參考文獻 |
1. Wang, Y.; D. Yan; S. El Hankari; Y. ZouS. Wang, Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Advanced Science, 2018, 5(8), 1800064.
2. Zhang, S.; Y. Zhao; R. Shi; G.I. WaterhouseT. Zhang, Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem, 2019, 1(2), 100013.
3. Chu, S.A. Majumdar, Opportunities and challenges for a sustainable energy future. nature, 2012, 488(7411), 294-303.
4. Cao, L.; Y. Cao; X. Liu; Q. Luo; W. Liu; W. Zhang; X. Mou; T. YaoS. Wei, Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6(32), 15684-15689.
5. Cai, Z.; X. Bu; P. Wang; J.C. Ho; J. YangX. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7(10), 5069-5089.
6. Dincer, I., Green methods for hydrogen production. International journal of hydrogen energy, 2012, 37(2), 1954-1971.
7. The Future of Hydrogen. IEA, 2019.
8. Colton, W.M., The Outlook for Energy: A View to 2040. Exxon Mobil Corporation, 2011.
9. Islam, M.R.; N.K. RoyS. Rahman, Renewable energy and the environment. 2018, Springer.
10. Tursi, A., A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 2019, 6(2), 962-979.
11. Ferreira-Filipe, D.A.; A. Paco; A.C. Duarte; T. Rocha-SantosA.L. Patricio Silva, Are Biobased Plastics Green Alternatives?-A Critical Review. Int J Environ Res Public Health, 2021, 18(15).
12. Long, X.; G. Li; Z. Wang; H. Zhu; T. Zhang; S. Xiao; W. GuoS. Yang, Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. Journal of the American Chemical Society, 2015, 137(37), 11900-11903.
13. Wang, J.; H.x. Zhong; Y.l. QinX.b. Zhang, An efficient three‐dimensional oxygen evolution electrode. Angewandte Chemie International Edition, 2013, 52(20), 5248-5253.
14. Xing, Z.; L. Gan; J. WangX. Yang, Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@ nickel film as an electrocatalyst. Journal of materials chemistry A, 2017, 5(17), 7744-7748.
15. Wang, W.; X. Xu; W. ZhouZ. Shao, Recent progress in metal‐organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advanced science, 2017, 4(4), 1600371.
16. Wang, J.; W. Cui; Q. Liu; Z. Xing; A.M. AsiriX. Sun, Recent progress in cobalt‐based heterogeneous catalysts for electrochemical water splitting. Advanced materials, 2016, 28(2), 215-230.
17. Wang, P.; X. Zhang; J. Zhang; S. Wan; S. Guo; G. Lu; J. YaoX. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nature communications, 2017, 8(1), 14580.
18. Lee, Y.; J. Suntivich; K.J. May; E.E. PerryY. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 2012, 3(3), 399-404.
19. Kasian, O.; J.P. Grote; S. Geiger; S. CherevkoK.J. Mayrhofer, The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angewandte Chemie International Edition, 2018, 57(9), 2488-2491.
20. Zhang, H.; Y. Liu; T. Chen; J. Zhang; J. ZhangX.W. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N‐doped carbon matrix. Advanced Materials, 2019, 31(48), 1904548.
21. Xue, Z.; X. Zhang; J. QinR. Liu, Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. Journal of materials chemistry A, 2019, 7(40), 23091-23097.
22. Li, P.; X. Duan; Y. Kuang; Y. Li; G. Zhang; W. LiuX. Sun, Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Advanced Energy Materials, 2018, 8(15), 1703341.
23. Wang, S.; J. Wu; J. Yin; Q. Hu; D. GengL.M. Liu, Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co3O4@ NiFe Layered Double Hydroxide Core‐Shell Nanostructure. ChemElectroChem, 2018, 5(10), 1357-1363.
24. Wu, H.; K. Yin; W. Qi; X. Zhou; J. He; J. Li; Y. Liu; J. He; S. GongY. Li, Rapid fabrication of Ni/NiO@ CoFe layered double hydroxide hierarchical nanostructures by femtosecond laser ablation and electrodeposition for efficient overall water splitting. ChemSusChem, 2019, 12(12), 2773-2779.
25. Islam, M.S.; M. Kim; X. Jin; S.M. Oh; N.-S. Lee; H. KimS.-J. Hwang, Bifunctional 2D superlattice electrocatalysts of layered double hydroxide–transition metal dichalcogenide active for overall water splitting. ACS Energy Letters, 2018, 3(4), 952-960.
26. Liu, Q.; J. Huang; Y. Zhao; L. Cao; K. Li; N. Zhang; D. Yang; L. FengL. Feng, Tuning the coupling interface of ultrathin Ni3S2@ NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting. Nanoscale, 2019, 11(18), 8855-8863.
27. Tian, W.; J. Zhang; H. Feng; H. Wen; X. Sun; X. Guan; D. Zheng; J. Liao; M. YanY. Yao, Propane dehydrogenation reaction in a high-pressure zeolite membrane reactor. Sustain. Energy Fuels., 2021, 5(2), 391-395.
28. Wang, P.; J. Qi; X. Chen; C. Li; W. Li; T. WangC. Liang, Three-dimensional heterostructured NiCoP@ NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting. ACS applied materials & interfaces, 2019, 12(4), 4385-4395.
29. Shalom, M.; D. Ressnig; X. Yang; G. Clavel; T.P. FellingerM. Antonietti, Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3(15), 8171-8177.
30. Jiang, M.; Y. Li; Z. Lu; X. SunX. Duan, Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers, 2016, 3(5), 630-634.
31. Sun, H.; J.-G. Li; L. Lv; Z. Li; X. Ao; C. Xu; X. Xue; G. HongC. Wang, Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 425, 138-146.
32. Li, X.; H. Wu; Y. Wu; Z. Kou; S.J. PennycookJ. Wang, NiFe layered double-hydroxide nanosheets on a cactuslike (Ni, Co) Se2 Support for water oxidation. ACS Applied Nano Materials, 2018, 2(1), 325-333.
33. Lin, Z.; X. Chen; L. Lu; X. Yao; C. ZhaiH. Tao, Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid: Mechanism, catalyst, coupling system. Nanotechnology Reviews, 2023, 12(1), 20220518.
34. Ma, Z.; L. Wang; G. LiT. Song, Recent Advances in Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid by Heterogeneous Catalysts. Catalysts, 2024, 14(2), 157.
35. Karmakar, A.; K. Karthick; S. Kumaravel; S.S. SankarS. Kundu, Enabling and inducing oxygen vacancies in cobalt iron layer double hydroxide via selenization as precatalysts for electrocatalytic hydrogen and oxygen evolution reactions. Inorganic Chemistry, 2021, 60(3), 2023-2036.
36. Carmo, M.; D.L. Fritz; J. MergelD. Stolten, A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 2013, 38(12), 4901-4934.
37. Roger, I.; M.A. ShipmanM.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1(1), 1-13.
38. Wang, Y.-Z.; Y.-M. Ding; C.-H. Zhang; B.-W. Xue; N.-W. LiL. Yu, Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Metals, 2021, 40(10), 2785-2792.
39. Chen, J.; Y. Wang; G. Qian; T. Yu; Z. Wang; L. Luo; F. ShenS. Yin, In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density. Chemical Engineering Journal, 2021, 421, 129892.
40. Tu, K.; D. Tranca; F. Rodríguez‐Hernández; K. Jiang; S. Huang; Q. Zheng; M.X. Chen; C. Lu; Y. SuZ. Chen, A novel heterostructure based on RuMo nanoalloys and N‐doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Advanced Materials, 2020, 32(46), 2005433.
41. Kawde, A.; A. Annamalai; A. Sellstedt; P. Glatzel; T. WågbergJ. Messinger, A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Dalton Transactions, 2019, 48(4), 1166-1170.
42. Kawde, A.; M. Sayed; Q. Shi; J. Uhlig; T. PulleritsR. Hatti-Kaul, Photoelectrochemical oxidation in ambient conditions using earth-abundant hematite anode: a green route for the synthesis of biobased polymer building blocks. Catalysts, 2021, 11(8), 969.
43. Jacquel, N.; R. Saint-Loup; J.-P. Pascault; A. RousseauF. Fenouillot, Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer, 2015, 59, 234-242.
44. Ray, A.; S. Sultana; L. ParamanikK. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 2020, 8(37), 19196-19245.
45. Wang, Y.Z.; M. Yang; Y.M. Ding; N.W. LiL. Yu, Recent advances in complex hollow electrocatalysts for water splitting. Advanced Functional Materials, 2022, 32(6), 2108681.
46. Yang, M.; C.H. Zhang; N.W. Li; D. Luan; L. YuX.W. Lou, Design and synthesis of hollow nanostructures for electrochemical water splitting. Advanced Science, 2022, 9(9), 2105135.
47. Li, Y.; L. ZhouS. Guo, Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3(2), 100053.
48. Wang, L.; Y. Zhu; Z. Zeng; C. Lin; M. Giroux; L. Jiang; Y. Han; J. Greeley; C. WangJ. Jin, Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano energy, 2017, 31, 456-461.
49. Morales-Guio, C.G.; L.-A. SternX. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18), 6555-6569.
50. Seh, Z.W.; J. Kibsgaard; C.F. Dickens; I. Chorkendorff; J.K. NørskovT.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321), eaad4998.
51. Suen, N.-T.; S.-F. Hung; Q. Quan; N. Zhang; Y.-J. XuH.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46(2), 337-365.
52. McCrory, C.C.; S. Jung; I.M. Ferrer; S.M. Chatman; J.C. PetersT.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, 2015, 137(13), 4347-4357.
53. Tahir, M.; L. Pan; F. Idrees; X. Zhang; L. Wang; J.-J. ZouZ.L. Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.
54. Tan, Z.H.; X.Y. Kong; B.-J. Ng; H.S. Soo; A.R. MohamedS.-P. Chai, Recent advances in defect-engineered transition metal dichalcogenides for enhanced electrocatalytic hydrogen evolution: perfecting imperfections. ACS omega, 2023, 8(2), 1851-1863.
55. Jiang, Y.Y. Lu, Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale, 2020, 12(17), 9327-9351.
56. Zhu, J.; L. Hu; P. Zhao; L.Y.S. LeeK.-Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical reviews, 2019, 120(2), 851-918.
57. Wei, G.-F.; Y.-H. FangZ.-P. Liu, First principles Tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst. The Journal of Physical Chemistry C, 2012, 116(23), 12696-12705.
58. Li, C.-F.; T.-Y. Shuai; L.-R. Zheng; H.-B. Tang; J.-W. ZhaoG.-R. Li, The key role of carboxylate ligands in Ru@ Ni-MOFs/NF in promoting water dissociation kinetics for effective hydrogen evolution in alkaline media. Chemical Engineering Journal, 2023, 451, 138618.
59. Connor, P.; J. Schuch; B. KaiserW. Jaegermann, The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Zeitschrift für Physikalische Chemie, 2020, 234(5), 979-994.
60. Jin, M.; X. Zhang; S. Niu; Q. Wang; R. Huang; R. Ling; J. Huang; R. Shi; A. AminiC. Cheng, Strategies for designing high-performance hydrogen evolution reaction electrocatalysts at large current densities above 1000 mA cm–2. ACS nano, 2022, 16(8), 11577-11597.
61. Wang, S.; J. Zhang; O. Gharbi; V. Vivier; M. GaoM.E. Orazem, Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 2021, 1(1).
62. Hameed, R.A., Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. in Noble Metal-Free Electrocatalysts: New Trends in Electrocatalysts for Energy Applications. Volume 2. 2022, ACS Publications, 191-235.
63. Zhao, H.Z.Y. Yuan, Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem, 2020, 12(15), 3797-3810.
64. Huang, C.-J.; H.-M. Xu; T.-Y. Shuai; Q.-N. Zhan; Z.-J. ZhangG.-R. Li, A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 325, 122313.
65. Li, H.; P. Wen; D.S. Itanze; Z.D. Hood; X. Ma; M. Kim; S. Adhikari; C. Lu; C. DunM. Chi, RETRACTED ARTICLE: Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nature Communications, 2019, 10(1), 5724.
66. Oyama, S.T.; T. Gott; H. ZhaoY.-K. Lee, Transition metal phosphide hydroprocessing catalysts: A review. Catalysis Today, 2009, 143(1-2), 94-107.
67. Hafezi Kahnamouei, M.S. Shahrokhian, Mesoporous nanostructured composite derived from thermal treatment CoFe Prussian blue analogue cages and electrodeposited NiCo-S as an efficient electrocatalyst for an oxygen evolution reaction. ACS applied materials & interfaces, 2020, 12(14), 16250-16263.
68. Choi, K.; I.K. MoonJ. Oh, An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. Journal of materials chemistry A, 2019, 7(4), 1468-1478.
69. Peng, L.; J. Wang; Y. Nie; K. Xiong; Y. Wang; L. Zhang; K. Chen; W. Ding; L. LiZ. Wei, Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts. Acs Catalysis, 2017, 7(12), 8184-8191.
70. Xu, H.; J. Wei; C. Liu; Y. Zhang; L. Tian; C. WangY. Du, Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis. Journal of colloid and interface science, 2018, 530, 146-153.
71. Guo, Z.; W. Ye; X. Fang; J. Wan; Y. Ye; Y. Dong; D. CaoD. Yan, Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorganic Chemistry Frontiers, 2019, 6(3), 687-693.
72. Guo, X.; G. LiangA. Gu, Construction of nickel-doped cobalt hydroxides hexagonal nanoplates for advanced oxygen evolution electrocatalysis. Journal of colloid and interface science, 2019, 553, 713-719.
73. Yu, J.; Q. Li; Y. Li; C.Y. Xu; L. Zhen; V.P. DravidJ. Wu, Ternary metal phosphide with triple‐layered structure as a low‐cost and efficient electrocatalyst for bifunctional water splitting. Advanced Functional Materials, 2016, 26(42), 7644-7651.
74. Thiyagarajan, D.; M. Gao; L. Sun; X. Dong; D. Zheng; M.A. Wahab; G. WillJ. Lin, Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 432, 134303.
75. Chen, D.; R. Lu; Z. Pu; J. Zhu; H.-W. Li; F. Liu; S. Hu; X. Luo; J. WuY. Zhao, Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Applied Catalysis B: Environmental, 2020, 279, 119396.
76. Feng, J.-X.; S.-Y. Tong; Y.-X. TongG.-R. Li, Pt-like hydrogen evolution electrocatalysis on PANI/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts. Journal of the American Chemical Society, 2018, 140(15), 5118-5126.
77. Xiao, X.; C.-T. He; S. Zhao; J. Li; W. Lin; Z. Yuan; Q. Zhang; S. Wang; L. DaiD. Yu, A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy & Environmental Science, 2017, 10(4), 893-899.
78. Li, D.; H. Baydoun; C.N. VeraniS.L. Brock, Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138(12), 4006-4009.
79. Jeung, Y.; H. Jung; D. Kim; H. Roh; C. Lim; J.W. HanK. Yong, 2D-structured V-doped Ni (Co, Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts. Journal of Materials Chemistry A, 2021, 9(20), 12203-12213.
80. Lee, H.; O. Gwon; K. Choi; L. Zhang; J. Zhou; J. Park; J.-W. Yoo; J.-Q. Wang; J.H. LeeG. Kim, Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites. ACS Catalysis, 2020, 10(8), 4664-4670.
81. Roh, H.; H. Jung; H. Choi; J.W. Han; T. Park; S. KimK. Yong, Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14%. Applied Catalysis B: Environmental, 2021, 297, 120434.
82. Liu, Y.; N. Ran; R. Ge; J. Liu; W. Li; Y. Chen; L. FengR. Che, Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 131642.
83. Zhao, G.; K. Rui; S.X. DouW. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Advanced Functional Materials, 2018, 28(43), 1803291.
84. Zhang, H.; A.W. Maijenburg; X. Li; S.L. SchweizerR.B. Wehrspohn, Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Advanced functional materials, 2020, 30(34), 2003261.
85. Li, X.; R. Shen; S. Ma; X. ChenJ. Xie, Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.
86. Sambyal, S.; R. Sharma; P. Mandyal; S. Balou; P. Gholami; B. Fang; P. ShandilyaA. Priye, Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion. Journal of Environmental Chemical Engineering, 2023, 11(2), 109517.
87. An, L.; J. Feng; Y. Zhang; R. Wang; H. Liu; G.C. Wang; F. ChengP. Xi, Epitaxial heterogeneous interfaces on N‐NiMoO4/NiS2 nanowires/nanosheets to boost hydrogen and oxygen production for overall water splitting. Advanced Functional Materials, 2019, 29(1), 1805298.
88. Marschall, R., Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17), 2421-2440.
89. Soni, V.; P. Singh; A.A.P. Khan; A. Singh; A.K. Nadda; C.M. Hussain; Q. Van Le; S. Rizevsky; V.-H. NguyenP. Raizada, Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. Journal of Nanostructure in Chemistry, 2022, 1-38.
90. Gu, M.; L. Jiang; S. Zhao; H. Wang; M. Lin; X. Deng; X. Huang; A. Gao; X. LiuP. Sun, Deciphering the space charge effect of the p–n junction between copper sulfides and molybdenum selenides for efficient water electrolysis in a wide pH range. ACS nano, 2022, 16(9), 15425-15439.
91. Cao, Y.; A. El-Shafay; A.H. Mohammed; S.F. Almojil; A.I. AlmohanaA.F. Alali, Controlling the charge carriers recombination kinetics on the g-C3N4-BiSI nn heterojunction with efficient photocatalytic activity in N2 fixation and degradation of MB and phenol. Advanced Powder Technology, 2022, 33(4), 103513.
92. Lv, X.; Z. Xiao; H. Wang; X. Wang; L. Shan; F. Wang; C. Wei; X. TangY. Chen, In situ construction of Co/N/C-based heterojunction on biomass-derived hierarchical porous carbon with stable active sites using a Co-N protective strategy for high-efficiency ORR, OER and HER trifunctional electrocatalysts. Journal of Energy Chemistry, 2021, 54, 626-638.
93. Rajeshwar, K., Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encyclopedia of electrochemistry, 2007, 6, 1-53.
94. Yuan, G.; J. Bai; L. Zhang; X. ChenL. Ren, The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Applied Catalysis B: Environmental, 2021, 284, 119693.
95. Yao, N.; R. Meng; F. Wu; Z. Fan; G. ChengW. Luo, Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.
96. Li, C.-F.; J.-W. Zhao; L.-J. Xie; J.-Q. WuG.-R. Li, Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Applied Catalysis B: Environmental, 2021, 291, 119987.
97. Chen, T.; B. Li; K. Song; C. Wang; J. Ding; E. Liu; B. ChenF. He, Defect-activated surface reconstruction: mechanism for triggering the oxygen evolution reaction activity of NiFe phosphide. Journal of Materials Chemistry A, 2022, 10(42), 22750-22759.
98. Fang, X.; C. Chen; H. Jia; Y.N. Li; J. Liu; Y.S. Wang; Y.L. Song; T. DuL.Y. Liu, Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. Journal of Industrial and Engineering Chemistry, 2021, 95, 16-27.
99. Wan, H.; F. Chen; W. Ma; X. LiuR. Ma, Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale, 2020, 12(42), 21479-21496.
100. Zhang, X.; Y. Zhao; Y. Zhao; R. Shi; G.I. WaterhouseT. Zhang, A simple synthetic strategy toward defect‐rich porous monolayer NiFe‐layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Advanced Energy Materials, 2019, 9(24), 1900881.
101. Gao, Z.W.; T. Ma; X.M. Chen; H. Liu; L. Cui; S.Z. Qiao; J. YangX.W. Du, Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation. Small, 2018, 14(17), 1800195.
102. Long, X.; Z. Wang; S. Xiao; Y. AnS. Yang, Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials today, 2016, 19(4), 213-226.
103. Zhou, Z.; Y.-n. Xie; L. Sun; Z. Wang; W. Wang; L. Jiang; X. Tao; L. Li; X.-H. LiG. Zhao, Strain-induced in situ formation of NiOOH species on CoCo bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Applied Catalysis B: Environmental, 2022, 305, 121072.
104. Feng, Y.; K. Yang; R.L. SmithX. Qi, Metal sulfide enhanced metal–organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Journal of Materials Chemistry A, 2023, 11(12), 6375-6383.
105. Perini, N.; C. Hessel; J.L. Bott-Neto; C.T. Pires; P.S. FernandezE. Sitta, Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. Journal of Solid State Electrochemistry, 2021, 25, 1101-1110.
106. Rani, M.A.A.B.A.; N.A. KarimS.K. Kamarudin, Microporous and mesoporous structure catalysts for the production of 5‐hydroxymethylfurfural (5‐HMF). International Journal of Energy Research, 2022, 46(2), 577-633.
107. Eerhart, A.J.J.E.; A.P.C. FaaijM.K. Patel, Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012, 5(4).
108. Amarasekara, A.S.; L. H. Nguyen; N.C. OkorieS. M. Jamal, A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis. Green Chemistry, 2017, 19(6), 1570-1575.
109. Das, B.K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021, 622.
110. Sajid, M.; X. ZhaoD. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20(24), 5427-5453.
111. Swan, S.H., Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res, 2008, 108(2), 177-84.
112. Ball, G.L.; C.J. McLellanV.S. Bhat, Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: A category approach. Crit Rev Toxicol, 2012, 42(1), 28-67.
113. Das, B.K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021, 622, 118237.
114. Yang, Y.T. Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23(12), 4228-4254.
115. Guo, L.; X. Zhang; L. Gan; L. Pan; C. Shi; Z.F. Huang; X. ZhangJ.J. Zou, Advances in Selective Electrochemical Oxidation of 5‐Hydroxymethylfurfural to Produce High‐Value Chemicals. Advanced Science, 2023, 10(4), 2205540.
116. Zhou, C.; W. Shi; X. Wan; Y. Meng; Y. Yao; Z. Guo; Y. Dai; C. WangY. Yang, Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst. Catalysis Today, 2019, 330, 92-100.
117. Zhang, M.; Y. Liu; B. Liu; Z. Chen; H. XuK. Yan, Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. Acs Catalysis, 2020, 10(9), 5179-5189.
118. Du, L.; Y. SunB. You, Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports: Energy, 2021, 1(1), 100004.
119. Huang, C.; Y. Huang; C. Liu; Y. YuB. Zhang, Integrating hydrogen production with aqueous selective semi‐dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angewandte Chemie, 2019, 131(35), 12142-12145.
120. Heidary, N.N. Kornienko, Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy. Chemical science, 2020, 11(7), 1798-1806.
121. Zhang, P.; X. Sheng; X. Chen; Z. Fang; J. Jiang; M. Wang; F. Li; L. Fan; Y. RenB. Zhang, Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angewandte Chemie, 2019, 131(27), 9253-9257.
122. Zhou, Y.; Y. ShenH. Li, Mechanistic study on electro-oxidation of 5-hydroxymethylfurfural and water molecules via operando surface-enhanced Raman spectroscopy coupled with an Fe3+ probe. Applied Catalysis B: Environmental, 2022, 317, 121776.
123. Wang, H.; Y. ZhouS. Tao, CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Applied Catalysis B: Environmental, 2022, 315, 121588.
124. Yang, G.; Y. Jiao; H. Yan; C. TianH. Fu, Electronic Structure Modulation of Non‐Noble‐Metal‐Based Catalysts for Biomass Electrooxidation Reactions. Small Structures, 2021, 2(10), 2100095.
125. Song, Y.; W. Xie; Y. Song; H. Li; S. Li; S. Jiang; J.Y. LeeM. Shao, Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation. Applied Catalysis B: Environmental, 2022, 312, 121400.
126. Wang, H.; C. Li; J. An; Y. ZhuangS. Tao, Surface reconstruction of NiCoP for enhanced biomass upgrading. Journal of Materials Chemistry A, 2021, 9(34), 18421-18430.
127. Zhao, Y.; M. Cai; J. Xian; Y. SunG. Li, Recent advances in the electrocatalytic synthesis of 2, 5-furandicarboxylic acid from 5-(hydroxymethyl) furfural. Journal of Materials Chemistry A, 2021, 9(36), 20164-20183.
128. He, X.; J. Cai; Q. Chen; J. Liu; Q. Zhong; J. Liu; Z. Sun; D. Qu; Y. LuX. Li, Promotion effect of intercalated citrate anion on the reconstruction of NiFe LDH for oxygen evolution reaction. New Journal of Chemistry, 2023, 47(42), 19484-19493.
129. Song, Y.; K. Ji; H. DuanM. Shao. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. in Exploration. 2021, Wiley Online Library.
130. Liu, W.-J.; L. Dang; Z. Xu; H.-Q. Yu; S. JinG.W. Huber, Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. Acs Catalysis, 2018, 8(6), 5533-5541.
131. Musella, E.; I. Gualandi; E. Scavetta; A. Rivalta; E. Venuti; M. Christian; V. Morandi; A. Mullaliu; M. GiorgettiD. Tonelli, Newly developed electrochemical synthesis of Co-based layered double hydroxides: toward noble metal-free electro-catalysis. Journal of Materials Chemistry A, 2019, 7(18), 11241-11249.
132. Qi, Y.-F.; K.-Y. Wang; Y. Sun; J. WangC. Wang, Engineering the electronic structure of NiFe layered double hydroxide nanosheet array by implanting cationic vacancies for efficient electrochemical conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ACS Sustainable Chemistry & Engineering, 2021, 10(1), 645-654.
133. Huang, Y.; X. Pang; J. Cui; Z. Huang; G. Wang; H. Zhao; H. BaiW. Fan, Strengthening the stability of the reconstructed NiOOH phase for 5-hydroxymethylfurfural oxidation. Inorganic Chemistry, 2023, 62(16), 6499-6509.
134. Liu, B.; Z. Zheng; Y. Liu; M. Zhang; Y. Wang; Y. WanK. Yan, Efficient electrooxidation of biomass-derived aldehydes over ultrathin NiV-layered double hydroxides films. Journal of Energy Chemistry, 2023, 78, 412-421.
135. Jiang, X.; W. Li; Y. Liu; L. Zhao; Z. Chen; L. Zhang; Y. ZhangS. Yun, Electrocatalytic oxidation of 5‐hydroxymethylfurfural for sustainable 2, 5‐furandicarboxylic acid production—From mechanism to catalysts design. SusMat, 2023, 3(1), 21-43.
136. Ge, R.; J. LiH. Duan, Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Science China Materials, 2022, 65(12), 3273-3301.
137. Lu, Y.; C.-L. Dong; Y.-C. Huang; Y. Zou; Y. Liu; Y. Li; N. Zhang; W. Chen; L. ZhouH. Lin, Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Science China Chemistry, 2020, 63, 980-986.
138. Zhou, M.; J. ChenY. Li, CoP nanorods anchored on Ni2P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catalysis Science & Technology, 2022, 12(13), 4288-4297.
139. Zhao, G.; G. Hai; P. Zhou; Z. Liu; Y. Zhang; B. Peng; W. Xia; X. HuangG. Wang, Electrochemical oxidation of 5‐hydroxymethylfurfural on CeO2‐modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Advanced Functional Materials, 2023, 33(14), 2213170.
140. Li, L.; C. Sun; B. Shang; Q. Li; J. Lei; N. LiF. Pan, Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. Journal of materials chemistry A, 2019, 7(30), 18003-18011.
141. Cha, H.G.K.-S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature chemistry, 2015, 7(4), 328-333.
142. Du, C.; L. Yang; F. Yang; G. ChengW. Luo, Nest-like NiCoP for highly efficient overall water splitting. Acs Catalysis, 2017, 7(6), 4131-4137.
143. Li, Y.; H. Zhang; M. Jiang; Y. Kuang; X. SunX. Duan, Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9, 2251-2259.
144. Cai, Z.; A. Wu; H. Yan; C. Tian; D. GuoH. Fu, Zn‐Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Energy Technology, 2020, 8(1), 1901079.
145. Wang, J.-G.; H. Liu; H. Liu; Z. FuD. Nan, Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries. Chemical Engineering Journal, 2017, 328, 591-598.
146. Ji, X.; R. Zhang; X. Shi; A.M. Asiri; B. ZhengX. Sun, Fabrication of hierarchical CoP nanosheet@ microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale, 2018, 10(17), 7941-7945.
147. Zhang, H.; X. Li; A. Hähnel; V. Naumann; C. Lin; S. Azimi; S.L. Schweizer; A.W. MaijenburgR.B. Wehrspohn, Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Advanced Functional Materials, 2018, 28(14), 1706847.
148. Li, C.; M. Wei; D.G. EvansX. Duan, Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media. Catalysis Today, 2015, 247, 163-169.
149. Yu, J.; Q. Wang; D. O′HareL. Sun, Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19), 5950-5974.
150. Lv, L.; Z. Yang; K. Chen; C. WangY. Xiong, Electrocatalysts: 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application (Adv. Energy Mater. 17/2019). Advanced Energy Materials, 2019, 9(17), 1970057.
151. Chen, G.; H. Wan; W. Ma; N. Zhang; Y. Cao; X. Liu; J. WangR. Ma, Layered metal hydroxides and their derivatives: controllable synthesis, chemical exfoliation, and electrocatalytic applications. Advanced Energy Materials, 2020, 10(11), 1902535.
152. Zhang, M.; Y. Chen; D. YangJ. Li, High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages. Journal of Energy Storage, 2020, 29, 101363.
153. Feng, L.; A. Li; Y. Li; J. Liu; L. Wang; L. Huang; Y. WangX. Ge, A highly active CoFe layered double hydroxide for water splitting. ChemPlusChem, 2017, 82(3), 483-488.
154. Nikam, R.D.; A.-Y. Lu; P.A. Sonawane; U.R. Kumar; K. Yadav; L.-J. LiY.-T. Chen, Three-dimensional heterostructures of MoS2 nanosheets on conducting MoO2 as an efficient electrocatalyst to enhance hydrogen evolution reaction. ACS applied materials & interfaces, 2015, 7(41), 23328-23335.
155. Yang, L.; W. Zhou; D. Hou; K. Zhou; G. Li; Z. Tang; L. LiS. Chen, Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale, 2015, 7(12), 5203-5208.
156. Wang, D.-Y.; M. Gong; H.-L. Chou; C.-J. Pan; H.-A. Chen; Y. Wu; M.-C. Lin; M. Guan; J. YangC.-W. Chen, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 2015, 137(4), 1587-1592.
157. Yin, S.; W. Tu; Y. Sheng; Y. Du; M. Kraft; A. BorgnaR. Xu, A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron‐Layered Double Hydroxide and Carbon Nanodomains. Advanced Materials, 2018, 30(5), 1705106.
158. Zhang, Y.; M. Yang; X. Jiang; W. LuY. Xing, Self-supported hierarchical CoFe-LDH/NiCo2O4/NF core-shell nanowire arrays as an effective electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 818, 153345.
159. Sivanantham, A.; P. GanesanS. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Advanced Functional Materials, 2016, 26(26), 4661-4672.
160. Zheng, L.; Y. Zhao; P. Xu; Z. Lv; X. ShiH. Zheng, Biomass upgrading coupled with H2 production via a nonprecious and versatile Cu-doped nickel nanotube electrocatalyst. Journal of Materials Chemistry A, 2022, 10(18), 10181-10191.
161. Guo, M.; X. Lu; J. Xiong; R. Zhang; X. Li; Y. Qiao; N. JiZ. Yu, Alloy‐driven efficient electrocatalytic oxidation of biomass‐derived 5‐hydroxymethylfurfural towards 2, 5‐furandicarboxylic acid: a review. ChemSusChem, 2022, 15(17), e202201074.
162. Wang, X.; Y. Tuo; Y. Zhou; D. Wang; S. WangJ. Zhang, Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chemical Engineering Journal, 2021, 403, 126297. |