參考文獻 |
1. Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and
chemical production. Angewandte Chemie International Edition 54, 3259–3266 (2015).
2. Kibria, M. & Mi, Z. Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current
status, prospects, and challenges. Journal of Materials Chemistry A 4, 2801–2820 (2016).
3. Li, Z., Feng, J., Yan, S. & Zou, Z. Solar fuel production: Strategies and new opportunities with
nanostructures. Nano Today 10, 468–486 (2015).
4. Long, R., Li, Y., Song, L. & Xiong, Y. Coupling solar energy into reactions: materials design for
surface Plasmon-mediated catalysis. Small 11, 3873–3889 (2015).
5. Liu, S., Tang, Z.-R., Sun, Y., Colmenares, J. C. & Xu, Y.-J. One-dimension-based spatially ordered
architectures for solar energy conversion. Chemical Society Reviews 44, 5053–5075 (2015).
6. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen.
Accounts of Chemical Research 28, 141–145 (1995).
7. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation
with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).
8. Zhang, N., Yang, M.-Q., Liu, S., Sun, Y. & Xu, Y.-J. Waltzing with the versatile platform of
graphene to synthesize composite photocatalysts. Chemical Reviews 115, 10307–10377 (2015).
9. Tu, W., Zhou, Y. & Zou, Z. Versatile graphene-promoting photocatalytic performance of semiconductors:
basic principles, synthesis, solar energy conversion, and environmental applications.
Advanced Functional Materials 23, 4996–5008 (2013).
10. Fan, W., Zhang, Q. & Wang, Y. Semiconductor-based nanocomposites for photocatalytic H 2 production
and CO 2 conversion. Physical Chemistry Chemical Physics 15, 2632–2649 (2013).
11. Fu, J., Yu, J., Jiang, C. & Cheng, B. g-C3N4-Based heterostructured photocatalysts. Advanced Energy
Materials 8, 1701503 (2018).
12. Liu, X. et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic
pollutants. Critical Reviews in Environmental Science and Technology 51, 751–790 (2021).
13. Gao, J., Wang, Y., Zhou, S., Lin, W. & Kong, Y. A facile one-step synthesis of Fe-doped g-C3N4
nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9, 1708–
1715 (2017).
52
14. Zhang, Y., Chen, Z., Li, J., Lu, Z. & Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4
nanotubes in enhancement of visible-light photocatalytic hydrogen. Journal of Energy Chemistry
54, 36–44 (2021).
15. Wang, J.-C. et al. Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation
under visible-light illumination. Journal of Hazardous Materials 339, 43–53 (2017).
16. Yan, W., Yan, L. & Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic
degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Applied Catalysis
B: Environmental 244, 475–485 (2019).
17. Xiong, T., Cen, W., Zhang, Y. & Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis.
American Chemical Society Catalysis 6, 2462–2472 (2016).
18. Ameta, R., Solanki, M. S., Benjamin, S. & Ameta, S. C. in Advanced Oxidation Processes for
Waste Water Treatment (eds Ameta, S. C. & Ameta, R.) 135–175 (Academic Press, 2018). ISBN:
978-0-12-810499-6. https://www.sciencedirect.com/science/article/pii/B9780128104996000061.
19. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. The
Journal of Physical Chemistry Letters 1, 2655–2661 (2010).
20. Ren, H., Koshy, P., Chen, W.-F., Qi, S. & Sorrell, C. C. Photocatalytic materials and technologies
for air purification. Journal of Hazardous Materials 325, 340–366 (2017).
21. Banerjee, S., Dionysiou, D. D. & Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced
hydrophilicity and photocatalysis. Applied Catalysis B: Environmental 176, 396–428 (2015).
22. Duan, Z. et al. Non-UV activated superhydrophilicity of patterned Fe-doped TiO2 film for antifogging
and photocatalysis. Applied Surface Science 452, 165–173 (2018).
23. Pichat, P. et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis.
Catalysis Today 63, 363–369 (2000).
24. Peral, J., Domènech, X. & Ollis, D. F. Heterogeneous photocatalysis for purification, decontamination
and deodorization of air. Journal of Chemical Technology & Biotechnology: International
Research in Process, Environmental AND Clean Technology 70, 117–140 (1997).
25. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical
Reviews 114, 9987–10043 (2014).
26. Bai, S., Jiang, J., Zhang, Q. & Xiong, Y. Steering charge kinetics in photocatalysis: intersection
of materials syntheses, characterization techniques and theoretical simulations. Chemical Society
Reviews 44, 2893–2939 (2015).
27. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).
28. Wang, Y., Wang, X. & Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:
from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie
International Edition 51, 68–89 (2012).
29. Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and
their use as metal-free catalysts. Journal of Materials Chemistry 18, 4893–4908 (2008).
30. Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host
matrices. Advanced Materials 17, 1789–1792 (2005).
53
31. Ge, L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Materials
Letters 65, 2652–2654 (2011).
32. Zhang, J. et al. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved
functions for photocatalysis. Energy & Environmental Science 4, 675–678 (2011).
33. Majdoub, M., Anfar, Z. & Amedlous, A. Emerging chemical functionalization of g-C3N4: covalent/
noncovalent modifications and applications. American Chemical Society Nano 14, 12390–12469
(2020).
34. Bai, X., Wang, L., Wang, Y., Yao, W. & Zhu, Y. Enhanced oxidation ability of g-C3N4 photocatalyst
via C60 modification. Applied Catalysis B: Environmental 152, 262–270 (2014).
35. Patnaik, S., Sahoo, D. P. & Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: a
review. Carbon 172, 682–711 (2021).
36. Huang, Z.-F. et al. Carbon nitride with simultaneous porous network and O-doping for efficient
solar-energy-driven hydrogen evolution. Nano Energy 12, 646–656 (2015).
37. Zeng, Y. et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective
electron separation for excellent visible-light photocatalytic activity. Applied Catalysis B:
Environmental 224, 1–9 (2018).
38. Hu, Z., Shen, Z. & Jimmy, C. Y. Phosphorus containing materials for photocatalytic hydrogen
evolution. Green Chemistry 19, 588–613 (2017).
39. Wang, K. et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance.
Applied Catalysis B: Environmental 176, 44–52 (2015).
40. Dong, G., Zhao, K. & Zhang, L. Carbon self-doping induced high electronic conductivity and photoreactivity
of gC 3 N 4. Chemical Communications 48, 6178–6180 (2012).
41. Jiang, J., Cao, S., Hu, C. & Chen, C. A comparison study of alkali metal-doped g-C3N4 for visiblelight
photocatalytic hydrogen evolution. Chinese Journal of Catalysis 38, 1981–1989 (2017).
42. Wang, S. et al. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction.
American Chemical Society Sustainable Chemistry & Engineering 8, 8214–8222 (2020).
43. Ruan, L. et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the
first-principles. Materials Research Bulletin 66, 156–162 (2015).
44. Tonda, S., Kumar, S., Kandula, S. & Shanker, V. Fe-doped and-mediated graphitic carbon nitride
nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials
Chemistry A 2, 6772–6780 (2014).
45. Chen, P.-W., Li, K., Yu, Y.-X. & Zhang, W.-D. Cobalt-doped graphitic carbon nitride photocatalysts
with high activity for hydrogen evolution. Applied Surface Science 392, 608–615 (2017).
46. Garza, J., Nichols, J. A. & Dixon, D. A. The Hartree product and the description of local and global
quantities in atomic systems: A study within Kohn–Sham theory. The Journal of Chemical Physics
112, 1150–1157 (2000).
47. Dirac, P. A. M. Quantum mechanics of many-electron systems. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 123, 714–733
(1929).
54
48. Aryasetiawan, F. & Gunnarsson, O. The GW method. Reports on progress in Physics 61, 237
(1998).
49. Aulbur, W. G., Jönsson, L. & Wilkins, J. W. Quasiparticle calculations in solids. Solid state physics
(New York. 1955) 54, 1–218 (2000).
50. Hedin, L. New method for calculating the one-particle Green’s function with application to the
electron-gas problem. Physical Review 139, A796 (1965).
51. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Physical Review
84, 1232 (1951).
52. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening
parameter on the performance of screened hybrid functionals. The Journal of chemical physics 125
(2006).
53. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition
of charge density. Computational Materials Science 36, 354–360 (2006).
54. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader
charge allocation. Journal of computational chemistry 28, 899–908 (2007).
55. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias.
Journal of Physics: Condensed Matter 21, 084204 (2009).
56. Kittel, C. & McEuen, P. Introduction to solid state physics (John Wiley & Sons, 2018).
57. Wen, J., Xie, J., Chen, X. & Li, X. A review on g-C3N4-based photocatalysts. Applied Surface
Science 391, 72–123 (2017).
58. Zhu, B., Zhang, L., Cheng, B. & Yu, J. First-principle calculation study of tri-s-triazine-based
g-C3N4: a review. Applied Catalysis B: Environmental 224, 983–999 (2018).
59. Ullah, H., Tahir, A. A. & Mallick, T. K. Structural and electronic properties of oxygen defective and
Se-doped p-type BiVO4 (001) thin film for the applications of photocatalysis. Applied Catalysis B:
Environmental 224, 895–903 (2018).
60. Jia, Y., Yang, J., Zhao, D., Han, H. & Li, C. A Novel Sr2CuInO3S p-type semiconductor photocatalyst
for hydrogen production under visible light irradiation. Journal of Energy Chemistry 23,
420–426 (2014).
61. Xu, H. et al. Revealing the electronic structure and optical properties of CuFeO2 as a p-type oxide
semiconductor. American Chemical Society Applied Electronic Materials 3, 1834–1841 (2021).
62. Chang, P., Du, G., Kang, J. & Liu, X. Guidelines for ferroelectric-semiconductor tunnel junction
optimization by band structure engineering. IEEE Transactions on Electron Devices 68, 3526–3531
(2021).
63. Hiramatsu, H. et al. Origins of hole doping and relevant optoelectronic properties of wide gap p-type
semiconductor, LaCuOSe. Journal of the American Chemical Society 132, 15060–15067 (2010).
64. Yang, J. et al. Composition dependence of optical properties and band structures in p-type Nidoped
CuO films: Spectroscopic experiment and first-principles calculation. The Journal of Physical
Chemistry C 123, 27165–27171 (2019).
55
65. Sze, S. M., Li, Y. & Ng, K. K. Physics of semiconductor devices (John wiley & sons, 2021).
66. Ma, X. et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements:
a first-principles study. The Journal of Physical Chemistry C 116, 23485–23493 (2012).
67. Feng, H., Du, Y., Wang, C. & Hao, W. Efficient visible-light photocatalysts by constructing dispersive
energy band with anisotropic p and sp hybridization states. Current Opinion in Green and
Sustainable Chemistry 6, 93–100 (2017).
68. Liu, L., Lu, F., Tian, J., Xia, S. & Diao, Y. Electronic and optical properties of amorphous carbon
with different sp 3/sp 2 hybridization ratio. Applied Physics A 125, 1–10 (2019).
69. Blakemore, J. S. Semiconductor statistics (Courier Corporation, 2002).
70. Peter, Y. & Cardona, M. Fundamentals of semiconductors: physics and materials properties (Springer
Science & Business Media, 2010).
71. Sze, S. M. Semiconductor devices: physics and technology (John wiley & sons, 2008).
72. Yu, P. Fundamentals of semiconductors (Springer, 2005).
73. Zhou, D. & Qiu, C. Study on the effect of Co doping concentration on optical properties of g-C3N4.
Chemical Physics Letters 728, 70–73 (2019).
74. Tay, Q. et al. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production.
Chemistry of Materials 27, 4930–4933 (2015).
75. Yu, X. et al. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4)
photocatalysts toward artificial photosynthesis. Small 17, 2006851 (2021).
76. Li, Y. et al. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via
defect engineering for energy and environmental science. Nano Energy 105, 108032 (2023).
77. Liang, D. et al. Photocatalytic properties of g-C6N6/g-C3N4 heterostructure: a theoretical study.
The Journal of Physical Chemistry C 120, 24023–24029 (2016).
78. Zhao, X. et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4
heterostructure under visible light. Applied Catalysis B: Environmental 278, 119251 (2020).
79. Zhang, Y. et al. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced
visible-light induced synthesis and conversion. Journal of Hazardous Materials 394, 122529 (2020).
80. Chen, Z.-J. et al. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst
with enhanced visible-light photocatalytic degradation for tetracycline. Chemical Engineering
Journal 438, 135471 (2022). |