參考文獻 |
[1] Biomaterials Market Size, Share, & Growth Analysis Report By Product (Metallic, Ceramics, Natural, and Polymers) By Application (Ophthalmology, Cardiovascular, Dental, Wound Healing, Orthopedic, Plastic Surgery, Tissue Engineering, Neurology, and Others) - Global Industry Analysis, Trends, Regional Outlook and Forecasts 2023 - 2032.
[2] C.a. ein, 生物醫用材料, 2021 (accessed 0417 2024).
[3] D.F. Williams, Definitions In Biomaterials: Proceedings Of A Consensus Conference Of The European Society For Biomaterials, Chester, England, March 3-5, 1986, (1987).
[4] L. Ghasemi-Mobarakeh, D. Kolahreez, S. Ramakrishna, D. Williams, Key Terminology In Biomaterials And Biocompatibility, Current Opinion In Biomedical Engineering 10 (2019) 45-50.
[5] E. Marin, F. Boschetto, G. Pezzotti, Biomaterials And Biocompatibility: An Historical Overview, Journal Of Biomedical Materials Research Part A 108(8) (2020) 1617-1633.
[6] 許元銘, 生醫材料:導言, 2014 (accessed 0505 2024).
[7] 黃世偉, 石化與生活:高分子材料與醫療器材, 2000 (accessed 0506 2024).
[8] Y.-C. Chiang, Y. Chang, A. Higuchi, W.-Y. Chen, R.-C. Ruaan, Sulfobetaine-Grafted Poly(Vinylidene Fluoride) Ultrafiltration Membranes Exhibit Excellent Antifouling Property, Journal Of Membrane Science 339(1) (2009) 151-159.
[9] D.J. Apple, J. Sims, Harold Ridley And The Invention Of The Intraocular Lens, Survey Of Ophthalmology 40(4) (1996) 279-292.
[10] E.A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science 74(1) (1998) 69-117.
[11] M.C. Sin, S.H. Chen, Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes, Polymer Journal 46(8) (2014) 436-443.
[12] J.P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl Methacrylate (HEMA) - Chemical-Properties And Applications In Biomedical Fields, J. Macromol. Sci.-Rev. Macromol. Chem. Phys. C32(1) (1992) 1-34.
[13] J. Song, E. Saiz, C.R. Bertozzi, A New Approach To Mineralization Of Biocompatible Hydrogel Scaffolds: An Efficient Process Toward 3-Dimensional Bonelike Composites, J. Am. Chem. Soc. 125(5) (2003) 1236-1243.
[14] A. Kidane, J.M. Szabocsik, K. Park, Accelerated Study On Lysozyme Deposition On poly(HEMA) Contact Lenses, Biomaterials 19(22) (1998) 2051-2055.
[15] C.S. Brazel, N.A. Peppas, Mechanisms Of Solute And Drug Transport In Relaxing, Swellable, Hydrophilic Glassy Polymers, Polymer 40(12) (1999) 3383-3398.
[16] N.A. Peppas, Hydrogels And Drug Delivery, Current Opinion In Colloid & Interface Science 2(5) (1997) 531-537.
[17] B. Mrabet, M.N. Nguyen, A. Majbri, S. Mahouche, M. Turmine, A. Bakhrouf, M.M. Chehimi, Anti-Fouling Poly(2-Hydoxyethyl Methacrylate) Surface Coatings With Specific Bacteria Recognition Capabilities, Surface Science 603(16) (2009) 2422-2429.
[18] C. Yoshikawa, A. Goto, Y. Tsujii, T. Fukuda, T. Kimura, K. Yamamoto, A. Kishida, Protein Repellency Of Well-Defined, Concentrated Poly(2-Hydroxyethyl Methacrylate) Brushes By The Size-Exclusion Effect, Macromolecules 39(6) (2006) 2284-2290.
[19] H. Ma, J. Hyun, P. Stiller, A. Chilkoti, “Non-Fouling” Oligo(Ethylene Glycol)- Functionalized Polymer Brushes Synthesized By Surface-Initiated Atom Transfer Radical Polymerization, Advanced Materials 16(4) (2004) 338-341.
[20] J. Zheng, L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen, S. Jiang, Strong Repulsive Forces Between Protein And Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study, Biophysical Journal 89(1) (2005) 158-166.
[21] Z. Zhang, M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner, S. Jiang, Blood Compatibility Of Surfaces With Superlow Protein Adsorption, Biomaterials 29(32) (2008) 4285-4291.
[22] J. Zheng, L.Y. Li, S.F. Chen, S.Y. Jiang, Molecular Simulation Study Of Water Interactions With Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers, Langmuir 20(20) (2004) 8931-8938.
[23] Y.Y. Luk, M. Kato, M. Mrksich, Self-Assembled Monolayers Of Alkanethiolates Presenting Mannitol Groups Are Inert To Protein Adsorption And Cell Attachment, Langmuir 16(24) (2000) 9604-9608.
[24] M.C. Shen, L. Martinson, M.S. Wagner, D.G. Castner, B.D. Ratner, T.A. Horbett, Peo-Like Plasma Polymerized Tetraglyme Surface Interactions With Leukocytes And Proteins: In Vitro And In Vivo Studies, J. Biomater. Sci.-Polym. Ed. 13(4) (2002) 367-390.
[25] E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A Survey Of Structure-Property Relationships Of Surfaces That Resist The Adsorption Of Protein, Langmuir 17(18) (2001) 5605-5620.
[26] E.J. Campbell, V. O′byrne, P.W. Stratford, I. Quirk, T.A. Vick, M.C. Wiles, Y.P. Yianni, Biocompatible Surfaces Using Methacryloylphosphorylcholine Laurylmethacrylate Copolymer, Asaio J 40(3) (1994) M853-7.
[27] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, Why Do Phospholipid Polymers Reduce Protein Adsorption?, J Biomed Mater Res 39(2) (1998) 323-30.
[28] A.L. Lewis, Phosphorylcholine-Based Polymers And Their Use In The Prevention Of Biofouling, Colloid Surf. B-Biointerfaces 18(3-4) (2000) 261-275.
[29] Y. Kadoma, N. Nakabayashi, E. Masuhara, J. Yamauchi, Synthesis And Hemolysis Test Of The Polymer Containing Phosphorylcholine Groups, Kobunshi Ronbunshu 35 (1978) 423-427.
[30] K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, N. Nakabayashi, Reduced Thrombogenicity Of Polymers Having Phospholipid Polar Groups, J Biomed Mater Res 24(8) (1990) 1069-77.
[31] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation Of Phospholipid Polymers And Their Properties As Polymer Hydrogel Membranes, Polymer Journal 22(5) (1990) 355-360.
[32] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, N. Nakabayashi, Hemocompatibility Of Human Whole Blood On Polymers With A Phospholipid Polar Group And Its Mechanism, J Biomed Mater Res 26(12) (1992) 1543-52.
[33] J. Yu, N.M.K. Lamba, J.M. Courtney, T.L. Whateley, J.D.S. Gaylor, G.D.O. Lowe, K. Ishihara, N. Nakabayashi, Polymeric Biomaterials: Influence Of Phosphorylcholine Polar Groups On Protein Adsorption And Complement Activation, The International Journal Of Artificial Organs 17(9) (1994) 499-504.
[34] A.L. Lewis, P.D. Hughes, L.C. Kirkwood, S.W. Leppard, R.P. Redman, L.A. Tolhurst, P.W. Stratford, Synthesis And Characterisation Of Phosphorylcholine-Based Polymers Useful For Coating Blood Filtration Devices, Biomaterials 21(18) (2000) 1847-59.
[35] Y. Chang, S.F. Chen, Z. Zhang, S.Y. Jiang, Highly Protein-Resistant Coatings From Well-Defined Diblock Copolymers Containing Sulfobetaines, Langmuir 22(5) (2006) 2222-2226.
[36] Z. Zhang, S.F. Chen, Y. Chang, S.Y. Jiang, Surface Grafted Sulfobetaine Polymers Via Atom Transfer Radical Polymerization As Superlow Fouling Coatings, J. Phys. Chem. B 110(22) (2006) 10799-10804.
[37] J. Ladd, Z. Zhang, S. Chen, J.C. Hower, S. Jiang, Zwitterionic Polymers Exhibiting High Resistance To Nonspecific Protein Adsorption From Human Serum And Plasma, Biomacromolecules 9(5) (2008) 1357-1361.
[38] H. Vaisocherová, W. Yang, Z. Zhang, Z.Q. Cao, G. Cheng, M. Piliarik, J. Homola, S.Y. Jiang, Ultralow Fouling And Functionalizable Surface Chemistry Based On A Zwitterionic Polymer Enabling Sensitive And Specific Protein Detection In Undiluted Blood Plasma, Anal. Chem. 80(20) (2008) 7894-7901.
[39] G. Cheng, G.Z. Li, H. Xue, S.F. Chen, J.D. Bryers, S.Y. Jiang, Zwitterionic Carboxybetaine Polymer Surfaces And Their Resistance To Long-Term Biofilm Formation, Biomaterials 30(28) (2009) 5234-5240.
[40] W.F. Lin, G.L. Ma, J. Wu, S.F. Chen, Different In Vitro And In Vivo Behaviors Between Poly(Carboxybetaine Methacrylate) And Poly(Sulfobetaine Methacrylate), Colloid Surf. B-Biointerfaces 146 (2016) 888-894.
[41] C.Y. Chiu, Y. Chang, T.H. Liu, Y.N. Chou, T.J. Yen, Convergent Charge Interval Spacing Of Zwitterionic 4-Vinylpyridine Carboxybetaine Structures For Superior Blood-Inert Regulation In Amphiphilic Phases, J. Mat. Chem. B 9(40) (2021) 8437-8450.
[42] Y. Chang, Designs Of Zwitterionic Polymers, J. Polym. Res. 29(7) (2022) 19.
[43] R.G. Chapman, E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, G.M. Whitesides, Surveying For Surfaces That Resist The Adsorption Of Proteins, J. Am. Chem. Soc. 122(34) (2000) 8303-8304.
[44] H. Srivastava, H. Lade, D. Paul, G. Arthanareeswaran, J.H. Kweon, Styrene-Based Copolymer For Polymer Membrane Modifications, Appl. Sci.-Basel 6(6) (2016) 12.
[45] H.J. Shao, F.J. Wei, D.J. Luo, K.Z. Zhang, S.M. Liang, Q. Tian, S.H. Qin, J. Yu, Improving The Antifouling Property Of Polypropylene Hollow Fiber Membranes By In Situ Ultrasonic Wave-Assisted Polymerization Of Styrene And Maleic Anhydride, Polym. Eng. Sci. 59 (2019) E51-E58.
[46] W.-H. Lin, C.-Y. Lin, C.-C. Tsai, J. Yu, W.-B. Tsai, Spheroid Formation Of Human Adipose-Derived Stem Cells On Environmentally Friendly BMA/SBMA/HEMA Copolymers-Coated Anti-Adhesive Surface, Bulletin Of The Chemical Society Of Japan 91 (2018).
[47] H.N. Aini, I. Maggay, Y. Chang, A. Venault, A Green Stable Antifouling Pegylated Pvdf Membrane Prepared By Vapor-Induced Phase Separation, Membranes 12(12) (2022) 19.
[48] A. Venault, R.J. Zhou, T.A. Galeta, Y. Chang, Engineering Sterilization-Resistant And Fouling-Resistant Porous Membranes By The Vapor-Induced Phase Separation Process Using A Sulfobetaine Methacrylamide Amphiphilic Derivative, Journal Of Membrane Science 658 (2022) 16.
[49] G.V. Dizon, Y.S. Lee, A. Venault, I.V. Maggay, Y. Chang, Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process, Journal of Membrane Science 618 (2021) 15.
[50] A. Venault, Y. Chang, Designs of Zwitterionic Interfaces and Membranes, Langmuir 35(5) (2019) 1714-1726.
[51] G.V. Dizon, P.M.T. Fowler, A. Venault, C.C. Yeh, L.L. Tayo, A.R. Caparanga, P. Aimar, Y. Chang, Dopamine-Induced Surface Zwitterionization Of Expanded Poly(Tetrafluoroethylene) For Constructing Thermostable Bioinert Materials, ACS Biomater. Sci. Eng. 8(4) (2022) 1532-1543.
[52] D.W. Ma, J.M. Zhou, Z.G. Wang, Y. Wang, Block Copolymer Ultrafiltration Membranes By Spray Coating Coupled With Selective Swelling, Journal Of Membrane Science 598 (2020) 7.
[53] D.J. Miller, D.R. Dreyer, C.W. Bielawski, D.R. Paul, B.D. Freeman, Surface Modification Of Water Purification Membranes, Angew. Chem.-Int. Edit. 56(17) (2017) 4662-4711.
[54] A.L. Ahmad, A.A. Abdulkarim, B.S. Ooi, S. Ismail, Recent Development In Additives Modifications Of Polyethersulfone Membrane For Flux Enhancement, Chem. Eng. J. 223 (2013) 246-267.
[55] Y. Oshiba, Y. Harada, T. Yamaguchi, Precise Surface Modification Of Porous Membranes With Well-Defined Zwitterionic Polymer For Antifouling Applications, Journal Of Membrane Science 619 (2021) 10.
[56] W. Ma, M.S. Rahaman, H. Therien-Aubin, Controlling Biofouling Of Reverse Osmosis Membranes Through Surface Modification Via Grafting Patterned Polymer Brushes, J. Water Reuse Desalin. 5(3) (2015) 326-334.
[57] Q.F. Zhang, S.B. Zhang, L. Dai, X.S. Chen, Novel Zwitterionic Poly(Arylene Ether Sulfone)S As Antifouling Membrane Material, Journal Of Membrane Science 349(1-2) (2010) 217-224.
[58] W. Khongnakorn, W. Bootluck, P. Jutaporn, Surface Modification Of Fo Membrane By Plasma-Grafting Polymerization To Minimize Protein Fouling, J. Water Process. Eng. 38 (2020) 11.
[59] S.H. Chen, Y. Chang, K.R. Lee, T.C. Wei, A. Higuchi, F.M. Ho, C.C. Tsou, H.T. Ho, J.Y. Lai, Hemocompatible Control Of Sulfobetaine-Grafted Polypropylene Fibrous Membranes In Human Whole Blood Via Plasma-Induced Surface Zwitterionization, Langmuir 28(51) (2012) 17733-17742.
[60] Y. Chang, W.J. Chang, Y.J. Shih, T.C. Wei, G.H. Hsiue, Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization, ACS Appl. Mater. Interfaces 3(4) (2011) 1228-1237.
[61] Y.J. Shih, Y. Chang, D. Quemener, H.S. Yang, J.F. Jhong, F.M. Ho, A. Higuchi, Y. Chang, Hemocompatibility of Polyampholyte Copolymers with Well-Defined Charge Bias in Human Blood, Langmuir 30(22) (2014) 6489-6496.
[62] A. Venault, C.S. Liou, L.C. Yeh, J.F. Jhong, J. Huang, Y. Chang, Turning Expanded Poly(Tetrafluoroethylene) Membranes Into Potential Skin Wound Dressings By Grafting A Bioinert Epoxylated PEGMA Copolymer, ACS Biomater. Sci. Eng. 3(12) (2017) 3338-3350.
[63] C.J. Huang, Y.C. Chang, In Situ Surface Tailoring With Zwitterionic Carboxybetaine Moieties On Self-Assembled Thin Film For Antifouling Biointerfaces, Materials 7(1) (2014) 130-142.
[64] M.C. Sin, P.T. Lou, C.H. Cho, A. Chinnathambi, S.A. Alharbi, Y. Chang, An Intuitive Thermal-Induced Surface Zwitterionization For Versatile, Well-Controlled Haemocompatible Organic And Inorganic Materials, Colloid Surf. B-Biointerfaces 127 (2015) 54-64.
[65] R. Lalani, L.Y. Liu, Synthesis, Characterization, And Electrospinning Of Zwitterionic Poly(Sulfobetaine Methacrylate), Polymer 52(23) (2011) 5344-5354.
[66] J.A. Covas, P. Costa, A Miniature Extrusion Line For Small Scale Processing Studies, Polym. Test 23(7) (2004) 763-773.
[67] D.A. Zumbrunnen, C. Chhibber, Morphology Development In Polymer Blends Produced By Chaotic Mixing At Various Compositions, Polymer 43(11) (2002) 3267-3277.
[68] Y. Son, Development Of A Novel Microcompounder For Polymer Blends And Nanocomposite, J. Appl. Polym. Sci. 112(2) (2009) 609-619.
[69] A.M. Blackwood, J. Inoue, G.A. Sagnella, M.A. Miller, N.D. Markandu, G.A. Macgregor, Are The Changes In Urinary Kallikrein Excretion On Altering Sodium-Intake An Index Of Salt Sensitivity, J. Hum. Hypertens. 8(8) (1994) 619-621.
[70] C.E. Scott, C.W. Macosko, The Recirculating Screw Mixer - A New Small-Volume Mixer For The Polymer Laboratory, Polym. Eng. Sci. 33(16) (1993) 1065-1078.
[71] D. Van Zuilichem, W. Stolp, L. Janssen, Engineering Aspects Of Single-And Twin-Screw Extrusion-Cooking Of Biopolymers, Journal Of Food Engineering 2(3) (1983) 157-175.
[72] R. Chokshi, H. Zia, Hot-Melt Extrusion Technique: A Review, Iranian Journal Of Pharmaceutical Research 3(1) (2004) 3-16.
[73] S. Bonham, M. Misra, A.K. Mohanty, Effect of Co-Rotation and Counter-Rotation Extrusion Processing on the Thermal and Mechanical Properties, and Morphology of Plasticized Soy Protein Isolate and Poly(butylene succinate) Blends, Macromol. Mater. Eng. 296(9) (2011) 788-801.
[74] C. Martin, Twin Screw Extruders As Continuous Mixers For Thermal Processing: A Technical And Historical Perspective, Aaps Pharmscitech 17(1) (2016) 3-19.
[75] W.R. Fittig, Studies On Some Nitrogen-Containing Organic Compounds, Berichte Der Deutschen Chemischen Gesellschaft 2(1) (1869) 53-55.
[76] T.R. Felthouse, J.C. Burnett, B. Horrell, M.J. Mummey, Y.J. Kuo, Maleic Anhydride, Maleic Acid, And Fumaric Acid, Kirk‐Othmer Encyclopedia Of Chemical Technology (2000).
[77] O.M. Musa, Handbook Of Maleic Anhydride Based Materials, Springer 10 (2016) 978-3.
[78] A.U. Birnin-Yauri, N.A. Ibrahim, N. Zainuddin, K. Abdan, Y.Y. Then, B.W. Chieng, Effect Of Maleic Anhydride-Modified Poly (Lactic Acid) On The Properties Of Its Hybrid Fiber Biocomposites, Polymers 9(5) (2017) 165.
[79] M.P. Bernardo, B.C. Rodrigues, A. Sechi, L.H. Mattoso, Grafting Of Maleic Anhydride On Poly (Lactic Acid)/Hydroxyapatite Composites Augments Their Ability To Support Osteogenic Differentiation Of Human Mesenchymal Stem Cells, Journal Of Biomaterials Applications 37(7) (2023) 1286-1299.
[80] H. Nitz, H. Semke, R. Landers, R. Mülhaupt, Reactive Extrusion Of Polycaprolactone Compounds Containing Wood Flour And Lignin, J. Appl. Polym. Sci. 81(8) (2001) 1972-1984.
[81] T. Heinze, T. Liebert, Unconventional Methods In Cellulose Functionalization, Progress In Polymer Science 26(9) (2001) 1689-1762.
[82] G. Ye, Z. Li, B. Chen, X. Bai, X. Chen, Y. Hu, Performance Of Polylactic Acid/Polycaprolactone/Microcrystalline Cellulose Biocomposites With Different Filler Contents And Maleic Anhydride Compatibilization, Polymer Composites 43(8) (2022) 5179-5188.
[83] G. Singh, S. Singh, C. Prakash, R. Kumar, R. Kumar, S. Ramakrishna, Characterization Of Three‐Dimensional Printed Thermal‐Stimulus Polylactic Acid‐Hydroxyapatite‐Based Shape Memory Scaffolds, Polymer Composites 41(9) (2020) 3871-3891.
[84] S.M. Henry, M.E. El-Sayed, C.M. Pirie, A.S. Hoffman, P.S. Stayton, Ph-Responsive Poly (Styrene-Alt-Maleic Anhydride) Alkylamide Copolymers For Intracellular Drug Delivery, Biomacromolecules 7(8) (2006) 2407-2414.
[85] A. Setiawan, F. Aulia, Blending Of Low-Density Polyethylene And Poly-Lactic Acid With Maleic Anhydride As A Compatibilizer For Better Environmentally Food-Packaging Material, Iop Conference Series: Materials Science And Engineering, Iop Publishing, 2017, P. 012087.
[86] A. Venault, W.Y. Huang, S.W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y. Chang, Zwitterionic Modifications For Enhancing The Antifouling Properties Of Poly(Vinylidene Fluoride) Membranes, Langmuir 32(16) (2016) 4113-4124.
[87] C.C. Lien, L.C. Yeh, A. Venault, S.C. Tsai, C.H. Hsu, G.V. Dizon, Y.T. Huang, A. Higuchi, Y. Chang, Controlling The Zwitterionization Degree Of Alternate Copolymers For Minimizing Biofouling On Pvdf Membranes, Journal Of Membrane Science 565 (2018) 119-130.
[88] C.H. Hsu, A. Venault, Y. Chang, Facile Zwitterionization Of Polyvinylidene Fluoride Microfiltration Membranes For Biofouling Mitigation, Journal Of Membrane Science 648 (2022) 15.
[89] S. Bag, S. Ghosh, S. Paul, M.E.H. Khan, P.Y. De, Styrene-Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances And Future Perspectives, Macromol. Rapid Commun. 42(23) (2021) 26.
[90] E.R. Moore, PROPERTIES OF STYRENE MALEIC-ANHYDRIDE COPOLYMERS, Industrial & Engineering Chemistry Product Research And Development 25(2) (1986) 315-321.
[91] T. Otsu, A. Matsumoto, T. Kubota, Increase In Thermal-Stability Of Vinyl-Polymers Through Radical Copolymerization With N-Cyclohexylmaleimide, Polym. Int. 25(3) (1991) 179-184.
[92] M. Bezdek, F. Hrabak, N-(Monohalogenphenyl) Maleimides And Their Copolymers With Styrene And Butadiene, J. Polym. Sci. Pol. Chem. 17(9) (1979) 2857-2864.
[93] W.Y. Chiang, J.Y. Lu, Preparation And Properties Of New Photo-Functional Polymers .1. N-Substituted Maleimide Styrene Copolymers Containing Pendant Para-Nitrobenzyl Groups, Macromol. Chem. Phys. 195(2) (1994) 591-600.
[94] T. Oishi, Y. Otsubo, M. Fujimoto, Synthesis And Polymerization Of N-(Cholesteroxycarbonylmethyl)Maleimide, Polymer Journal 24(6) (1992) 527-537.
[95] X.C. Yin, H.D.H. Stöver, Thermosensitive And pH-Sensitive Polymers Based On Maleic Anhydride Copolymers, Macromolecules 35(27) (2002) 10178-10181.
[96] J. Lu, S.G. Kim, S. Lee, I.K. Oh, A Biomimetic Actuator Based On An Ionic Networking Membrane Of Poly(Styrene-Alt-Maleimide)-Incorporated Poly(Vinylidene Fluoride), Adv. Funct. Mater. 18(8) (2008) 1290-1298.
[97] W.J. Fang, Y.J. Cai, X.P. Chen, R.M. Su, T. Chen, N.S. Xia, L. Li, Q.L. Yang, J.H. Han, S.F. Han, Poly(Styrene-Alt-Maleic Anhydride) Derivatives As Potent Anti-HIV Microbicide Candidates, Bioorg. Med. Chem. Lett. 19(7) (2009) 1903-1907.
[98] M.P. Baranello, L. Bauer, D.S.W. Benoit, Poly(Styrene-Alt-Maleic Anhydride)-Based Diblock Copolymer Micelles Exhibit Versatile Hydrophobic Drug Loading, Drug-Dependent Release, And Internalization By Multidrug Resistant Ovarian Cancer Cells, Biomacromolecules 15(7) (2014) 2629-2641.
[99] X.M. Zhang, H.Z. Li, M.L. Cao, L. Shi, C.Y. Chen, Adsorption Of Basic Dyes On Β-Cyclodextrin Functionalized Poly (Styrene-Alt-Maleic Anhydride), Sep. Sci. Technol. 50(7) (2015) 947-957.
[100] R. Hasanzadeh, P.N. Moghadam, N. Samadi, Synthesis And Application Of Modified Poly (Styrene-Alt-Maleic Anhydride) Networks As A Nano Chelating Resin For Uptake Of Heavy Metal Ions, Polym. Adv. Technol. 24(1) (2013) 34-41.
[101] B. Saha, K. Bauri, A. Bag, P.K. Ghorai, P. De, Conventional Fluorophore-Free Dual pH- And Thermo-Responsive Luminescent Alternating Copolymer, Polym. Chem. 7(45) (2016) 6895-6900.
[102] K. Bauri, B. Saha, J. Mahanti, P. De, A Nonconjugated Macromolecular Luminogen For Speedy, Selective And Sensitive Detection Of Picric Acid In Water, Polym. Chem. 8(46) (2017) 7180-7187.
[103] C. Malardier-Jugroot, T.G.M. De Ven, M.A. Whitehead, Study Of The Water Conformation Around Hydrophilic And Hydrophobic Parts Of Styrene-Maleic Anhydride, Theochem-J. Mol. Struct. 679(3) (2004) 171-177.
[104] G.H. Hu, J.T. Lindt, Amidification Of Poly(Styrene-Co-Maleic Anhydride) With Amines In Tetrahydrofuran Solution - A Kinetic-Study, Polym. Bull. 29(3-4) (1992) 357-363.
[105] H.Y. Liu, K. Cao, Y. Huang, Z. Yao, B.G. Li, G.H. Hu, Kinetics And Simulation Of The Imidization Of Poly(Styrene-Co-Maleic Anhydride) With Amines, J. Appl. Polym. Sci. 100(4) (2006) 2744-2749.
[106] K. Cheng, N. Zhang, N. Yang, S. Hou, J.H. Ma, L.H. Zhang, Y.L. Sun, B. Jiang, Rapid And Robust Modification Of Pvdf Ultrafiltration Membranes With Enhanced Permselectivity, Antifouling And Antibacterial Performance, Sep. Purif. Technol. 262 (2021) 10.
[107] R.A. Vora, H.C. Trivedi, C.P. Patel, D.H. Garg, M.C. Trivedi, Synthesis And Characterization Of Styrene-Maleic Anhydride Copolymers, J. Polym. Mater. 12(2) (1995) 111-120.
[108] 何春菊., 邱明., 一种抗污染亲水性正渗透膜的制备方法, in: 中华人民共和国国家知识产权局 (Ed.) Patent, china, 2017.
[109] 生物膜:可以通過內建抗菌劑預防嗎?. (accessed 0514 2024).
[110] G. Schoukens, J. Martins, P. Samyn, Insights In The Molecular Structure Of Low- And High-Molecular Weight Poly(Styrene-Maleic Anhydride) From Vibrational And Resonance Spectroscopy, Polymer 54(1) (2013) 349-362.
[111] M.S. Ayyagari, K.A. Marx, S.K. Tripathy, J.A. Akkara, D.L. Kaplan, Controlled Free-Radical Polymerization Of Phenol Derivatives By Enzyme-Catalyzed Reactions In Organic Solvents, Macromolecules 28(15) (1995) 5192-5197.
[112] Q. Ma, K.L. Wooley, The Preparation Of T‐Butyl Acrylate, Methyl Acrylate, And Styrene Block Copolymers By Atom Transfer Radical Polymerization: Precursors To Amphiphilic And Hydrophilic Block Copolymers And Conversion To Complex Nanostructured Materials, Journal Of Polymer Science Part A: Polymer Chemistry 38(S1) (2000) 4805-4820.
[113] T. Xiang, M. Tang, Y.Q. Liu, H.J. Li, L.L. Li, W.Y. Cao, S.D. Sun, C.S. Zhao, Preparation And Characterization Of Modified Polyethersulfone Hollow Fiber Membranes By Blending Poly (Styrene-Alt-Maleic Anhydride), Desalination 295 (2012) 26-34.
[114] M. Cioffi, A.C. Hoffmann, L. Janssen, Reducing The Gel Effect In Free Radical Polymerization, Chem. Eng. Sci. 56(3) (2001) 911-915.
[115] A.A. Bhutto, D. Vesely, B.J. Gabrys, Miscibility And Interactions In Polystyrene And Sodium Sulfonated Polystyrene With Poly(Vinyl Methyl Ether) PVME Blends. Part II. FTIR, Polymer 44(21) (2003) 6627-6631.
[116] H. Kaczmarek, A. Felczak, A. Szalla, Studies Of Photochemical Transformations In Polystyrene And Styrene-Maleic Anhydride Copolymer, Polym. Degrad. Stabil. 93(7) (2008) 1259-1266.
[117] P.A. Woodfield, Y.C. Zhu, Y.W. Pei, P.J. Roth, Hydrophobically Modified Sulfobetaine Copolymers With Tunable Aqueous UCST Through Postpolymerization Modification Of Poly(Pentafluorophenyl Acrylate), Macromolecules 47(2) (2014) 750-762.
[118] M. Ji, A. Jagodar, E. Kovacevic, L. Benyahia, F. Poncin-Epaillard, Characterization Of Functionalized Coatings Prepared From Pulsed Plasma Polymerization, Mater. Chem. Phys. 267 (2021) 11.
[119] R. Morent, N. De Geyter, C. Leys, L. Gengernbre, E. Payen, Comparison Between XPS- And FTIR-Analysis Of Plasma-Treated Polypropylene Film Surfaces, Surf. Interface Anal. 40(3-4) (2008) 597-600.
[120] D.H. Zhang, X.H. Zhang, C. Luan, B. Tang, Z.Y. Zhang, N.W. Pu, K.Y. Zhang, J.G. Liu, C.W. Yan, Zwitterionic Interface Engineering Enables Ultrathin Composite Membrane For High-Rate Vanadium Flow Battery, Energy Storage Mater. 49 (2022) 471-480.
[121] Y. Chang, T.Y. Cheng, Y.J. Shih, K.R. Lee, J.Y. Lai, Biofouling-Resistance Expanded Poly(Tetrafluoroethylene) Membrane With A Hydrogel-Like Layer Of Surface-Immobilized Poly(Ethylene Glycol) Methacrylate For Human Plasma Protein Repulsions, Journal Of Membrane Science 323(1) (2008) 77-84. |