參考文獻 |
[1] R. Ekiciler, M.S.A. Çetinkaya, K. Arslan, "Heat transfer enhancement in an equilateral
triangular duct by using an Al 2 O 3/water nanofluid: Effect of nanoparticle shape and
volume fraction", Heat Transfer Research, 51 (2020).
[2] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, "Shape control in gold
nanoparticle synthesis", Colloidal Synthesis of Plasmonic Nanometals, (2020) 197-220.
[3] D.A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, T. Heindel, "Quantum communication
using semiconductor quantum dots", Advanced Quantum Technologies, 5 (2022)
2100116.
[4] A. Kaur, K. Pandey, R. Kaur, N. Vashishat, M. Kaur, "Nanocomposites of carbon quantum
dots and graphene quantum dots: environmental applications as sensors", Chemosensors,
10 (2022) 367.
[5] C.-C. Chuang, H.-C. Chu, S.-B. Huang, W.-S. Chang, H.-Y. Tuan, "Laser-induced
plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor",
Chemical Engineering Journal, 379 (2020) 122285.
[6] D. Storan, S.A. Ahad, R. Forde, S. Kilian, T.E. Adegoke, T. Kennedy, H. Geaney, K.M.
Ryan, "Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes",
Materials Today Energy, 27 (2022) 101030.
[7] X. Hu, G. Chen, Z. Sheng, Y. Chen, D. Xu, X. Xu, "Chiral ZnO-CuO Nanorod Arrays for
Circularly Polarized Photodetection", ACS Applied Nano Materials, (2024).
[8] N. Berger, A. Laghrissi, Y.Y. Tay, T. Sritharan, J. Fiutowski, H.-G. Rubahn, M. Es-Souni,
"Formation of Si Nanorods and Discrete Nanophases by Axial Diffusion of Si from
Substrate into Au and AuPt Nanoalloy Nanorods", Nanomaterials, 10 (2020) 68.
[9] D. Verma, H. Rai, N.N. Gosvami, V. Balakrishnan, "Frictional Behavior of AluminaCoated Vertically Aligned Carbon Nanotube Forests: Implications for Micro and Nano
Electromechanical Devices", ACS Applied Nano Materials, 5 (2022) 8484-8490.
[10] M. Venkata Kamalakar, A.K. Raychaudhuri, "A novel method of synthesis of dense
arrays of aligned single crystalline copper nanotubes using electrodeposition in the
presence of a rotating electric field", Advanced Materials, 20 (2008) 149-154.
[11] N. Ulrich, A. Spende, L. Burr, N. Sobel, I. Schubert, C. Hess, C. Trautmann, M.E.
Toimil-Molares, "Conical nanotubes synthesized by atomic layer deposition of Al2O3,
TiO2, and SiO2 in etched ion-track nanochannels", Nanomaterials, 11 (2021) 1874.
[12] W. Zhang, J. Zhang, P. Wu, G. Chai, R. Huang, F. Ma, F. Xu, H. Cheng, Y. Chen, X. Ni,
"Parallel aligned nickel nanocone arrays for multiband microwave absorption", ACS
applied materials & interfaces, 12 (2020) 23340-23346.
[13] W. Tao, D. Pan, Z. Gong, X. Peng, "Nanoporous platinum electrode grown on anodic
aluminum oxide membrane: Fabrication, characterization, electrocatalytic activity
toward reactive oxygen and nitrogen species", Analytica Chimica Acta, 1035 (2018) 44-
50.
[14] G. Brindha, M. Mathankumar, J.-Y. Lin, S. Govindan, "Enhanced electrocatalytic
performance of electrodeposited NiCu alloy as an efficient Bi-functional electrode by
prolonged potentiostatic activation", Journal of Energy Storage, 71 (2023) 107996.
[15] B.T. Diroll, R.D. Schaller, "Intersubband Relaxation in CdSe Colloidal Quantum Wells",
ACS nano, 14 (2020) 12082-12090.
[16] H. Tidjani, A. Tosato, A. Ivlev, C. Déprez, S. Oosterhout, L. Stehouwer, A. Sammak, G.
Scappucci, M. Veldhorst, "Vertical gate-defined double quantum dot in a strained
germanium double quantum well", Physical Review Applied, 20 (2023) 054035.
[17] B.P.V. Kumar, N.M. Sharma, K.L. Kishore, N. Goel, 2012 Asia Pacific Conference on
Postgraduate Research in Microelectronics and Electronics, IEEE2012, pp. 19-24.
[18] K. Pierściński, D. Pierścińska, M. Bugajski, C. Manz, M. Rattunde, "Investigation of
thermal management in optically pumped, antimonide VECSELs", Microelectronics
journal, 40 (2009) 558-561.
[19] H. Rho, Y.S. Jang, H. Bae, A.-N. Cha, S.H. Lee, J.-S. Ha, "Fanless, porous graphenecopper composite heat sink for micro devices", Scientific Reports, 11 (2021) 17607.
[20] P.I. Prodanov, 2020 21st International Symposium on Electrical Apparatus &
Technologies (SIELA), IEEE2020, pp. 1-4.
[21] J.A. Depiver, S. Mallik, E.H. Amalu, "Thermal fatigue life of ball grid array (BGA)
solder joints made from different alloy compositions", Engineering Failure Analysis,
125 (2021) 105447.
[22] C. Albanakis, K. Yakinthos, K. Kritikos, D. Missirlis, A. Goulas, P. Storm, "The effect
of heat transfer on the pressure drop through a heat exchanger for aero engine
applications", Applied Thermal Engineering, 29 (2009) 634-644.
[23] J. Li, L. Yang, "Recent Development of Heat Sink and Related Design Methods",
Energies, 16 (2023) 7133.
[24] https://www.winsharethermalloy.com/about-maintaining-the-heat-sink-in-new-energyvehicles-what-you-must-know.html.
[25] A. Genc, H. Dogan, I.B. Basyigit, S. Helhel, "A review of the emi effect on natural
convection heatsinks", IETE Journal of Research, 69 (2023) 3550-3560.
[26] I. Nazzal, T. Salem, R. Al Doury, IOP Conference Series: Materials Science and
Engineering, IOP Publishing2021, pp. 012087.
[27] M. Ha, S. Graham, "Development of a thermal resistance model for chip-on-board
packaging of high power LED arrays", Microelectronics Reliability, 52 (2012) 836-844.
[28] S. Lv, W. He, Q. Jiang, Z. Hu, X. Liu, H. Chen, M. Liu, "Study of different heat exchange
technologies influence on the performance of thermoelectric generators", Energy
Conversion and Management, 156 (2018) 167-177.
[29] S. Kang, D. Miller, J. Cennamo, International Electronic Packaging Technical
Conference and Exhibition2007, pp. 509-515.
[30] M. Maaza, T. Khamliche, M. Akbari, N. Kana, N. Tandjigora, P. Beukes, A. Genu, K.
Kaviyarasu, J. K. Cloete, M. Lekala, "A novel approach for engineering efficient
nanofluids by radiolysis", Scientific Reports, 12 (2022) 10767.
[31] D. Jang, S.-J. Park, S.-J. Yook, K.-S. Lee, "The orientation effect for cylindrical heat
sinks with application to LED light bulbs", International Journal of Heat and Mass
Transfer, 71 (2014) 496-502.
[32] CPU 銅金屬散熱器 https://www.trentonsystems.com/en-us/resource-hub/blog/what-isa-heat-sink.
[33] Liquid Metal Thermal Paste Explained & The Dangers Explored- 銀散熱器
https://digitaladvisor.com/cpu/liquid-thermal/.
[34] S. Lee, "Optimum design and selection of heat sinks", IEEE Transactions on
Components, Packaging, and Manufacturing Technology: Part A, 18 (1995) 812-817.
[35] V.Y. Lee, G. Henderson, A. Reip, T.G. Karayiannis, "Flow boiling characteristics in plain
and porous coated microchannel heat sinks", International Journal of Heat and Mass
Transfer, 183 (2022) 122152.
[36] D. Zhang, J. Liu, S. Sun, S. Huang, J. Bao, N. Wang, J. Liu, X. Lu, 2016 17th
International Conference on Electronic Packaging Technology (ICEPT), IEEE2016, pp.
1355-1359.
[37] X. Li, M. Fang, W. Wang, S. Guo, W. Liu, H. Liu, X. Wang, "Graphene heat dissipation
film for thermal management of hot spot in electronic device", Journal of Materials
Science: Materials in Electronics, 27 (2016) 7715-7721.
[38] J. Zhao, Y. Wang, G. Ding, Y. Sun, G. Wang, "Design, fabrication and measurement of
a microchannel heat sink with a pin-fin array and optimal inlet position for alleviating
the hot spot effect", Journal of Micromechanics and Microengineering, 24 (2014)
115013.
[39] H. Cho, H. Rho, J.H. Kim, S.-H. Chae, T.V. Pham, T.H. Seo, H.Y. Kim, J.-S. Ha, H.C.
Kim, S.H. Lee, "Graphene–carbon–metal composite film for a flexible heat sink", ACS
applied materials & interfaces, 9 (2017) 40801-40809.
[40] M. Goyal, "Shape, size and phonon scattering effect on the thermal conductivity of
nanostructures", Pramana, 91 (2018) 1-5.
[41] B. Fu, G. Tang, Y. Li, "Electron–phonon scattering effect on the lattice thermal
conductivity of silicon nanostructures", Physical Chemistry Chemical Physics, 19 (2017)
28517-28526.
[42] Z. Huang, M. Gao, T. Pan, Y. Zhang, B. Zeng, W. Liang, F. Liao, Y. Lin, "Microstructure
dependence of heat sink constructed by carbon nanotubes for chip cooling", Journal of
Applied Physics, 117 (2015).
[43] L. Micheli, K. Reddy, T.K. Mallick, "Experimental comparison of micro-scaled platefins and pin-fins under natural convection", International Communications in Heat and
Mass Transfer, 75 (2016) 59-66.
[44] H. Tang, H. Feng, H. Wang, X. Wan, J. Liang, Y. Chen, "Highly conducting MXene–
silver nanowire transparent electrodes for flexible organic solar cells", ACS applied
materials & interfaces, 11 (2019) 25330-25337.
[45] H. Kang, J.S. Kim, S.-R. Choi, Y.-H. Kim, D.H. Kim, J.-G. Kim, T.-W. Lee, J.H. Cho,
"Electroplated core–shell nanowire network electrodes for highly efficient organic lightemitting diodes", Nano Convergence, 9 (2022) 1-8.
[46] I. Cho, Y.C. Sim, M. Cho, Y.-H. Cho, I. Park, "Monolithic micro light-emitting
diode/metal oxide nanowire gas sensor with microwatt-level power consumption", ACS
sensors, 5 (2020) 563-570.
[47] M.B. Gebeyehu, T.F. Chala, S.-Y. Chang, C.-M. Wu, J.-Y. Lee, "Synthesis and highly
effective purification of silver nanowires to enhance transmittance at low sheet
resistance with simple polyol and scalable selective precipitation method", RSC
advances, 7 (2017) 16139-16148.
[48] B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, L.J. Guo, "Simple
hydrothermal synthesis of very-long and thin silver nanowires and their application in
high quality transparent electrodes", Journal of Materials Chemistry A, 4 (2016) 11365-
11371.
[49] F. Qian, P.C. Lan, M.C. Freyman, W. Chen, T. Kou, T.Y. Olson, C. Zhu, M.A. Worsley,
E.B. Duoss, C.M. Spadaccini, "Ultralight conductive silver nanowire aerogels", Nano
letters, 17 (2017) 7171-7176.
[50] H.E. Lim, Y. Nakanishi, Z. Liu, J. Pu, M. Maruyama, T. Endo, C. Ando, H. Shimizu, K.
Yanagi, S. Okada, "Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride
Nanowires", Nano Letters, 21 (2020) 243-249.
[51] H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi, T. Yanagida, "Metal–oxide
nanowire molecular sensors and their promises", Chemosensors, 9 (2021) 41.
[52] E.C. Walter, M.P. Zach, F. Favier, B.J. Murray, K. Inazu, J.C. Hemminger, R.M. Penner,
"Metal nanowire arrays by electrodeposition", ChemPhysChem, 4 (2003) 131-138.
[53] C. Xiang, S.-C. Kung, D.K. Taggart, F. Yang, M.A. Thompson, A.G. Guell, Y. Yang,
R.M. Penner, "Lithographically patterned nanowire electrodeposition: A method for
patterning electrically continuous metal nanowires on dielectrics", Acs Nano, 2 (2008)
1939-1949.
[54] F. Völklein, H. Reith, T. Cornelius, M. Rauber, R. Neumann, "The experimental
investigation of thermal conductivity and the Wiedemann–Franz law for single metallic
nanowires", Nanotechnology, 20 (2009) 325706.
[55] K. Kamiya, K. Kayama, M. Nobuoka, S. Sakaguchi, T. Sakurai, M. Kawata, Y. Tsutsui,
M. Suda, A. Idesaki, H. Koshikawa, "Ubiquitous organic molecule-based free-standing
nanowires with ultra-high aspect ratios", Nature Communications, 12 (2021) 4025.
[56] J.I. Lee, S.H. Cho, S.-M. Park, J.K. Kim, J.K. Kim, J.-W. Yu, Y.C. Kim, T.P. Russell,
"Highly aligned ultrahigh density arrays of conducting polymer nanorods using block
copolymer templates", Nano letters, 8 (2008) 2315-2320.
[57] E. Bertero, C.V. Manzano, G. Bürki, L. Philippe, "Stainless steel-like FeCrNi
nanostructures via electrodeposition into AAO templates using a mixed-solvent Cr (III)-
based electrolyte", Materials & Design, 190 (2020) 108559.
[58] A. Ganapathi, P. Swaminathan, L. Neelakantan, "Anodic aluminum oxide template
assisted synthesis of copper nanowires using a galvanic displacement process for
electrochemical denitrification", ACS Applied Nano Materials, 2 (2019) 5981-5988.
[59] W. Wang, N. Li, X. Li, W. Geng, S. Qiu, "Synthesis of metallic nanotube arrays in porous
anodic aluminum oxide template through electroless deposition", Materials research
bulletin, 41 (2006) 1417-1423.
[60] M. Irshad, F. Ahmad, N. Mohamed, M. Abdullah, "Preparation and structural
characterization of template assisted electrodeposited copper nanowires", International
Journal of Electrochemical Science, 9 (2014) 2548-2555.
[61] H.M. Elmoughni, O. Atalay, K. Ozlem, A.K. Menon, "Thermoelectric Clothing for Body
Heat Harvesting and Personal Cooling: Design and Fabrication of a Textile‐Integrated
Flexible and Vertical Device", Energy Technology, 10 (2022) 2200528.
[62] Y. Eom, D. Wijethunge, H. Park, S.H. Park, W. Kim, "Flexible thermoelectric power
generation system based on rigid inorganic bulk materials", Applied energy, 206 (2017)
649-656.
[63] Y. Pang, R. Chandrasekar, "Cylindrical and spherical membranes of anodic aluminum
oxide with highly ordered conical nanohole arrays", Natural Science, 7 (2015) 232.
[64] S. Yun, S.-J. Kim, J. Youn, H. Kim, J. Ryu, C. Bae, K. No, S. Hong, "Flexible 3D
Electrodes of Free-Standing TiN Nanotube Arrays Grown by Atomic Layer Deposition
with a Ti Interlayer as an Adhesion Promoter", Nanomaterials, 10 (2020) 409.
[65] Y. Li, J. Xu, H. Liu, J. Song, Y. Li, B. Cheng, J. Li, X. Li, "A template/electrochemical
deposition method for fabricating silver nanorod arrays based on porous anodic
alumina", Nanomaterials and Nanotechnology, 7 (2017) 1847980417717543.
[66] C. Hong, T. Tang, R. Pan, W. Fang, 2011 IEEE 24th International Conference on Micro
Electro Mechanical Systems, IEEE2011, pp. 107-110.
[67] C. Hong, W. Fang, B.-Y. Shew, 2013 International Conference on Optical MEMS and
Nanophotonics (OMN), IEEE2013, pp. 135-136.
[68] N. Guan, N. Amador-Mendez, A. Kunti, A. Babichev, S. Das, A. Kapoor, N. Gogneau,
J. Eymery, F.H. Julien, C. Durand, "Heat dissipation in flexible nitride nanowire lightemitting diodes", Nanomaterials, 10 (2020) 2271.
[69] X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, Z.-H. Lu, "Review and perspective of materials
for flexible solar cells", Materials Reports: Energy, 1 (2021) 100001.
[70] C. Jeong, J. Jung, K. Sheppard, C.-H. Choi, "Control of the Nanopore Architecture of
Anodic Alumina via Stepwise Anodization with Voltage Modulation and Pore
Widening", Nanomaterials, 13 (2023) 342.
[71] W. Tang, Z. Chen, Z. Song, C. Wang, Z.a. Wan, C.L.J. Chan, Z. Chen, W. Ye, Z. Fan,
"Microheater integrated nanotube array gas sensor for parts-per-trillion level gas
detection and single sensor-based gas discrimination", ACS nano, 16 (2022) 10968-
10978.
[72] A.G. Ricciardulli, S. Yang, G.J.A. Wetzelaer, X. Feng, P.W. Blom, "Hybrid silver
nanowire and graphene‐based solution‐processed transparent electrode for organic
optoelectronics", Advanced Functional Materials, 28 (2018) 1706010.
[73] J.L. Duan, D.Y. Lei, F. Chen, S.P. Lau, W.I. Milne, M. Toimil-Molares, C. Trautmann, J.
Liu, "Vertically-aligned single-crystal nanocone arrays: controlled fabrication and
enhanced field emission", ACS Applied Materials & Interfaces, 8 (2016) 472-479.
[74] F. Wang, X. Feng, N. Wang, H. Guan, S. Bian, X. Hao, Y. Chen, "In-situ grown nickelcobalt bimetallic nanowire arrays for efficient hydrogen evolution reaction", Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 615 (2021) 126205.
[75] O. Jessensky, F. Müller, U. Gösele, "Self-organized formation of hexagonal pore arrays
in anodic alumina", Applied physics letters, 72 (1998) 1173-1175.
[76] G. Thompson, "Porous anodic alumina: fabrication, characterization and applications",
Thin solid films, 297 (1997) 192-201.
[77] A. Ruiz-Clavijo, O. Caballero-Calero, M. Martín-González, "Revisiting anodic alumina
templates: From fabrication to applications", Nanoscale, 13 (2021) 2227-2265.
[78] F. Li, L. Zhang, R.M. Metzger, "On the growth of highly ordered pores in anodized
aluminum oxide", Chemistry of materials, 10 (1998) 2470-2480.
[79] K. Chahrour, P. Choon Ooi, A.A. Hamzah, "Influence of the Voltage on Pore Diameter
and Growth Rate of Thin Anodic Aluminium Oxide (AAO) Pattern on Silicon Substrate",
Journal of Applied Sciences and Nanotechnology, 1 (2021) 10-15.
[80] A.-P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, "Hexagonal pore arrays with a 50–
420 nm interpore distance formed by self-organization in anodic alumina", Journal of
applied physics, 84 (1998) 6023-6026.
[81] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, L. Jin, "A new
self-ordering regime for fast production of long-range ordered porous anodic aluminum
oxide films", Electrochimica Acta, 178 (2015) 11-17.
[82] M. Iwai, T. Kikuchi, R.O. Suzuki, "Self-ordered nanospike porous alumina fabricated
under a new regime by an anodizing process in alkaline media", Scientific reports, 11
(2021) 7240.
[83] W. Lee, S.-J. Park, "Porous anodic aluminum oxide: anodization and templated synthesis
of functional nanostructures", Chemical reviews, 114 (2014) 7487-7556.
[84] P. Michal, A. Vagaská, E. Fechová, M. Gombár, D. Kozak, "Effect of electrolyte
temperature on the thickness of anodic aluminium oxide (AAO) layer", Metalurgija, 55
(2016) 403-406.
[85] L. Zaraska, W.J. Stępniowski, E. Ciepiela, G.D. Sulka, "The effect of anodizing
temperature on structural features and hexagonal arrangement of nanopores in alumina
synthesized by two-step anodizing in oxalic acid", Thin Solid Films, 534 (2013) 155-
161.
[86] K.M. Chahrour, N.M. Ahmed, M. Hashim, N.G. Elfadill, W. Maryam, M. Ahmad, M.
Bououdina, "Effects of the voltage and time of anodization on modulation of the pore
dimensions of AAO films for nanomaterials synthesis", Superlattices and
Microstructures, 88 (2015) 489-500.
[87] L. Zaraska, G.D. Sulka, M. Jaskuła, "Anodic alumina membranes with defined pore
diameters and thicknesses obtained by adjusting the anodizing duration and pore
opening/widening time", Journal of Solid State Electrochemistry, 15 (2011) 2427-2436.
[88] U.S. Kim, J.W. Park, "High-quality surface finishing of industrial three-dimensional
metal additive manufacturing using electrochemical polishing", International Journal of
Precision Engineering and Manufacturing-Green Technology, 6 (2019) 11-21.
[89] A. Brudzisz, D. Rajska, M. Gajewska, G.D. Sulka, A. Brzózka, "Controlled synthesis
and characterization of AgPd nanowire arrays for electrocatalytic applications", Journal
of Electroanalytical Chemistry, 873 (2020) 114373.
[90] M. Guo, C. Cui, W. Yang, "Fabrication and magnetic properties of Tb–Fe–B nanotubes
prepared by electrochemical deposition", Journal of Materials Science: Materials in
Electronics, 31 (2020) 3976-3985.
[91] G. Meng, Y.J. Jung, A. Cao, R. Vajtai, P.M. Ajayan, "Controlled fabrication of
hierarchically branched nanopores, nanotubes, and nanowires", Proceedings of the
National Academy of Sciences, 102 (2005) 7074-7078.
[92] X. Li, G. Meng, Q. Xu, M. Kong, X. Zhu, Z. Chu, A.-P. Li, "Controlled synthesis of
germanium nanowires and nanotubes with variable morphologies and sizes", Nano
letters, 11 (2011) 1704-1709.
[93] L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskuła, "Porous alumina membranes with
branched nanopores as templates for fabrication of Y-shaped nanowire arrays", Journal
of Solid State Electrochemistry, 16 (2012) 3611-3619.
[94] G.D. Sulka, A. Brzózka, L. Liu, "Fabrication of diameter-modulated and ultrathin porous
nanowires in anodic aluminum oxide templates", Electrochimica Acta, 56 (2011) 4972-
4979.
[95] M.A. Zeeshan, R. Grisch, E. Pellicer, K.M. Sivaraman, K.E. Peyer, J. Sort, B. Özkale,
M.S. Sakar, B.J. Nelson, S. Pané, "Hybrid helical magnetic microrobots obtained by 3D
template‐assisted electrodeposition", Small, 10 (2014) 1284-1288.
[96] G. Williams, M. Hunt, B. Boehm, A. May, M. Taverne, D. Ho, S. Giblin, D. Read, J.
Rarity, R. Allenspach, "Two-photon lithography for 3D magnetic nanostructure
fabrication", Nano Research, 11 (2018) 845-854.
[97] M. Rauber, I. Alber, S. Müller, R. Neumann, O. Picht, C. Roth, A. Schökel, M.E. ToimilMolares, W. Ensinger, "Highly-ordered supportless three-dimensional nanowire
networks with tunable complexity and interwire connectivity for device integration",
Nano letters, 11 (2011) 2304-2310.
[98] T. da Câmara Santa Clara Gomes, N. Marchal, F. Abreu Araujo, Y. Velázquez Galván, J.
de la Torre Medina, L. Piraux, "Magneto-transport in flexible 3D networks made of
interconnected magnetic nanowires and nanotubes", Nanomaterials, 11 (2021) 221.
[99] M. Hunt, M. Taverne, J. Askey, A. May, A. Van Den Berg, Y.-L.D. Ho, J. Rarity, S. Ladak,
"Harnessing multi-photon absorption to produce three-dimensional magnetic structures
at the nanoscale", Materials, 13 (2020) 761.
[100] S. Ruiz-Gómez, C. Fernández-González, L. Perez, "Electrodeposition as a tool for
nanostructuring magnetic materials", Micromachines, 13 (2022) 1223.
[101] M.R. Lukatskaya, Y. Gogotsi, "Three-dimensional nanostructures from porous anodic
alumina", MRS Communications, 2 (2012) 51-54.
[102] A. Yadav, M. Bobji, S.J. Bull, "Controlled growth of highly aligned Cu nanowires by
pulse electrodeposition in nanoporous alumina", Journal of Nanoscience and
Nanotechnology, 19 (2019) 4254-4259.
[103] X. Zhao, S.-K. Seo, U.-J. Lee, K.-H. Lee, "Controlled electrochemical dissolution of
anodic aluminum oxide for preparation of open-through pore structures", Journal of the
Electrochemical Society, 154 (2007) C553.
[104] N. Winkler, J. Leuthold, Y. Lei, G. Wilde, "Large-scale highly ordered arrays of
freestanding magnetic nanowires", Journal of Materials Chemistry, 22 (2012) 16627-
16632.
[105] W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, "Tree-like alumina nanopores
generated in a non-steady-state anodization", Journal of Materials Chemistry, 17 (2007)
3493-3495.
[106] W.J. Stępniowski, W. Florkiewicz, M. Michalska-Domańska, M. Norek, T. Czujko, "A
comparative study of electrochemical barrier layer thinning for anodic aluminum oxide
grown on technical purity aluminum", Journal of Electroanalytical Chemistry, 741
(2015) 80-86.
[107] M. Montero-Rama, A. Viterisi, C. Eckstein, J. Ferré-Borrull, L. Marsal, "In-situ
removal of thick barrier layer in nanoporous anodic alumina by constant current Reanodization", Surface and Coatings Technology, 380 (2019) 125039.
[108] C. Sousa, D. Leitao, M. Proenca, A. Apolinario, J. Correia, J. Ventura, J. Araujo,
"Tunning pore filling of anodic alumina templates by accurate control of the bottom
barrier layer thickness", Nanotechnology, 22 (2011) 315602.
[109] P.G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, "Electrodeposition of cobalt
nanowires into alumina templates generated by one-step anodization", Electrochimica
Acta, 259 (2018) 711-722.
[110] C. Shuoshuo, L. Zhiyuan, H. Xing, Y. Hui, L. Yi, "Competitive growth of branched
channels inside AAO membranes", Journal of Materials Chemistry, 20 (2010) 1794-
1798.
[111] Y. Wang, C. Xu, X. Yu, H. Zhang, M. Han, "Multilayer flexible electronics:
Manufacturing approaches and applications", Materials Today Physics, 23 (2022)
100647.
[112] S. Wang, Y. Tian, C. Wang, C. Hang, H. Zhang, Y. Huang, Z. Zheng, "One-step
fabrication of copper nanopillar array-filled AAO films by pulse electrodeposition for
anisotropic thermal conductive interconnectors", ACS omega, 4 (2019) 6092-6096.
[113] S.A. El-Sayed, S.M. Mohamed, A.A. Abdel-latif, E.A. Abdel-hamid, "Experimental
study of heat transfer and fluid flow in longitudinal rectangular-fin array located in
different orientations in fluid flow", Experimental Thermal and Fluid Science, 29 (2004)
113-128.
[114] S. Chingulpitak, S. Wongwises, "A review of the effect of flow directions and behaviors
on the thermal performance of conventional heat sinks", International Journal of Heat and Mass Transfer, 81 (2015) 10-18. |