博碩士論文 111324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.149.255.208
姓名 許萬淵(Wan-yuan Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用密度泛函理論計算探討元素摻雜對g-C3N4光催化效率的提升
(Enhancing Photocatalytic Performance of Graphitic Carbon Nitride g-C3N4 through Element Doping: Using Density Functional Theory)
相關論文
★ 使用機器學習決定不鏽鋼耐腐蝕性的關鍵因素★ 多孔材料的BET表面積測定:限制和改進
★ 二維凡德瓦材料和異質結構中熱傳輸的計算研究★ 利用密度泛函理論探討鐵合金中間隙元素的影響
★ 利用密度泛函理論開發高效率矽鍺錫熱電合金★ 使用分子動力學模擬探討甲烷/二氧化碳/氮氣混合水合物的成核與生長
★ 研究多孔材料的孔徑分布:BJH方法的探討與機 器學習方法的應用潛力
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 石墨氮化碳(g-C3N4)因其適中的帶隙(約2.7 eV)以及卓越的化學和熱穩定性,
已成為環境光催化領域中的重要候選材料。然而,由於可見光吸收有限、比表面積不
足、電子導電性差及光生電子-空穴對的高復合率,其應用效果仍不理想。為了克服這
些缺點並提升光催化效率,對g-C3N4 進行改性變得十分必要。在眾多改性策略中,元
素摻雜是一種有效且簡單的方法,可以調整其電子結構並促進光催化性能。本研究利
用密度泛函理論(DFT)計算研究非金屬摻雜(B、P)、金屬摻雜(Na、K)及共摻雜
(Na+B、Na+P、K+B、K+P)對g-C3N4 光學性質的影響。此外,採用了多種分析方法,
包括GW-BSE 方法、態密度(DOS)分析、能帶結構分析、Bader 電荷分析、有效質量
分析,以及最高佔據分子軌道(HOMO)和最低未佔據分子軌道(LUMO)分析,去探
討這些參雜元素對於g-C3N4 的光學性質和電子特性的影響。由可見光吸收光譜發現,
所有摻雜方法均不同程度地擴展了可見光吸收範圍,並增強了可見光吸收強度。能帶
結構分析表明,摻雜元素的引入使帶隙有所縮小,其中Na+B 共摻雜使帶隙顯著下降,
從2.7 eV 減少到0.15 eV,顯著增強了對可見光的吸收。此外,HOMO 和LUMO 的分
析顯示,元素摻雜可以增加軌道雜化和離域化。有效質量分析結果表明,摻雜可以有
效降低純g-C3N4 中較高的空穴有效質量。這些結果表明,摻雜能提高載流子的遷移率
並減少光生電子-空穴對的複合率。本研究證實了各種摻雜策略在提高g-C3N4 光催化性能方面的有效性,並提供了摻雜引起的電子結構變化的深入見解。
摘要(英) Graphitic carbon nitride, recognized for its intermediate band gap of approximately 2.7 eV and exceptional chemical and thermal stability, has emerged as a prominent candidate in environmental photocatalysis. Nonetheless, its effectiveness remains suboptimal due to limited absorption of visible light, inadequate surface area, poor electronic conductivity, and high recombination rates of photogenerated electron-hole pairs. To address these shortcomings and enhance photocatalytic efficiency, modifying g-C3N4 is imperative. Among the various strategies for modification, element doping stands out as an efficient and straightforward method for adjustment the electronic structure and promoting photocatalytic performance. This study utilizes density functional theory (DFT) calculations to investigate how non-metal doping (B, P), metal doping (Na, K), and co-doping (Na+B, Na+P, K+B, K+P) affect the optical properties of g-C3N4. Various analysis methods were employed, including the GW plus Bethe-Salpeter equation (GW-BSE) method, density of states (DOS) analysis, bandstructure analysis, Bader charge, effective mass, as well as analysis of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Their visible light absorption spectra were obtained, revealing varying degrees of broadened visible light absorption ranges and increased visible light absorption intensities across all doping methods. The band structure indicates a reduction in band gap depending on the doping element introduced. A significant decrease was observed in the case of Na+B co-doping, at which the band gap decreased from 2.7 to 0.15 eV. This substantial reduction contributes to a notable enhancement in the visible light absorption spectrum compared to g-C3N4. Additionally, the analysis of HOMO and LUMO indicates that element doping can increase orbital hybridization and delocalization. Effective mass analysis also shows that doping can effectively reduce the high hole effective mass of pristine g-C3N4. These results suggest that elements doped is beneficial for improving carrier mobility and reducing the recombination rate. This study demonstrates the efficacy of various doping strategies, in enhancing the photocatalytic performance of g-C3N4 and provides insights into the electronic structure modifications induced by doping.
關鍵字(中) ★ 密度泛函理論
★ 石墨氮化碳
★ 元素參雜
★ 光催化劑
★ 可見光吸收
關鍵字(英) ★ DFT
★ GW-BSE
★ element doped
★ g-C3N4
★ photocatalytic
★ visible light absorption
論文目次 摘要i
Abstract iii
Contents v
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Photocatalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Garphtic carbon nitride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Non-metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Methods and simulation settings 10
2.1 Density function theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 GW approximate method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Green’s function and screened coulomb interaction . . . . . . . . . . . . . . . . . . . . . . 14
v
CONTENTS
2.2.2 Calculation of quasiparticle energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 BSE equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Heyd-Scuseria-Ernzerhof two thousand six (HSE06). . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Bader charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 HOMO and LUMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Effective mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.2 Simulation setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Results and Discussions 23
3.1 Relax structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Optical spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Pristine g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Non-metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Co-doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Bandstructure and band gap analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Pristine g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Non-metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Co-doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 HOMO and LUMO analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Pristine g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Non-metal doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
vi
CONTENTS
3.4.3 Metal Doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.4 Co-doped g-C3N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Effective mass analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Bader Charge Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Conclusion 49
5 Future Work 51
Bibliography 52
參考文獻 1. Kim, D., Sakimoto, K. K., Hong, D. & Yang, P. Artificial photosynthesis for sustainable fuel and
chemical production. Angewandte Chemie International Edition 54, 3259–3266 (2015).
2. Kibria, M. & Mi, Z. Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current
status, prospects, and challenges. Journal of Materials Chemistry A 4, 2801–2820 (2016).
3. Li, Z., Feng, J., Yan, S. & Zou, Z. Solar fuel production: Strategies and new opportunities with
nanostructures. Nano Today 10, 468–486 (2015).
4. Long, R., Li, Y., Song, L. & Xiong, Y. Coupling solar energy into reactions: materials design for
surface Plasmon-mediated catalysis. Small 11, 3873–3889 (2015).
5. Liu, S., Tang, Z.-R., Sun, Y., Colmenares, J. C. & Xu, Y.-J. One-dimension-based spatially ordered
architectures for solar energy conversion. Chemical Society Reviews 44, 5053–5075 (2015).
6. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen.
Accounts of Chemical Research 28, 141–145 (1995).
7. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation
with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).
8. Zhang, N., Yang, M.-Q., Liu, S., Sun, Y. & Xu, Y.-J. Waltzing with the versatile platform of
graphene to synthesize composite photocatalysts. Chemical Reviews 115, 10307–10377 (2015).
9. Tu, W., Zhou, Y. & Zou, Z. Versatile graphene-promoting photocatalytic performance of semiconductors:
basic principles, synthesis, solar energy conversion, and environmental applications.
Advanced Functional Materials 23, 4996–5008 (2013).
10. Fan, W., Zhang, Q. & Wang, Y. Semiconductor-based nanocomposites for photocatalytic H 2 production
and CO 2 conversion. Physical Chemistry Chemical Physics 15, 2632–2649 (2013).
11. Fu, J., Yu, J., Jiang, C. & Cheng, B. g-C3N4-Based heterostructured photocatalysts. Advanced Energy
Materials 8, 1701503 (2018).
12. Liu, X. et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic
pollutants. Critical Reviews in Environmental Science and Technology 51, 751–790 (2021).
13. Gao, J., Wang, Y., Zhou, S., Lin, W. & Kong, Y. A facile one-step synthesis of Fe-doped g-C3N4
nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9, 1708–
1715 (2017).
52
14. Zhang, Y., Chen, Z., Li, J., Lu, Z. & Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4
nanotubes in enhancement of visible-light photocatalytic hydrogen. Journal of Energy Chemistry
54, 36–44 (2021).
15. Wang, J.-C. et al. Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation
under visible-light illumination. Journal of Hazardous Materials 339, 43–53 (2017).
16. Yan, W., Yan, L. & Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic
degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Applied Catalysis
B: Environmental 244, 475–485 (2019).
17. Xiong, T., Cen, W., Zhang, Y. & Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis.
American Chemical Society Catalysis 6, 2462–2472 (2016).
18. Ameta, R., Solanki, M. S., Benjamin, S. & Ameta, S. C. in Advanced Oxidation Processes for
Waste Water Treatment (eds Ameta, S. C. & Ameta, R.) 135–175 (Academic Press, 2018). ISBN:
978-0-12-810499-6. https://www.sciencedirect.com/science/article/pii/B9780128104996000061.
19. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. The
Journal of Physical Chemistry Letters 1, 2655–2661 (2010).
20. Ren, H., Koshy, P., Chen, W.-F., Qi, S. & Sorrell, C. C. Photocatalytic materials and technologies
for air purification. Journal of Hazardous Materials 325, 340–366 (2017).
21. Banerjee, S., Dionysiou, D. D. & Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced
hydrophilicity and photocatalysis. Applied Catalysis B: Environmental 176, 396–428 (2015).
22. Duan, Z. et al. Non-UV activated superhydrophilicity of patterned Fe-doped TiO2 film for antifogging
and photocatalysis. Applied Surface Science 452, 165–173 (2018).
23. Pichat, P. et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis.
Catalysis Today 63, 363–369 (2000).
24. Peral, J., Domènech, X. & Ollis, D. F. Heterogeneous photocatalysis for purification, decontamination
and deodorization of air. Journal of Chemical Technology & Biotechnology: International
Research in Process, Environmental AND Clean Technology 70, 117–140 (1997).
25. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical
Reviews 114, 9987–10043 (2014).
26. Bai, S., Jiang, J., Zhang, Q. & Xiong, Y. Steering charge kinetics in photocatalysis: intersection
of materials syntheses, characterization techniques and theoretical simulations. Chemical Society
Reviews 44, 2893–2939 (2015).
27. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).
28. Wang, Y., Wang, X. & Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:
from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie
International Edition 51, 68–89 (2012).
29. Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and
their use as metal-free catalysts. Journal of Materials Chemistry 18, 4893–4908 (2008).
30. Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host
matrices. Advanced Materials 17, 1789–1792 (2005).
53
31. Ge, L. Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Materials
Letters 65, 2652–2654 (2011).
32. Zhang, J. et al. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved
functions for photocatalysis. Energy & Environmental Science 4, 675–678 (2011).
33. Majdoub, M., Anfar, Z. & Amedlous, A. Emerging chemical functionalization of g-C3N4: covalent/
noncovalent modifications and applications. American Chemical Society Nano 14, 12390–12469
(2020).
34. Bai, X., Wang, L., Wang, Y., Yao, W. & Zhu, Y. Enhanced oxidation ability of g-C3N4 photocatalyst
via C60 modification. Applied Catalysis B: Environmental 152, 262–270 (2014).
35. Patnaik, S., Sahoo, D. P. & Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: a
review. Carbon 172, 682–711 (2021).
36. Huang, Z.-F. et al. Carbon nitride with simultaneous porous network and O-doping for efficient
solar-energy-driven hydrogen evolution. Nano Energy 12, 646–656 (2015).
37. Zeng, Y. et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective
electron separation for excellent visible-light photocatalytic activity. Applied Catalysis B:
Environmental 224, 1–9 (2018).
38. Hu, Z., Shen, Z. & Jimmy, C. Y. Phosphorus containing materials for photocatalytic hydrogen
evolution. Green Chemistry 19, 588–613 (2017).
39. Wang, K. et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance.
Applied Catalysis B: Environmental 176, 44–52 (2015).
40. Dong, G., Zhao, K. & Zhang, L. Carbon self-doping induced high electronic conductivity and photoreactivity
of gC 3 N 4. Chemical Communications 48, 6178–6180 (2012).
41. Jiang, J., Cao, S., Hu, C. & Chen, C. A comparison study of alkali metal-doped g-C3N4 for visiblelight
photocatalytic hydrogen evolution. Chinese Journal of Catalysis 38, 1981–1989 (2017).
42. Wang, S. et al. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction.
American Chemical Society Sustainable Chemistry & Engineering 8, 8214–8222 (2020).
43. Ruan, L. et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the
first-principles. Materials Research Bulletin 66, 156–162 (2015).
44. Tonda, S., Kumar, S., Kandula, S. & Shanker, V. Fe-doped and-mediated graphitic carbon nitride
nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials
Chemistry A 2, 6772–6780 (2014).
45. Chen, P.-W., Li, K., Yu, Y.-X. & Zhang, W.-D. Cobalt-doped graphitic carbon nitride photocatalysts
with high activity for hydrogen evolution. Applied Surface Science 392, 608–615 (2017).
46. Garza, J., Nichols, J. A. & Dixon, D. A. The Hartree product and the description of local and global
quantities in atomic systems: A study within Kohn–Sham theory. The Journal of Chemical Physics
112, 1150–1157 (2000).
47. Dirac, P. A. M. Quantum mechanics of many-electron systems. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 123, 714–733
(1929).
54
48. Aryasetiawan, F. & Gunnarsson, O. The GW method. Reports on progress in Physics 61, 237
(1998).
49. Aulbur, W. G., Jönsson, L. & Wilkins, J. W. Quasiparticle calculations in solids. Solid state physics
(New York. 1955) 54, 1–218 (2000).
50. Hedin, L. New method for calculating the one-particle Green’s function with application to the
electron-gas problem. Physical Review 139, A796 (1965).
51. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Physical Review
84, 1232 (1951).
52. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening
parameter on the performance of screened hybrid functionals. The Journal of chemical physics 125
(2006).
53. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition
of charge density. Computational Materials Science 36, 354–360 (2006).
54. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader
charge allocation. Journal of computational chemistry 28, 899–908 (2007).
55. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias.
Journal of Physics: Condensed Matter 21, 084204 (2009).
56. Kittel, C. & McEuen, P. Introduction to solid state physics (John Wiley & Sons, 2018).
57. Wen, J., Xie, J., Chen, X. & Li, X. A review on g-C3N4-based photocatalysts. Applied Surface
Science 391, 72–123 (2017).
58. Zhu, B., Zhang, L., Cheng, B. & Yu, J. First-principle calculation study of tri-s-triazine-based
g-C3N4: a review. Applied Catalysis B: Environmental 224, 983–999 (2018).
59. Ullah, H., Tahir, A. A. & Mallick, T. K. Structural and electronic properties of oxygen defective and
Se-doped p-type BiVO4 (001) thin film for the applications of photocatalysis. Applied Catalysis B:
Environmental 224, 895–903 (2018).
60. Jia, Y., Yang, J., Zhao, D., Han, H. & Li, C. A Novel Sr2CuInO3S p-type semiconductor photocatalyst
for hydrogen production under visible light irradiation. Journal of Energy Chemistry 23,
420–426 (2014).
61. Xu, H. et al. Revealing the electronic structure and optical properties of CuFeO2 as a p-type oxide
semiconductor. American Chemical Society Applied Electronic Materials 3, 1834–1841 (2021).
62. Chang, P., Du, G., Kang, J. & Liu, X. Guidelines for ferroelectric-semiconductor tunnel junction
optimization by band structure engineering. IEEE Transactions on Electron Devices 68, 3526–3531
(2021).
63. Hiramatsu, H. et al. Origins of hole doping and relevant optoelectronic properties of wide gap p-type
semiconductor, LaCuOSe. Journal of the American Chemical Society 132, 15060–15067 (2010).
64. Yang, J. et al. Composition dependence of optical properties and band structures in p-type Nidoped
CuO films: Spectroscopic experiment and first-principles calculation. The Journal of Physical
Chemistry C 123, 27165–27171 (2019).
55
65. Sze, S. M., Li, Y. & Ng, K. K. Physics of semiconductor devices (John wiley & sons, 2021).
66. Ma, X. et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements:
a first-principles study. The Journal of Physical Chemistry C 116, 23485–23493 (2012).
67. Feng, H., Du, Y., Wang, C. & Hao, W. Efficient visible-light photocatalysts by constructing dispersive
energy band with anisotropic p and sp hybridization states. Current Opinion in Green and
Sustainable Chemistry 6, 93–100 (2017).
68. Liu, L., Lu, F., Tian, J., Xia, S. & Diao, Y. Electronic and optical properties of amorphous carbon
with different sp 3/sp 2 hybridization ratio. Applied Physics A 125, 1–10 (2019).
69. Blakemore, J. S. Semiconductor statistics (Courier Corporation, 2002).
70. Peter, Y. & Cardona, M. Fundamentals of semiconductors: physics and materials properties (Springer
Science & Business Media, 2010).
71. Sze, S. M. Semiconductor devices: physics and technology (John wiley & sons, 2008).
72. Yu, P. Fundamentals of semiconductors (Springer, 2005).
73. Zhou, D. & Qiu, C. Study on the effect of Co doping concentration on optical properties of g-C3N4.
Chemical Physics Letters 728, 70–73 (2019).
74. Tay, Q. et al. Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production.
Chemistry of Materials 27, 4930–4933 (2015).
75. Yu, X. et al. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4)
photocatalysts toward artificial photosynthesis. Small 17, 2006851 (2021).
76. Li, Y. et al. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via
defect engineering for energy and environmental science. Nano Energy 105, 108032 (2023).
77. Liang, D. et al. Photocatalytic properties of g-C6N6/g-C3N4 heterostructure: a theoretical study.
The Journal of Physical Chemistry C 120, 24023–24029 (2016).
78. Zhao, X. et al. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4
heterostructure under visible light. Applied Catalysis B: Environmental 278, 119251 (2020).
79. Zhang, Y. et al. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced
visible-light induced synthesis and conversion. Journal of Hazardous Materials 394, 122529 (2020).
80. Chen, Z.-J. et al. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst
with enhanced visible-light photocatalytic degradation for tetracycline. Chemical Engineering
Journal 438, 135471 (2022).
指導教授 簡思佳(Szu-Chia Chien) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明