參考文獻 |
1. Haisma, H., Endosomal escape pathways for delivery of biologicals. Human Gene Therapy, 2011. 22: p. A14-A14.
2. Li, K., et al., Microstructure and Properties of Poly(Ethylene Glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13: p. 573.
3. Inoue, J. and J. Inazawa, Cancer-associated miRNAs and their therapeutic potential. Journal of Human Genetics, 2021. 66(9): p. 937-945.
4. Miller, D.M., et al., c-Myc and Cancer Metabolism. Clinical Cancer Research, 2012. 18(20): p. 5546-5553.
5. Dieckmann, A., et al., A Sensitive <i>In Vitro</i> Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides. MOLECULAR THERAPY-NUCLEIC ACIDS, 2018. 10: p. 45-54.
6. Kasuya, T., et al., Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Scientific Reports, 2016. 6(1): p. 30377.
7. Lu, F., et al., Size Effect on Cell Uptake in Well-Suspended, Uniform Mesoporous Silica Nanoparticles. Small, 2009. 5(12): p. 1408-1413.
8. Chen, J.L. and C.W. Greider, Functional analysis of the pseudoknot structure in human telomerase RNA. Proc Natl Acad Sci U S A, 2005. 102(23): p. 8080-5; discussion 8077-9.
9. Horvath, P. and R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010. 327(5962): p. 167-70.
10. Khawar, I.A., J.H. Kim, and H.J. Kuh, Improving drug delivery to solid tumors: Priming the tumor microenvironment. Journal of Controlled Release, 2015. 201: p. 78-89.
11. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14.
12. Altieri, D.C., Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene, 2003. 22(53): p. 8581-9.
13. Sah, N.K., et al., Structural, functional and therapeutic biology of survivin. Cancer Lett, 2006. 244(2): p. 164-71.
14. MULLER, H.J., The remaking of chromosomes. Collecting net, 1938. 8: p. 198.
15. McClintock, B., The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A, 1939. 25(8): p. 405-16.
16. Kipling, D. and H.J. Cooke, Hypervariable ultra-long telomeres in mice. Nature, 1990. 347(6291): p. 400-2.
17. Moyzis, R.K., et al., A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A, 1988. 85(18): p. 6622-6.
18. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13.
19. Chin, L., et al., p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 1999. 97(4): p. 527-38.
20. Counter, C.M., et al., Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo j, 1992. 11(5): p. 1921-9.
21. Kim, N.W., et al., Specific association of human telomerase activity with immortal cells and cancer. Science, 1994. 266(5193): p. 2011-5.
22. Buseman, C.M., W.E. Wright, and J.W. Shay, Is telomerase a viable target in cancer? Mutat Res, 2012. 730(1-2): p. 90-7.
23. Djojosubroto, M.W., et al., Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology, 2005. 42(5): p. 1127-36.
24. Dikmen, Z.G., et al., In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res, 2005. 65(17): p. 7866-73.
25. Burchett, K.M., Y. Yan, and M.M. Ouellette, Telomerase inhibitor Imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PLoS One, 2014. 9(1): p. e85155.
26. Relitti, N., et al., Telomerase-based Cancer Therapeutics: A Review on their Clinical Trials. Curr Top Med Chem, 2020. 20(6): p. 433-457.
27. Lam, J.K., et al., siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol Ther Nucleic Acids, 2015. 4(9): p. e252.
28. Svoboda, P., Key Mechanistic Principles and Considerations Concerning RNA Interference. Front Plant Sci, 2020. 11: p. 1237.
29. Stephenson, M.L. and P.C. Zamecnik, Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A, 1978. 75(1): p. 285-8.
30. Roehr, B., Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care, 1998. 4(10): p. 14-6.
31. Egli, M. and M. Manoharan, Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Research, 2023. 51(6): p. 2529-2573.
32. Bauman, J., N. Jearawiriyapaisarn, and R. Kole, Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides, 2009. 19(1): p. 1-13.
33. Ishino, Y., et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987. 169(12): p. 5429-33.
34. Tang, T.H., et al., Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7536-41.
35. Mojica, F.J., et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005. 60(2): p. 174-82.
36. Barrangou, R., et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007. 315(5819): p. 1709-12.
37. Jinek, M., et al., A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012. 337(6096): p. 816-821.
38. Feng, B., et al., Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proc Natl Acad Sci U S A, 2019. 116(35): p. 17169-17174.
39. Chaires, J.B., Calorimetry and thermodynamics in drug design. Annu Rev Biophys, 2008. 37: p. 135-51.
40. Mergny, J.L. and L. Lacroix, Analysis of thermal melting curves. Oligonucleotides, 2003. 13(6): p. 515-37.
41. Herbert, A., et al., Special Issue: A, B and Z: The Structure, Function and Genetics of Z-DNA and Z-RNA. Int J Mol Sci, 2021. 22(14).
42. Lu, Y.F., et al., IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep, 2015. 5: p. 16037.
43. Ma, H., et al., Exploring the energy landscape of a small RNA hairpin. J Am Chem Soc, 2006. 128(5): p. 1523-30.
44. Mathews, D.H., et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A, 2004. 101(19): p. 7287-92.
45. Kulkarni, J.A., et al., The current landscape of nucleic acid therapeutics. Nature Nanotechnology, 2021. 16(6): p. 630-643.
46. Krieg, A.M. and C.A. Stein, Phosphorothioate oligodeoxynucleotides: antisense or anti-protein? Antisense Res Dev, 1995. 5(4): p. 241.
47. Altmann, K.H., et al., Second-generation antisense oligonucleotides: structure-activity relationships and the design of improved signal-transduction inhibitors. Biochem Soc Trans, 1996. 24(3): p. 630-7.
48. Crooke, S.T., et al., Antisense technology: an overview and prospectus. Nat Rev Drug Discov, 2021. 20(6): p. 427-453.
49. Yu, R.Z., et al., Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos, 2007. 35(3): p. 460-8.
50. Hovingh, K., J. Besseling, and J. Kastelein, Efficacy and safety of mipomersen sodium (Kynamro). Expert opinion on drug safety, 2013. 12(4): p. 569-579.
51. Obika, S., et al., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
52. Campbell, M.A. and J. Wengel, Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev, 2011. 40(12): p. 5680-9.
53. Burel, S.A., et al., Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. NUCLEIC ACIDS RESEARCH, 2016. 44(5): p. 2093-2109.
54. Genderen, M., L.H. Koole, and H. Buck, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 2010. 108: p. 28-35.
55. Buck, H.M., et al., Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity. Science, 1990. 248(4952): p. 208-12.
56. 陳奕儒, 探討中性DNA與一般DNA雜交反應熱力學與結合機制之研究, in 化學工程與材料工程學系. 2016, 國立中央大學: 桃園縣. p. 115.
57. 張晴雯, 部分磷酸根甲基化之反義去氧核醣核酸探針與 微小核糖核酸雜交靈敏度與專一性之研究, in 化學工程與材料工程學系. 2022, 國立中央大學: 桃園縣. p. 123.
58. Tian, B., et al., The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol, 2004. 5(12): p. 1013-23.
59. Hagedorn, P.H., et al., Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res, 2017. 45(5): p. 2262-2282.
60. Kretschmer-Kazemi Far, R. and G. Sczakiel, The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res, 2003. 31(15): p. 4417-24.
61. Lundstrom, K. and T. Boulikas, Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat, 2003. 2(5): p. 471-86.
62. Watermann, A. and J. Brieger, Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. Nanomaterials (Basel), 2017. 7(7).
63. Ashley, C.E., et al., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater, 2011. 10(5): p. 389-97.
64. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16.
65. Na, H.K., et al., Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small, 2012. 8(11): p. 1752-61.
66. 吳佳嶸, 以磷酸根甲基化之反義去氧核醣核酸探針藉由多孔性二氧化矽奈米粒子作為載體進行基因靜默調控之研究, in 化學工程與材料工程學系. 2023, 國立中央大學: 桃園縣. p. 128.
67. Meng, H., et al., Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013. 7(2): p. 994-1005.
68. Sun, H., et al., Visualizing the down-regulation of hTERT mRNA expression using gold-nanoflare probes and verifying the correlation with cancer cell apoptosis. Analyst, 2019. 144(9): p. 2994-3004.
69. Chang, J.-H., et al., Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. Journal of Materials Chemistry B, 2017. 5(16): p. 3012-3023.
70. Sherbet, G.V., M.S. Lakshmi, and F. Cajone, Isoelectric characteristics and the secondary structure of some nucleic acids. Biophysics of structure and mechanism, 1983. 10(3): p. 121-128.
71. Ishiyama, M., et al., A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull, 1996. 19(11): p. 1518-20.
72. Green, K.M., et al., Non-canonical initiation factors modulate repeat-associated non-AUG translation. Human Molecular Genetics, 2022. 31(15): p. 2521-2534.
73. Blasco, M.A., et al., Functional characterization and developmental regulation of mouse telomerase RNA. Science, 1995. 269(5228): p. 1267-70.
74. Yakovchuk, P., E. Protozanova, and M.D. Frank-Kamenetskii, Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. NUCLEIC ACIDS RESEARCH, 2006. 34(2): p. 564-574.
75. El Boujnouni, N., et al., Block or degrade? Balancing on- and off-target effects of antisense strategies against transcripts with expanded triplet repeats in DM1. Mol Ther Nucleic Acids, 2023. 32: p. 622-636. |