博碩士論文 111324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:177 、訪客IP:18.118.146.163
姓名 蔡峻維(Jun-Wei Cai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 最適化鉬摻雜NiCoP與CoFe層狀雙氫氧化物異質結構應用於電催化5-羥甲基糠醛選擇性氧化為2,5-呋喃二甲酸
(Optimized Heterostructure of Molybdenum-doped NiCoP and CoFe Layered Double Hydroxides for Electrocatalytic Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-20以後開放)
摘要(中) 在追求具有成本效益的儲能材料以及可再生能源的過程中,電化學水分解系統是個可行的解方,因陰極反應生成的氫氣被視為是極具潛力的清潔能源。然而,陽極緩慢的析氧反應 (OER) 阻礙了其應用。因此本研究利用生物質的選擇性氧化取代陽極析氧反應,生成高附加價值的產物,不僅可改善現今過度依賴石化燃料的問題,同時也有效利用再生資源。
實驗使用木質素衍生物5-羥甲基糠醛 (HMF) 作為反應物,藉此生成目標產物2,5-呋喃二甲酸 (FDCA) ,由FDCA聚合而成的聚乙烯 2,5-呋喃二甲酸酯 (PEF) 樹脂有望成為聚對苯二甲酸乙二醇酯 (PET) 之替代品。我們以水熱法和爐管磷化熱處理在泡沫鎳 (Nickel foam) 上原位 (in situ) 合成了三維分層結構的NiCoP,並透過裝載CoFe層狀雙氫氧化物 (Layered double hydroxides, LDHs) ,形成n-n型異質結構的CoFe LDH@NiCoP/NF的電觸媒,該異質接面促進表面電子重排,不僅有效改善電化學性能,還提高了催化劑的穩定性。我們進一步以調節Ni-Co前驅液濃度與水熱沉積時間做為變因,找出合成CoFe LDH@NiCoP/NF的最適化條件。最後摻雜適量的鉬 (Mo) 元素,可以有效調節NiCoP的電子結構,從而增加活性位點。
結果顯示用前驅液鎳與鈷莫爾比為1比1,水熱6小時製備的CoFe@NiCoP-6h,在HMF選擇性氧化反應有最佳表現。與未裝載CoFe LDH的NiCoP相比,施加偏壓1.50 V vs. RHE 並反應6小時後,FDCA的選擇率從79.73 % 提升至83.72 %,產率也從64.51 %增加至79.91 %。不僅如此,摻雜2.5 mole % Mo的CoFe@2.5 Mo-NiCoP-6h,HMF轉化率、FDCA產率和選擇率甚至分別達到100 %、98.34 %和98.34 %。綜上所述,作為HMF選擇性氧化的電催化劑,CoFe LDH@Mo-NiCoP/NF是十分具潛力的選擇。
摘要(英) In the pursuit of cost-effective energy storage materials and renewable energy, electrochemical water splitting systems present a viable solution, as the hydrogen generated by the cathode reaction is a promising clean energy source. However, the slow oxygen evolution reaction (OER) at the anode hampers its application. To address this, our study employs the selective oxidation of biomass to replace the anode OER, generating high value-added products. This approach not only mitigates the current over-reliance on fossil fuels but also effectively utilizes renewable resources.
In this study, we use the lignin derivative 5-hydroxymethylfurfural (HMF) as the reactant to produce 2,5-furandicarboxylic acid (FDCA). FDCA can be polymerized into polyethylene 2,5-furandicarboxylate (PEF) resin, which is a potential substitute for polyethylene terephthalate (PET). We synthesized NiCoP with a three-dimensional layered structure in situ on nickel foam using a hydrothermal method followed by furnace tube phosphating heat treatment. We then loaded CoFe layered double hydroxides (LDHs) to form an n-n type heterostructure CoFe LDH@NiCoP/NF electrocatalyst. This heterojunction promotes surface electron rearrangement, enhancing both the electrochemical performance and stability of the catalyst. We optimized the synthesis conditions of CoFe LDH@NiCoP/NF by adjusting the Ni-Co precursor solution concentration and hydrothermal deposition time. Additionally, doping with an appropriate amount of molybdenum (Mo) effectively adjusted the electronic structure of NiCoP, increasing active sites.
Our results demonstrate that CoFe@NiCoP-6h, prepared with a nickel-to-cobalt molar ratio of 1:1 and hydrothermal treatment for 6 hours, exhibited the best performance in the HMF selective oxidation reaction. Compared to NiCoP without CoFe LDH, the FDCA selectivity increased from 79.73 % to 83.72 %, and the yield from 64.51 % to 79.91 % after applying a constant voltage of 1.50 V vs. RHE for 6 hours.
Remarkably, for CoFe@2.5 Mo-NiCoP-6h doped with 2.5 mole % Mo, the HMF conversion rate, FDCA yield, and selectivity reached 100 %, 98.34 %, and 98.34 %, respectively. In summary, CoFe LDH@Mo-NiCoP/NF shows great promise as an electrocatalyst for the HMF selective oxidation reaction.
關鍵字(中) ★ 過渡金屬磷化物
★ 鉬摻雜
★ 層狀雙氫氧化物
★ 異質結構
★ 電催化選擇性氧化
關鍵字(英) ★ Transition metal phosphides
★ Molybdenum doping
★ Layered double hydroxides
★ Heterostructures
★ Electrocatalytic selective oxidation
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xvii
第一章、 緒論 1
1-1 前言 1
1-2 電觸媒發展 3
1-3 研究動機 6
第二章、 文獻回顧 10
2-1 電化學分解水 10
2-1-1 HER的基本原理 11
2-1-2 OER的基本原理 13
2-1-3 電催化動力學與重要參數 14
2-2 CoFe LDH@NiCoP異質結構觸媒 23
2-2-1 NiCoP簡介 23
2-2-2 提高NiCoP催化性能的調節策略 26
2-3-3 層狀雙氫氧化物簡介 35
2-3 電催化生物質與選擇性氧化 37
2-3-1 電催化生物質 37
2-3-2 電催化HMF選擇性氧化之反應機制 41
2-3-3 應用於HMF選擇性氧化之電觸媒發展 46
第三章、 研究方法 52
3-1 實驗藥品 52
3-2 實驗儀器 55
3-3 實驗步驟 61
3-3-1 電極製備 61
3-3-2 電化學量測 66
3-3-3 HMF選擇性氧化反應 68
第四章、 結果與討論 72
4-1 NiCoP電極 72
4-1-1 NiCoP形貌分析 (SEM/FIB) 73
4-1-2 X光繞射分析 75
4-2 CoFe LDH電極 76
4-2-1 CoFe LDH形貌分析 (SEM/FIB) 78
4-2-2 X光繞射分析 79
4-3 CoFe LDH@NiCoP電極 81
4-3-1 CoFe LDH@NiCoP形貌分析 (SEM/FIB) 82
4-3-2 X光繞射分析 84
4-3-3 X-ray光電子能譜儀 85
4-3-4 極化曲線與塔佛爾斜率分析 91
4-3-5 電化學活性面積分析 93
4-3-6 交流阻抗頻譜 97
4-3-7 HMF選擇性氧化反應 98
4-4 CoFe LDH@NiCoP之最適化條件 107
4-4-1 改變Ni/Co前驅液濃度 107
4-4-2 改變Ni-Co前驅液水熱時間 118
4-4-3 鉬摻雜 128
第五章、 結論 141
第六章、 未來建議 143
參考文獻 145
附錄 163
參考文獻 1. Wang, Y.; D. Yan; S. El Hankari; Y. ZouS. Wang, Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Advanced Science, 2018, 5(8), 1800064.
2. Zhang, S.; Y. Zhao; R. Shi; G.I. WaterhouseT. Zhang, Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem, 2019, 1(2), 100013.
3. Chu, S.A. Majumdar, Opportunities and challenges for a sustainable energy future. nature, 2012, 488(7411), 294-303.
4. Cao, L.; Y. Cao; X. Liu; Q. Luo; W. Liu; W. Zhang; X. Mou; T. YaoS. Wei, Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6(32), 15684-15689.
5. Cai, Z.; X. Bu; P. Wang; J.C. Ho; J. YangX. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7(10), 5069-5089.
6. Dincer, I., Green methods for hydrogen production. International journal of hydrogen energy, 2012, 37(2), 1954-1971.
7. The Future of Hydrogen. IEA, 2019.
8. Colton, W.M., The Outlook for Energy: A View to 2040. Exxon Mobil Corporation, 2011.
9. Islam, M.R.; N.K. RoyS. Rahman, Renewable energy and the environment. 2018, Springer.
10. Tursi, A., A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 2019, 6(2), 962-979.
11. Ferreira-Filipe, D.A.; A. Paco; A.C. Duarte; T. Rocha-SantosA.L. Patricio Silva, Are Biobased Plastics Green Alternatives?-A Critical Review. Int J Environ Res Public Health, 2021, 18(15).
12. Long, X.; G. Li; Z. Wang; H. Zhu; T. Zhang; S. Xiao; W. GuoS. Yang, Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37), 11900-11903.
13. Wang, J.; H.x. Zhong; Y.l. QinX.b. Zhang, An efficient three‐dimensional oxygen evolution electrode. Angewandte Chemie International Edition, 2013, 52(20), 5248-5253.
14. Xing, Z.; L. Gan; J. WangX. Yang, Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@ nickel film as an electrocatalyst. Journal of materials chemistry A, 2017, 5(17), 7744-7748.
15. Wang, W.; X. Xu; W. ZhouZ. Shao, Recent progress in metal‐organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advanced science, 2017, 4(4), 1600371.
16. Wang, J.; W. Cui; Q. Liu; Z. Xing; A.M. AsiriX. Sun, Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting. Advanced materials, 2016, 28(2), 215-230.
17. Wang, P.; X. Zhang; J. Zhang; S. Wan; S. Guo; G. Lu; J. YaoX. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nature communications, 2017, 8(1), 14580.
18. Lee, Y.; J. Suntivich; K.J. May; E.E. PerryY. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 2012, 3(3), 399-404.
19. Kasian, O.; J.P. Grote; S. Geiger; S. CherevkoK.J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angewandte Chemie International Edition, 2018, 57(9), 2488-2491.
20. Zhang, H.; Y. Liu; T. Chen; J. Zhang; J. ZhangX.W. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N‐doped carbon matrix. Advanced Materials, 2019, 31(48), 1904548.
21. Xue, Z.; X. Zhang; J. QinR. Liu, Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. Journal of materials chemistry A, 2019, 7(40), 23091-23097.
22. Li, P.; X. Duan; Y. Kuang; Y. Li; G. Zhang; W. LiuX. Sun, Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Advanced Energy Materials, 2018, 8(15), 1703341.
23. Wang, S.; J. Wu; J. Yin; Q. Hu; D. GengL.M. Liu, Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co3O4@ NiFe Layered Double Hydroxide Core‐Shell Nanostructure. ChemElectroChem, 2018, 5(10), 1357-1363.
24. Wu, H.; K. Yin; W. Qi; X. Zhou; J. He; J. Li; Y. Liu; J. He; S. GongY. Li, Rapid fabrication of Ni/NiO@ CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting. ChemSusChem, 2019, 12(12), 2773-2779.
25. Islam, M.S.; M. Kim; X. Jin; S.M. Oh; N.-S. Lee; H. KimS.-J. Hwang, Bifunctional 2D superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting. ACS Energy Letters, 2018, 3(4), 952-960.
26. Liu, Q.; J. Huang; Y. Zhao; L. Cao; K. Li; N. Zhang; D. Yang; L. FengL. Feng, Tuning the coupling interface of ultrathin Ni3S2@ NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting. Nanoscale, 2019, 11(18), 8855-8863.
27. Tian, W.; J. Zhang; H. Feng; H. Wen; X. Sun; X. Guan; D. Zheng; J. Liao; M. YanY. Yao, Propane dehydrogenation reaction in a high-pressure zeolite membrane reactor. Sustain. Energy Fuels., 2021, 5(2), 391-395.
28. Wang, P.; J. Qi; X. Chen; C. Li; W. Li; T. WangC. Liang, Three-dimensional heterostructured NiCoP@ NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS applied materials & interfaces, 2019, 12(4), 4385-4395.
29. Shalom, M.; D. Ressnig; X. Yang; G. Clavel; T.P. FellingerM. Antonietti, Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3(15), 8171-8177.
30. Jiang, M.; Y. Li; Z. Lu; X. SunX. Duan, Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers, 2016, 3(5), 630-634.
31. Sun, H.; J.-G. Li; L. Lv; Z. Li; X. Ao; C. Xu; X. Xue; G. HongC. Wang, Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 425, 138-146.
32. Li, X.; H. Wu; Y. Wu; Z. Kou; S.J. PennycookJ. Wang, NiFe layered double-hydroxide nanosheets on a cactuslike (Ni, Co) Se2 Support for water oxidation. ACS Applied Nano Materials, 2018, 2(1), 325-333.
33. Lin, Z.; X. Chen; L. Lu; X. Yao; C. ZhaiH. Tao, Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid: Mechanism, catalyst, coupling system. Nanotechnology Reviews, 2023, 12(1), 20220518.
34. Ma, Z.; L. Wang; G. LiT. Song, Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid by Heterogeneous Catalysts. Catalysts, 2024, 14(2), 157.
35. Karmakar, A.; K. Karthick; S. Kumaravel; S.S. SankarS. Kundu, Enabling and inducing oxygen vacancies in cobalt iron layer double hydroxide via selenization as precatalysts for electrocatalytic hydrogen and oxygen evolution reactions. Inorganic Chemistry, 2021, 60(3), 2023-2036.
36. Carmo, M.; D.L. Fritz; J. MergelD. Stolten, A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 2013, 38(12), 4901-4934.
37. Roger, I.; M.A. ShipmanM.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1(1), 1-13.
38. Wang, Y.-Z.; Y.-M. Ding; C.-H. Zhang; B.-W. Xue; N.-W. LiL. Yu, Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Metals, 2021, 40(10), 2785-2792.
39. Chen, J.; Y. Wang; G. Qian; T. Yu; Z. Wang; L. Luo; F. ShenS. Yin, In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density. Chemical Engineering Journal, 2021, 421, 129892.
40. Tu, K.; D. Tranca; F. Rodríguez‐Hernández; K. Jiang; S. Huang; Q. Zheng; M.X. Chen; C. Lu; Y. SuZ. Chen, A novel heterostructure based on RuMo nanoalloys and N‐doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Advanced Materials, 2020, 32(46), 2005433.
41. Kawde, A.; A. Annamalai; A. Sellstedt; P. Glatzel; T. WågbergJ. Messinger, A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Dalton Transactions, 2019, 48(4), 1166-1170.
42. Kawde, A.; M. Sayed; Q. Shi; J. Uhlig; T. PulleritsR. Hatti-Kaul, Photoelectrochemical oxidation in ambient conditions using earth-abundant hematite anode: a green route for the synthesis of biobased polymer building blocks. Catalysts, 2021, 11(8), 969.
43. Jacquel, N.; R. Saint-Loup; J.-P. Pascault; A. RousseauF. Fenouillot, Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer, 2015, 59, 234-242.
44. Ray, A.; S. Sultana; L. ParamanikK. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 2020, 8(37), 19196-19245.
45. Wang, Y.Z.; M. Yang; Y.M. Ding; N.W. LiL. Yu, Recent advances in complex hollow electrocatalysts for water splitting. Advanced Functional Materials, 2022, 32(6), 2108681.
46. Yang, M.; C.H. Zhang; N.W. Li; D. Luan; L. YuX.W. Lou, Design and synthesis of hollow nanostructures for electrochemical water splitting. Advanced Science, 2022, 9(9), 2105135.
47. Li, Y.; L. ZhouS. Guo, Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3(2), 100053.
48. Wang, L.; Y. Zhu; Z. Zeng; C. Lin; M. Giroux; L. Jiang; Y. Han; J. Greeley; C. WangJ. Jin, Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano energy, 2017, 31, 456-461.
49. Morales-Guio, C.G.; L.-A. SternX. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18), 6555-6569.
50. Seh, Z.W.; J. Kibsgaard; C.F. Dickens; I. Chorkendorff; J.K. NørskovT.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321), eaad4998.
51. Suen, N.-T.; S.-F. Hung; Q. Quan; N. Zhang; Y.-J. XuH.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46(2), 337-365.
52. McCrory, C.C.; S. Jung; I.M. Ferrer; S.M. Chatman; J.C. PetersT.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, 2015, 137(13), 4347-4357.
53. Tahir, M.; L. Pan; F. Idrees; X. Zhang; L. Wang; J.-J. ZouZ.L. Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.
54. Tan, Z.H.; X.Y. Kong; B.-J. Ng; H.S. Soo; A.R. MohamedS.-P. Chai, Recent advances in defect-engineered transition metal dichalcogenides for enhanced electrocatalytic hydrogen evolution: perfecting imperfections. ACS omega, 2023, 8(2), 1851-1863.
55. Jiang, Y.Y. Lu, Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12(17), 9327-9351.
56. Zhu, J.; L. Hu; P. Zhao; L.Y.S. LeeK.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical reviews, 2019, 120(2), 851-918.
57. Wei, G.-F.; Y.-H. FangZ.-P. Liu, First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. The Journal of Physical Chemistry C, 2012, 116(23), 12696-12705.
58. Li, C.-F.; T.-Y. Shuai; L.-R. Zheng; H.-B. Tang; J.-W. ZhaoG.-R. Li, The key role of carboxylate ligands in Ru@ Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chemical Engineering Journal, 2023, 451, 138618.
59. Connor, P.; J. Schuch; B. KaiserW. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Zeitschrift für Physikalische Chemie, 2020, 234(5), 979-994.
60. Jin, M.; X. Zhang; S. Niu; Q. Wang; R. Huang; R. Ling; J. Huang; R. Shi; A. AminiC. Cheng, Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA cm–2. ACS nano, 2022, 16(8), 11577-11597.
61. Wang, S.; J. Zhang; O. Gharbi; V. Vivier; M. GaoM.E. Orazem, Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 2021, 1(1).
62. Hameed, R.A., Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. in Noble Metal-Free Electrocatalysts: New Trends in Electrocatalysts for Energy Applications. Volume 2. 2022, ACS Publications, 191-235.
63. Zhao, H.Z.Y. Yuan, Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem, 2020, 12(15), 3797-3810.
64. Huang, C.-J.; H.-M. Xu; T.-Y. Shuai; Q.-N. Zhan; Z.-J. ZhangG.-R. Li, A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 325, 122313.
65. Li, H.; P. Wen; D.S. Itanze; Z.D. Hood; X. Ma; M. Kim; S. Adhikari; C. Lu; C. DunM. Chi, RETRACTED ARTICLE: Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nature Communications, 2019, 10(1), 5724.
66. Oyama, S.T.; T. Gott; H. ZhaoY.-K. Lee, Transition metal phosphide hydroprocessing catalysts: A review. Catalysis Today, 2009, 143(1-2), 94-107.
67. Hafezi Kahnamouei, M.S. Shahrokhian, Mesoporous nanostructured composite derived from thermal treatment CoFe Prussian blue analogue cages and electrodeposited NiCo-S as an efficient electrocatalyst for an oxygen evolution reaction. ACS applied materials & interfaces, 2020, 12(14), 16250-16263.
68. Choi, K.; I.K. MoonJ. Oh, An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. Journal of materials chemistry A, 2019, 7(4), 1468-1478.
69. Peng, L.; J. Wang; Y. Nie; K. Xiong; Y. Wang; L. Zhang; K. Chen; W. Ding; L. LiZ. Wei, Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts. Acs Catalysis, 2017, 7(12), 8184-8191.
70. Xu, H.; J. Wei; C. Liu; Y. Zhang; L. Tian; C. WangY. Du, Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis. Journal of colloid and interface science, 2018, 530, 146-153.
71. Guo, Z.; W. Ye; X. Fang; J. Wan; Y. Ye; Y. Dong; D. CaoD. Yan, Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorganic Chemistry Frontiers, 2019, 6(3), 687-693.
72. Guo, X.; G. LiangA. Gu, Construction of nickel-doped cobalt hydroxides hexagonal nanoplates for advanced oxygen evolution electrocatalysis. Journal of colloid and interface science, 2019, 553, 713-719.
73. Yu, J.; Q. Li; Y. Li; C.Y. Xu; L. Zhen; V.P. DravidJ. Wu, Ternary metal phosphide with triple‐layered structure as a low‐cost and efficient electrocatalyst for bifunctional water splitting. Advanced Functional Materials, 2016, 26(42), 7644-7651.
74. Thiyagarajan, D.; M. Gao; L. Sun; X. Dong; D. Zheng; M.A. Wahab; G. WillJ. Lin, Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 432, 134303.
75. Chen, D.; R. Lu; Z. Pu; J. Zhu; H.-W. Li; F. Liu; S. Hu; X. Luo; J. WuY. Zhao, Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Applied Catalysis B: Environmental, 2020, 279, 119396.
76. Feng, J.-X.; S.-Y. Tong; Y.-X. TongG.-R. Li, Pt-like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts. Journal of the American Chemical Society, 2018, 140(15), 5118-5126.
77. Xiao, X.; C.-T. He; S. Zhao; J. Li; W. Lin; Z. Yuan; Q. Zhang; S. Wang; L. DaiD. Yu, A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy & Environmental Science, 2017, 10(4), 893-899.
78. Li, D.; H. Baydoun; C.N. VeraniS.L. Brock, Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138(12), 4006-4009.
79. Jeung, Y.; H. Jung; D. Kim; H. Roh; C. Lim; J.W. HanK. Yong, 2D-structured V-doped Ni (Co, Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts. Journal of Materials Chemistry A, 2021, 9(20), 12203-12213.
80. Lee, H.; O. Gwon; K. Choi; L. Zhang; J. Zhou; J. Park; J.-W. Yoo; J.-Q. Wang; J.H. LeeG. Kim, Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites. ACS Catalysis, 2020, 10(8), 4664-4670.
81. Roh, H.; H. Jung; H. Choi; J.W. Han; T. Park; S. KimK. Yong, Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Applied Catalysis B: Environmental, 2021, 297, 120434.
82. Liu, Y.; N. Ran; R. Ge; J. Liu; W. Li; Y. Chen; L. FengR. Che, Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 131642.
83. Zhao, G.; K. Rui; S.X. DouW. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Advanced Functional Materials, 2018, 28(43), 1803291.
84. Zhang, H.; A.W. Maijenburg; X. Li; S.L. SchweizerR.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Advanced functional materials, 2020, 30(34), 2003261.
85. Li, X.; R. Shen; S. Ma; X. ChenJ. Xie, Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.
86. Sambyal, S.; R. Sharma; P. Mandyal; S. Balou; P. Gholami; B. Fang; P. ShandilyaA. Priye, Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion. Journal of Environmental Chemical Engineering, 2023, 11(2), 109517.
87. An, L.; J. Feng; Y. Zhang; R. Wang; H. Liu; G.C. Wang; F. ChengP. Xi, Epitaxial heterogeneous interfaces on N‐NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Advanced Functional Materials, 2019, 29(1), 1805298.
88. Marschall, R., Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17), 2421-2440.
89. Soni, V.; P. Singh; A.A.P. Khan; A. Singh; A.K. Nadda; C.M. Hussain; Q. Van Le; S. Rizevsky; V.-H. NguyenP. Raizada, Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. Journal of Nanostructure in Chemistry, 2022, 1-38.
90. Gu, M.; L. Jiang; S. Zhao; H. Wang; M. Lin; X. Deng; X. Huang; A. Gao; X. LiuP. Sun, Deciphering the space charge effect of the p–n junction between copper sulfides and molybdenum selenides for efficient water electrolysis in a wide pH range. ACS nano, 2022, 16(9), 15425-15439.
91. Cao, Y.; A. El-Shafay; A.H. Mohammed; S.F. Almojil; A.I. AlmohanaA.F. Alali, Controlling the charge carriers recombination kinetics on the g-C3N4-BiSI nn heterojunction with efficient photocatalytic activity in N2 fixation and degradation of MB and phenol. Advanced Powder Technology, 2022, 33(4), 103513.
92. Lv, X.; Z. Xiao; H. Wang; X. Wang; L. Shan; F. Wang; C. Wei; X. TangY. Chen, In situ construction of Co/N/C-based heterojunction on biomass-derived hierarchical porous carbon with stable active sites using a Co-N protective strategy for high-efficiency ORR, OER and HER trifunctional electrocatalysts. Journal of Energy Chemistry, 2021, 54, 626-638.
93. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry, 2007, 6, 1-53.
94. Yuan, G.; J. Bai; L. Zhang; X. ChenL. Ren, The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Applied Catalysis B: Environmental, 2021, 284, 119693.
95. Yao, N.; R. Meng; F. Wu; Z. Fan; G. ChengW. Luo, Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.
96. Li, C.-F.; J.-W. Zhao; L.-J. Xie; J.-Q. WuG.-R. Li, Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Applied Catalysis B: Environmental, 2021, 291, 119987.
97. Chen, T.; B. Li; K. Song; C. Wang; J. Ding; E. Liu; B. ChenF. He, Defect-activated surface reconstruction: mechanism for triggering the oxygen evolution reaction activity of NiFe phosphide. Journal of Materials Chemistry A, 2022, 10(42), 22750-22759.
98. Fang, X.; C. Chen; H. Jia; Y.N. Li; J. Liu; Y.S. Wang; Y.L. Song; T. DuL.Y. Liu, Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. Journal of Industrial and Engineering Chemistry, 2021, 95, 16-27.
99. Wan, H.; F. Chen; W. Ma; X. LiuR. Ma, Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale, 2020, 12(42), 21479-21496.
100. Zhang, X.; Y. Zhao; Y. Zhao; R. Shi; G.I. WaterhouseT. Zhang, A simple synthetic strategy toward defect‐rich porous monolayer NiFe‐layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Advanced Energy Materials, 2019, 9(24), 1900881.
101. Gao, Z.W.; T. Ma; X.M. Chen; H. Liu; L. Cui; S.Z. Qiao; J. YangX.W. Du, Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation. Small, 2018, 14(17), 1800195.
102. Long, X.; Z. Wang; S. Xiao; Y. AnS. Yang, Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials today, 2016, 19(4), 213-226.
103. Zhou, Z.; Y.-n. Xie; L. Sun; Z. Wang; W. Wang; L. Jiang; X. Tao; L. Li; X.-H. LiG. Zhao, Strain-induced in situ formation of NiOOH species on CoCo bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Applied Catalysis B: Environmental, 2022, 305, 121072.
104. Feng, Y.; K. Yang; R.L. SmithX. Qi, Metal sulfide enhanced metal–organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Journal of Materials Chemistry A, 2023, 11(12), 6375-6383.
105. Perini, N.; C. Hessel; J.L. Bott-Neto; C.T. Pires; P.S. FernandezE. Sitta, Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. Journal of Solid State Electrochemistry, 2021, 25, 1101-1110.
106. Rani, M.A.A.B.A.; N.A. KarimS.K. Kamarudin, Microporous and mesoporous structure catalysts for the production of 5‐hydroxymethylfurfural (5‐HMF). International Journal of Energy Research, 2022, 46(2), 577-633.
107. Eerhart, A.J.J.E.; A.P.C. FaaijM.K. Patel, Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012, 5(4).
108. Amarasekara, A.S.; L. H. Nguyen; N.C. OkorieS. M. Jamal, A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis. Green Chemistry, 2017, 19(6), 1570-1575.
109. Das, B.K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021, 622.
110. Sajid, M.; X. ZhaoD. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20(24), 5427-5453.
111. Swan, S.H., Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res, 2008, 108(2), 177-84.
112. Ball, G.L.; C.J. McLellanV.S. Bhat, Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: A category approach. Crit Rev Toxicol, 2012, 42(1), 28-67.
113. Das, B.K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021, 622, 118237.
114. Yang, Y.T. Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23(12), 4228-4254.
115. Guo, L.; X. Zhang; L. Gan; L. Pan; C. Shi; Z.F. Huang; X. ZhangJ.J. Zou, Advances in Selective Electrochemical Oxidation of 5‐Hydroxymethylfurfural to Produce High‐Value Chemicals. Advanced Science, 2023, 10(4), 2205540.
116. Zhou, C.; W. Shi; X. Wan; Y. Meng; Y. Yao; Z. Guo; Y. Dai; C. WangY. Yang, Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst. Catalysis Today, 2019, 330, 92-100.
117. Zhang, M.; Y. Liu; B. Liu; Z. Chen; H. XuK. Yan, Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. Acs Catalysis, 2020, 10(9), 5179-5189.
118. Du, L.; Y. SunB. You, Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports: Energy, 2021, 1(1), 100004.
119. Huang, C.; Y. Huang; C. Liu; Y. YuB. Zhang, Integrating hydrogen production with aqueous selective semi‐dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angewandte Chemie, 2019, 131(35), 12142-12145.
120. Heidary, N.N. Kornienko, Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy. Chemical science, 2020, 11(7), 1798-1806.
121. Zhang, P.; X. Sheng; X. Chen; Z. Fang; J. Jiang; M. Wang; F. Li; L. Fan; Y. RenB. Zhang, Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angewandte Chemie, 2019, 131(27), 9253-9257.
122. Zhou, Y.; Y. ShenH. Li, Mechanistic study on electro-oxidation of 5-hydroxymethylfurfural and water molecules via operando surface-enhanced Raman spectroscopy coupled with an Fe3+ probe. Applied Catalysis B: Environmental, 2022, 317, 121776.
123. Wang, H.; Y. ZhouS. Tao, CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Applied Catalysis B: Environmental, 2022, 315, 121588.
124. Yang, G.; Y. Jiao; H. Yan; C. TianH. Fu, Electronic Structure Modulation of Non‐Noble‐Metal‐Based Catalysts for Biomass Electrooxidation Reactions. Small Structures, 2021, 2(10), 2100095.
125. Song, Y.; W. Xie; Y. Song; H. Li; S. Li; S. Jiang; J.Y. LeeM. Shao, Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation. Applied Catalysis B: Environmental, 2022, 312, 121400.
126. Wang, H.; C. Li; J. An; Y. ZhuangS. Tao, Surface reconstruction of NiCoP for enhanced biomass upgrading. Journal of Materials Chemistry A, 2021, 9(34), 18421-18430.
127. Zhao, Y.; M. Cai; J. Xian; Y. SunG. Li, Recent advances in the electrocatalytic synthesis of 2, 5-furandicarboxylic acid from 5-(hydroxymethyl) furfural. Journal of Materials Chemistry A, 2021, 9(36), 20164-20183.
128. He, X.; J. Cai; Q. Chen; J. Liu; Q. Zhong; J. Liu; Z. Sun; D. Qu; Y. LuX. Li, Promotion effect of intercalated citrate anion on the reconstruction of NiFe LDH for oxygen evolution reaction. New Journal of Chemistry, 2023, 47(42), 19484-19493.
129. Song, Y.; K. Ji; H. DuanM. Shao. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. in Exploration. 2021, Wiley Online Library.
130. Liu, W.-J.; L. Dang; Z. Xu; H.-Q. Yu; S. JinG.W. Huber, Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. Acs Catalysis, 2018, 8(6), 5533-5541.
131. Musella, E.; I. Gualandi; E. Scavetta; A. Rivalta; E. Venuti; M. Christian; V. Morandi; A. Mullaliu; M. GiorgettiD. Tonelli, Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7(18), 11241-11249.
132. Qi, Y.-F.; K.-Y. Wang; Y. Sun; J. WangC. Wang, Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ACS Sustainable Chemistry & Engineering, 2021, 10(1), 645-654.
133. Huang, Y.; X. Pang; J. Cui; Z. Huang; G. Wang; H. Zhao; H. BaiW. Fan, Strengthening the stability of the reconstructed NiOOH phase for 5-hydroxymethylfurfural oxidation. Inorganic Chemistry, 2023, 62(16), 6499-6509.
134. Liu, B.; Z. Zheng; Y. Liu; M. Zhang; Y. Wang; Y. WanK. Yan, Efficient electrooxidation of biomass-derived aldehydes over ultrathin NiV-layered double hydroxides films. Journal of Energy Chemistry, 2023, 78, 412-421.
135. Jiang, X.; W. Li; Y. Liu; L. Zhao; Z. Chen; L. Zhang; Y. ZhangS. Yun, Electrocatalytic oxidation of 5‐hydroxymethylfurfural for sustainable 2, 5‐furandicarboxylic acid production—From mechanism to catalysts design. SusMat, 2023, 3(1), 21-43.
136. Ge, R.; J. LiH. Duan, Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Science China Materials, 2022, 65(12), 3273-3301.
137. Lu, Y.; C.-L. Dong; Y.-C. Huang; Y. Zou; Y. Liu; Y. Li; N. Zhang; W. Chen; L. ZhouH. Lin, Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Science China Chemistry, 2020, 63, 980-986.
138. Zhou, M.; J. ChenY. Li, CoP nanorods anchored on Ni2P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catalysis Science & Technology, 2022, 12(13), 4288-4297.
139. Zhao, G.; G. Hai; P. Zhou; Z. Liu; Y. Zhang; B. Peng; W. Xia; X. HuangG. Wang, Electrochemical oxidation of 5‐hydroxymethylfurfural on CeO2‐modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Advanced Functional Materials, 2023, 33(14), 2213170.
140. Li, L.; C. Sun; B. Shang; Q. Li; J. Lei; N. LiF. Pan, Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. Journal of materials chemistry A, 2019, 7(30), 18003-18011.
141. Cha, H.G.K.-S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature chemistry, 2015, 7(4), 328-333.
142. Du, C.; L. Yang; F. Yang; G. ChengW. Luo, Nest-like NiCoP for highly efficient overall water splitting. Acs Catalysis, 2017, 7(6), 4131-4137.
143. Li, Y.; H. Zhang; M. Jiang; Y. Kuang; X. SunX. Duan, Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9, 2251-2259.
144. Cai, Z.; A. Wu; H. Yan; C. Tian; D. GuoH. Fu, Zn‐Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Energy Technology, 2020, 8(1), 1901079.
145. Wang, J.-G.; H. Liu; H. Liu; Z. FuD. Nan, Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries. Chemical Engineering Journal, 2017, 328, 591-598.
146. Ji, X.; R. Zhang; X. Shi; A.M. Asiri; B. ZhengX. Sun, Fabrication of hierarchical CoP nanosheet@ microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale, 2018, 10(17), 7941-7945.
147. Zhang, H.; X. Li; A. Hähnel; V. Naumann; C. Lin; S. Azimi; S.L. Schweizer; A.W. MaijenburgR.B. Wehrspohn, Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Advanced Functional Materials, 2018, 28(14), 1706847.
148. Li, C.; M. Wei; D.G. EvansX. Duan, Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media. Catalysis Today, 2015, 247, 163-169.
149. Yu, J.; Q. Wang; D. O′HareL. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19), 5950-5974.
150. Lv, L.; Z. Yang; K. Chen; C. WangY. Xiong, Electrocatalysts: 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application (Adv. Energy Mater. 17/2019). Advanced Energy Materials, 2019, 9(17), 1970057.
151. Chen, G.; H. Wan; W. Ma; N. Zhang; Y. Cao; X. Liu; J. WangR. Ma, Layered metal hydroxides and their derivatives: controllable synthesis, chemical exfoliation, and electrocatalytic applications. Advanced Energy Materials, 2020, 10(11), 1902535.
152. Zhang, M.; Y. Chen; D. YangJ. Li, High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages. Journal of Energy Storage, 2020, 29, 101363.
153. Feng, L.; A. Li; Y. Li; J. Liu; L. Wang; L. Huang; Y. WangX. Ge, A highly active CoFe layered double hydroxide for water splitting. ChemPlusChem, 2017, 82(3), 483-488.
154. Nikam, R.D.; A.-Y. Lu; P.A. Sonawane; U.R. Kumar; K. Yadav; L.-J. LiY.-T. Chen, Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction. ACS applied materials & interfaces, 2015, 7(41), 23328-23335.
155. Yang, L.; W. Zhou; D. Hou; K. Zhou; G. Li; Z. Tang; L. LiS. Chen, Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale, 2015, 7(12), 5203-5208.
156. Wang, D.-Y.; M. Gong; H.-L. Chou; C.-J. Pan; H.-A. Chen; Y. Wu; M.-C. Lin; M. Guan; J. YangC.-W. Chen, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 2015, 137(4), 1587-1592.
157. Yin, S.; W. Tu; Y. Sheng; Y. Du; M. Kraft; A. BorgnaR. Xu, A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron‐Layered Double Hydroxide and Carbon Nanodomains. Advanced Materials, 2018, 30(5), 1705106.
158. Zhang, Y.; M. Yang; X. Jiang; W. LuY. Xing, Self-supported hierarchical CoFe-LDH/NiCo2O4/NF core-shell nanowire arrays as an effective electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 818, 153345.
159. Sivanantham, A.; P. GanesanS. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Advanced Functional Materials, 2016, 26(26), 4661-4672.
160. Zheng, L.; Y. Zhao; P. Xu; Z. Lv; X. ShiH. Zheng, Biomass upgrading coupled with H2 production via a nonprecious and versatile Cu-doped nickel nanotube electrocatalyst. Journal of Materials Chemistry A, 2022, 10(18), 10181-10191.
161. Guo, M.; X. Lu; J. Xiong; R. Zhang; X. Li; Y. Qiao; N. JiZ. Yu, Alloy‐driven efficient electrocatalytic oxidation of biomass‐derived 5‐hydroxymethylfurfural towards 2, 5‐furandicarboxylic acid: a review. ChemSusChem, 2022, 15(17), e202201074.
162. Wang, X.; Y. Tuo; Y. Zhou; D. Wang; S. WangJ. Zhang, Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chemical Engineering Journal, 2021, 403, 126297.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明