Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte. Cell Reports Physical Science, 2023, 4(5).
91. Zhu, J.; M.S.D. Darma; M. Knapp; D.R. Sørensen; M. Heere; Q. Fang; X. Wang; H. Dai; L. MereacreA. Senyshyn, Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. Journal of Power Sources, 2020, 448, 227575.
92. Zhang, J.; N. Zhao; M. Zhang; Y. Li; P.K. Chu; X. Guo; Z. Di; X. WangH. Li, Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28, 447-454. |