參考文獻 |
參考文獻
[1] T. Nakajima, T. Ohara, T. Masui, T. Takemura, K. Yoshimura, D. Goto, T. Hanaoka, S. Itahashi, G. Kurata, J.-i. Kurokawa, "A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems", Progress in Earth and Planetary Science, 7 (2020) 1-21.
[2] IEA (2024), Renewables 2023, IEA, Paris https://www.iea.org/reports/renewables-2023, Licence: CC BY 4.0.
[3] IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024, Licence: CC BY 4.0.
[4] 國家發展委員會,臺灣2050淨零排放路徑及策略總說明。https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76#.
[5] Z. Li, H. Li, L. Chen, J. Huang, W. Wang, H. Wang, J. Li, B. Fan, Q. Xu, W. Song, "Semitransparent perovskite solar cells with ultrathin silver electrodes for tandem solar cells", Solar Energy, 206 (2020) 294-300.
[6] L.C. Ding, A. Akbarzadeh, A. Date, "Performance and reliability of commercially available thermoelectric cells for power generation", Applied Thermal Engineering, 102 (2016) 548-556.
[7] W. Li, N. Wu, J. Zhong, Q. Zhong, S. Zhao, B. Wang, X. Cheng, S. Li, K. Liu, B. Hu, "Theoretical study of cellular piezoelectret generators", Advanced Functional Materials, 26 (2016) 1964-1974.
[8] M. Chen, X. Li, L. Lin, W. Du, X. Han, J. Zhu, C. Pan, Z.L. Wang, "Triboelectric nanogenerators as a self‐powered motion tracking system", Advanced Functional Materials, 24 (2014) 5059-5066.
[9] J. Zhong, Q. Zhong, G. Chen, B. Hu, S. Zhao, X. Li, N. Wu, W. Li, H. Yu, J. Zhou, "Surface charge self-recovering electret film for wearable energy conversion in a harsh environment", Energy & Environmental Science, 9 (2016) 3085-3091.
[10] D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley, Y.N. Zhou, "Self‐powered wearable electronics based on moisture enabled electricity generation", Advanced Materials, 30 (2018) 1705925.
[11] G.L. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L′ecuyer, P.W. Stackhouse Jr, M. Lebsock, T. Andrews, "An update on Earth′s energy balance in light of the latest global observations", Nature Geoscience, 5 (2012) 691-696.
[12] X. Wang, F. Lin, X. Wang, S. Fang, J. Tan, W. Chu, R. Rong, J. Yin, Z. Zhang, Y. Liu, "Hydrovoltaic technology: from mechanism to applications", Chemical Society Reviews, 51 (2022) 4902-4927.
[13] B. Shao, Y. Song, Z. Song, Y. Wang, Y. Wang, R. Liu, B. Sun, "Electricity generation from phase transitions between liquid and gaseous water", Advanced Energy Materials, 13 (2023) 2204091.
[14] G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, "Water-evaporation-induced electricity with nanostructured carbon materials", Nature nanotechnology, 12 (2017) 317-321.
[15] T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, "All‐printed porous carbon film for electricity generation from evaporation‐driven water flow", Advanced Functional Materials, 27 (2017) 1700551.
[16] S.S. Das, V.M. Pedireddi, A. Bandopadhyay, P. Saha, S. Chakraborty, "Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation", Nano Letters, 19 (2019) 7191-7200.
[17] J. Chi, C. Liu, L. Che, D. Li, K. Fan, Q. Li, W. Yang, L. Dong, G. Wang, Z.L. Wang, "Harvesting Water‐Evaporation‐Induced Electricity Based on Liquid–Solid Triboelectric Nanogenerator", Advanced Science, 9 (2022) 2201586.
[18] J. Sun, P. Li, J. Qu, X. Lu, Y. Xie, F. Gao, Y. Li, M. Gang, Q. Feng, H. Liang, "Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation", Nano Energy, 57 (2019) 269-278.
[19] Y. Han, D. Pang, Z. Xiong, X. Zhao, C. Li, X. Pang, J. Sun, "Flexible silicon carbide based nano-generator driven by water evaporation", Chemical Physics, 538 (2020) 110858.
[20] D. Yan, S.P. Phang, Y. Wan, C. Samundsett, D. Macdonald, A. Cuevas, "High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion", Solar Energy Materials and Solar Cells, 193 (2019) 80-84.
[21] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors", ACS Applied Nano Materials, 4 (2021) 1567-1575.
[22] E. Köhnen, P. Wagner, F. Lang, A. Cruz, B. Li, M. Roß, M. Jošt, A.B. Morales-Vilches, M. Topič, M. Stolterfoht, "27.9% efficient monolithic perovskite/silicon tandem solar cells on industry compatible bottom cells", Solar RRL, 5 (2021) 2100244.
[23] Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, "Constant electricity generation in nanostructured silicon by evaporation‐driven water flow", Angewandte Chemie, 132 (2020) 10706-10712.
[24] J.-H. Seo, E. Swinnich, Y.-Y. Zhang, M. Kim, "Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications", Materials Research Letters, 8 (2020) 123-144.
[25] R. Fuller, P.J. Landrigan, K. Balakrishnan, G. Bathan, S. Bose-O′Reilly, M. Brauer, J. Caravanos, T. Chiles, A. Cohen, L. Corra, "Pollution and health: a progress update", The Lancet Planetary Health, 6 (2022) e535-e547.
[26] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, "Flexible triboelectric generator", Nano energy, 1 (2012) 328-334.
[27] S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, "Triboelectric charging of powders: A review", Chemical Engineering Science, 65 (2010) 5781-5807.
[28] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, "Quantifying the triboelectric series", Nature communications, 10 (2019) 1427.
[29] S. Wang, L. Lin, Z.L. Wang, "Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics", Nano letters, 12 (2012) 6339-6346.
[30] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, "Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism", Nano letters, 13 (2013) 2226-2233.
[31] Y. Yang, Y.S. Zhou, H. Zhang, Y. Liu, S. Lee, Z.L. Wang, "A single-electrode based triboelectric nanogenerator as self-powered tracking system", Advanced Materials (Deerfield Beach, Fla.), 25 (2013) 6594-6601.
[32] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, "Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes", Advanced materials, 26 (2014) 2818-2824.
[33] Z.-H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, "Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process", Adv. Mater, 26 (2014) 4690-4696.
[34] H.v. Helmholtz, "Studien über electrische Grenzschichten", Annalen der Physik, 243 (1879) 337-382.
[35] P. Král, M. Shapiro, "Nanotube electron drag in flowing liquids", Physical review letters, 86 (2001) 131.
[36] B. Persson, U. Tartaglino, E. Tosatti, H. Ueba, "Electronic friction and liquid-flow-induced voltage in nanotubes", Physical Review B, 69 (2004) 235410.
[37] H. Daiguji, "Ion transport in nanofluidic channels", Chemical Society Reviews, 39 (2010) 901-911.
[38] X. Zhao, D. Shen, W.W. Duley, C. Tan, Y.N. Zhou, "Water‐Enabled Electricity Generation: A Perspective", Advanced Energy and Sustainability Research, 3 (2022) 2100196.
[39] J. Li, K. Liu, T. Ding, P. Yang, J. Duan, J. Zhou, "Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator", Nano Energy, 58 (2019) 797-802.
[40] C. Liu, C. Ye, Y. Wu, Y. Liu, Z. Liu, Z. Chen, R. Ma, N. Sakai, L. Xue, J. Sun, "Atomic-scale engineering of cation vacancies in two-dimensional unilamellar metal oxide nanosheets for electricity generation from water evaporation", Nano Energy, 110 (2023) 108348.
[41] T.G. Yun, J. Bae, A. Rothschild, I.-D. Kim, "Transpiration driven electrokinetic power generator", ACS nano, 13 (2019) 12703-12709.
[42] M. Kaur, S. Ishii, R. Nozaki, T. Nagao, "Hydropower generation by transpiration from microporous alumina", Scientific Reports, 11 (2021) 10954.
[43] J. Zhang, Y. Hou, Y. Li, S. Hu, "Chinese ink enabled natural wood for moist-induced electricity generation", Journal of Materials Research and Technology, 17 (2022) 1822-1830.
[44] G. Zhang, Y. Xu, Z. Duan, W. Yu, C. Liu, W. Yao, "Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films", Applied Thermal Engineering, 166 (2020) 114623.
[45] L. Wang, L. Liu, N. Solin, "Ionovoltaic electricity generation over graphene-nanoplatelets: protein-nanofibril hybrid materials", Nanoscale Advances, 5 (2023) 820-829.
[46] F. Yu, G. Liu, Z. Chen, L. Zhang, X. Liu, Q. Zhang, L. Wu, X. Wang, "All-weather freshwater and electricity simultaneous generation by coupled solar energy and convection", ACS Applied Materials & Interfaces, 14 (2022) 40082-40092.
[47] S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, Z. Xu, C. Li, "Influence of the texturing structure on the properties of black silicon solar cell", Solar energy materials and solar cells, 108 (2013) 200-204.
[48] M. Moreno, D. Daineka, P.R. i Cabarrocas, "Plasma texturing for silicon solar cells: From pyramids to inverted pyramids-like structures", Solar Energy Materials and Solar Cells, 94 (2010) 733-737.
[49] H. Wang, A. Du, X. Ji, C. Zhang, B. Zhou, Z. Zhang, J. Shen, "Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation", ACS applied materials & interfaces, 11 (2019) 42057-42065.
[50] J. Li, W. Zhang, W. Ji, J. Wang, N. Wang, W. Wu, Q. Wu, X. Hou, W. Hu, L. Li, "Near infrared photothermal conversion materials: Mechanism, preparation, and photothermal cancer therapy applications", Journal of Materials Chemistry B, 9 (2021) 7909-7926.
[51] M. Chang, M. Wang, M. Shu, Y. Zhao, B. Ding, S. Huang, Z. Hou, G. Han, J. Lin, "Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy", Acta biomaterialia, 99 (2019) 295-306.
[52] K.-T. Lin, C.-J. Chan, Y.-S. Lai, L.-T. Shiu, C.-C. Lin, H.-L. Chen, "Silicon-based embedded trenches of active antennas for high-responsivity omnidirectional photodetection at telecommunication wavelengths", ACS applied materials & interfaces, 11 (2019) 3150-3159.
[53] L. Mehrvar, M. Sadeghipari, S. Tavassoli, S. Mohajerzadeh, M. Fathipour, "Optical and Surface Enhanced Raman Scattering properties of Ag modified silicon double nanocone array", Scientific Reports, 7 (2017) 12106.
[54] 太陽輻射及矽晶材料吸收光譜圖。https://qdsolarinc.com/wp-content/uploads/2020/02/Si-Absorption-e1581357321237.png.
[55] P. Zhang, S. Li, C. Liu, X. Wei, Z. Wu, Y. Jiang, Z. Chen, "Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon", Nanoscale research letters, 9 (2014) 1-5.
[56] Y. Tseng, R. Gu, S. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties", Applied Surface Science, 508 (2020) 145223.
[57] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection", Nanotechnology, 28 (2017) 275202.
[58] F. Hu, X.-Y. Dai, Z.-Q. Zhou, X.-Y. Kong, S.-L. Sun, R.-J. Zhang, S.-Y. Wang, M. Lu, J. Sun, "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", Optics express, 27 (2019) 3161-3168.
[59] H.K. Bisoyi, A.M. Urbas, Q. Li, "Soft materials driven by photothermal effect and their applications", Photoactive Functional Soft Materials: Preparation, Properties, and Applications, (2019) 1-44.
[60] T. Mouterde, A. Keerthi, A. Poggioli, S.A. Dar, A. Siria, A.K. Geim, L. Bocquet, B. Radha, "Molecular streaming and its voltage control in ångström-scale channels", Nature, 567 (2019) 87-90.
[61] K.H. Lee, D.J. Kang, W. Eom, H. Lee, T.H. Han, "Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy", Chemical Engineering Journal, 430 (2022) 132759.
[62] G. Zhang, Z. Duan, X. Qi, Y. Xu, L. Li, W. Ma, H. Zhang, C. Liu, W. Yao, "Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges", Carbon, 148 (2019) 1-8.
[63] B. Hou, D. Kong, J. Qian, Y. Yu, Z. Cui, X. Liu, J. Wang, T. Mei, J. Li, X. Wang, "Flexible and portable graphene on carbon cloth as a power generator for electricity generation", Carbon, 140 (2018) 488-493.
[64] T. Tabrizizadeh, J. Wang, R. Kumar, S. Chaurasia, K. Stamplecoskie, G. Liu, "Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats", ACS Applied Materials & Interfaces, 13 (2021) 50900-50910.
[65] S.S. Das, V.M. Pedireddi, A. Bandopadhyay, P. Saha, S. Chakraborty, "Electrokinetic Power Harvesting from Wet Textile", arXiv preprint arXiv:1907.09999, (2019).
[66] V.-D. Dao, N.H. Vu, H.-S. Choi, "All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation", Journal of Power Sources, 448 (2020) 227388.
[67] L. Li, S. Gao, M. Hao, X. Yang, S. Feng, L. Li, S. Wang, Z. Xiong, F. Sun, Y. Li, "A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity", Nano Energy, 85 (2021) 105970.
[68] J. Liu, L. Huang, W. He, X. Cai, Y. Wang, L. Zhou, Y. Yuan, "Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils", Nano Energy, 102 (2022) 107709.
[69] W. Yang, L. Lv, X. Li, X. Han, M. Li, C. Li, "Quaternized silk nanofibrils for electricity generation from moisture and ion rectification", ACS nano, 14 (2020) 10600-10607.
[70] Z. Wang, J. Li, C. Shao, X. Lin, Y.n. Yang, N. Chen, Y. Wang, L. Qu, "Moisture power in natural polymeric silk fibroin flexible membrane triggers efficient antibacterial activity of silver nanoparticles", Nano Energy, 90 (2021) 106529.
[71] S. Mandal, S. Roy, A. Mandal, T. Ghoshal, G. Das, A. Singh, D.K. Goswami, "Protein-based flexible moisture-induced energy-harvesting devices as self-biased electronic sensors", ACS Applied Electronic Materials, 2 (2020) 780-789.
[72] B. Ji, N. Chen, C. Shao, Q. Liu, J. Gao, T. Xu, H. Cheng, L. Qu, "Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@ TiO 2 nanowires", Journal of materials chemistry A, 7 (2019) 6766-6772.
[73] Y. Hou, X.-Y. Zhang, C. Liu, C. Yin, Z. Yin, "Starfish-like particles and nanowires interwoven architecture of CuO for water infiltration–induced electrical device", Nano Energy, 110 (2023) 108338.
[74] S.G. Yoon, Y. Yang, J. Yoo, H. Jin, W.H. Lee, J. Park, Y.S. Kim, "Natural evaporation-driven ionovoltaic electricity generation", ACS Applied Electronic Materials, 1 (2019) 1746-1751.
[75] 王海燕, 石高全, "层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用", 物理化学学报, 34 (2017) 22-35.
[76] J. Tian, Y. Zang, J. Sun, J. Qu, F. Gao, G. Liang, "Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation", Nano Energy, 70 (2020) 104502.
[77] Q. Ma, Q. He, P. Yin, H. Cheng, X. Cui, Q. Yun, H. Zhang, "Rational design of MOF‐based hybrid nanomaterials for directly harvesting electric energy from water evaporation", Advanced Materials, 32 (2020) 2003720.
[78] Z. Li, X. Ma, D. Chen, X. Wan, X. Wang, Z. Fang, X. Peng, "Polyaniline‐coated MOFs nanorod arrays for efficient evaporation‐driven electricity generation and solar steam desalination", Advanced Science, 8 (2021) 2004552.
[79] Y. Bai, L. Sun, Q. Yu, Y. Lei, B. Liu, "Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas", Nano Res. Energy, 2 (2023) e9120043.
[80] D. He, Y. Yang, Y. Zhou, J. Wan, H. Wang, X. Fan, Q. Li, H. Huang, "Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture", Nano Energy, 81 (2021) 105630.
[81] T. Zhong, H. Guan, Y. Dai, H. He, L. Xing, Y. Zhang, X. Xue, "A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data", Nano Energy, 60 (2019) 52-60.
[82] X. Huangfu, Y. Guo, S.M. Mugo, Q. Zhang, "Hydrovoltaic Nanogenerators for Self‐Powered Sweat Electrolyte Analysis", Small, 19 (2023) 2207134.
[83] H. Guan, T. Zhong, H. He, T. Zhao, L. Xing, Y. Zhang, X. Xue, "A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data", Nano Energy, 59 (2019) 754-761.
[84] K. Xu, Y. Lu, K. Takei, "Multifunctional skin‐inspired flexible sensor systems for wearable electronics", Advanced Materials Technologies, 4 (2019) 1800628.
[85] S.G. Kirtania, A.W. Elger, M.R. Hasan, A. Wisniewska, K. Sekhar, T. Karacolak, P.K. Sekhar, "Flexible antennas: A review", Micromachines, 11 (2020) 847.
[86] M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, "Laser-induced graphene for flexible and embeddable gas sensors", ACS nano, 13 (2019) 3474-3482.
[87] M.A. Yildirim, K. Teker, "Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector", Journal of Alloys and Compounds, 868 (2021) 159255.
[88] L.R. Shobin, S. Manivannan, "Carbon nanotubes on paper: Flexible and disposable chemiresistors", Sensors and Actuators B: Chemical, 220 (2015) 1178-1185.
[89] P. Serre, M. Mongillo, P. Periwal, T. Baron, C. Ternon, "Percolating silicon nanowire networks with highly reproducible electrical properties", Nanotechnology, 26 (2014) 015201.
[90] N.K. Mahan, E.M. Ali, A.N. Abd, "Synthesis of CdS: Cu5% thin films by chemical method based on silicon for gas sensor applications", Materials Today: Proceedings, 45 (2021) 5800-5803.
[91] D.H. Kim, W. Lee, J.-M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires", Nanoscale, 10 (2018) 17705-17711.
[92] M. Triplett, H. Nishimura, M. Ombaba, V. Logeeswarren, M. Yee, K.G. Polat, J.Y. Oh, T. Fuyuki, F. Léonard, M.S. Islam, "High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication", Nano Research, 7 (2014) 998-1006.
[93] S.-C. Shiu, H.-J. Syu, S.-C. Hung, C.-F. Lin, 10th IEEE International Conference on Nanotechnology, IEEE2010, pp. 474-477.
[94] J. Son, H. Lee, "Contact-area-changeable CMP conditioning for enhancing pad lifetime", Applied Sciences, 11 (2021) 3521.
[95] S. Wang, B.D. Weil, Y. Li, K.X. Wang, E. Garnett, S. Fan, Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials", Nano letters, 13 (2013) 4393-4398.
[96] C.-C. Lin, Y.-J. Chuang, W.-H. Sun, C. Cheng, Y.-T. Chen, Z.-L. Chen, C.-H. Chien, F.-H. Ko, "Ultrathin single-crystalline silicon solar cells for mechanically flexible and optimal surface morphology designs", Microelectronic Engineering, 145 (2015) 128-132.
[97] F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer", Applied surface science, 273 (2013) 107-110.
[98] G. Farid, Y. Yang, A. Mateen, C. Huo, H. Wang, K.-Q. Peng, "Rapid formation of uniform cracks in metal-assisted etched silicon nanowire array membranes: Implications for transfer of nanowires and flexible devices", ACS Applied Nano Materials, 5 (2022) 2779-2786.
[99] C. Shao, B. Ji, T. Xu, J. Gao, X. Gao, Y. Xiao, Y. Zhao, N. Chen, L. Jiang, L. Qu, "Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides", ACS applied materials & interfaces, 11 (2019) 30927-30935.
[100] J. Bae, T.G. Yun, B.L. Suh, J. Kim, I.-D. Kim, "Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle", Energy & Environmental Science, 13 (2020) 527-534.
[101] X. Gao, T. Xu, C. Shao, Y. Han, B. Lu, Z. Zhang, L. Qu, "Electric power generation using paper materials", Journal of Materials Chemistry A, 7 (2019) 20574-20578.
[102] H. Ko, W. Son, M.S. Kang, H.U. Lee, C.-Y. Chung, S. Han, C. Choi, S.B. Cho, "Why does water in porous carbon generate electricity? Electrokinetic role of protons in a water droplet-induced hydrovoltaic system of hydrophilic porous carbon", Journal of Materials Chemistry A, 11 (2023) 1148-1158. |