參考文獻 |
1. Sutton, G.P.O. Biblarz, Rocket propulsion elements. 2016, John Wiley & Sons.
2. Kuentzmann, P., Introduction to solid rocket propulsion. Office National d’Etudes et de Recherches Aérospatiales, 2002, 29.
3. Hunley, J. The history of solid-propellant rocketry-What we do and do not know. in 35th joint propulsion conference and exhibit. 1999.
4. Williams, F.A.; M. BarrèreN. Huang, Fundamental aspects of solid propellant rockets. Vol. 116. 1969, Technivision Services Slough, England.
5. Sutton, G.P., History of liquid propellant rocket engines. 2006, AIAA.
6. Casiano, M.J.; J.R. HulkaV. Yang, Liquid-propellant rocket engine throttling: A comprehensive review. Journal of propulsion and power, 2010, 26(5), 897-923.
7. Goddard, R.H., Liquid-Propellant Rocket Development. Scientific American, 1936, 155(3), 148-151.
8. Lopata, J.B. Rutan. RASCAL: A demonstration of operationally responsive space launch. in AIAA-Proceedings of 2nd Responsive Space Conference RS2-2004-8004. 2004.
9. Cantwell, B.; A. KarabeyogluD. Altman, Recent advances in hybrid propulsion. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(4).
10. Altman, D. Hybrid rocket development history. in 27th Joint Propulsion Conference. 1991.
11. Neufeld, M.J., The Three Heroes of Spaceflight: The Rise of the Tsiolkovsky-Goddard-Oberth Interpretation and Its Current Validity. Quest: The History of Spaceflight Quarterly, 2012.
12. Davenas, A., Development of modern solid propellants. Journal of propulsion and power, 2003, 19(6), 1108-1128.
13. Ma, X.; W. Zhu; J. XiaoH. Xiao, Molecular dynamics study of the structure and performance of simple and double bases propellants. Journal of hazardous materials, 2008, 156(1-3), 201-207.
14. Ghassemi, H.; M. MeibodyK. Shaabani Lakeh, Experimental investigation on the hybrid motor using HTPB/AP composite fuel and hydrogen peroxide oxidizer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(7), 1171-1182.
15. Chmielarek, M.; P. Maksimowski; K. Cieślak; T. GołofitH. Drozd, Study of the synthesis of GAP-HTPB-GAP Liquid Copolymer. Central European Journal of Energetic Materials, 2020, 17(4), 566-583.
16. Quagliano Amado, J.C.; P.G. Ross; L. Mattos Silva MurakamiJ.C. Narciso Dutra, Properties of Hydroxyl‐Terminal Polybutadiene (HTPB) and Its Use as a Liner and Binder for Composite Propellants: A Review of Recent Advances. Propellants, Explosives, Pyrotechnics, 2022, 47(5), e202100283.
17. Gopala Krishnan, P.S.; K. AyyaswamyS. Nayak, Hydroxy terminated polybutadiene: chemical modifications and applications. Journal of Macromolecular Science, Part A, 2013, 50(1), 128-138.
18. Pang, W.; X. Fan; F. Zhao; H. Xu; W. Zhang; H. Yu; Y. Li; F. Liu; W. XieN. Yan, Effects of Different Metal Fuels on the Characteristics for HTPB‐based Fuel Rich Solid Propellants. Propellants, Explosives, Pyrotechnics, 2013, 38(6), 852-859.
19. Nanda, J.K.P. Ramakrishna, Development of AP/HTPB based fuel-rich propellant for solid propellant ramjet. in 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference. 2013, 4171.
20. Pang, W.; X. Fan; W. Zhang; H. Xu; J. Li; Y. Li; X. ShiY. Li, Application of Amorphous Boron Granulated With Hydroxyl‐Terminated Polybutadiene in Fuel‐Rich Solid Propellant. Propellants, Explosives, Pyrotechnics, 2011, 36(4), 360-366.
21. Park, S.; J. Song; E. Park; T. RhoS. Choi, A Study on Improvement of Adhesion HTPB Propellant/liner/insulation. Journal of the Korean Society of Propulsion Engineers, 2019, 23(4), 92-97.
22. Sheikhy, H.; M. ShahidzadehB. Ramezanzadeh, An evaluation of the mechanical and adhesion properties of a hydroxyl-terminated polybutadiene (HTPB)-based adhesive including different kinds of chain extenders. Polymer Bulletin, 2015, 72, 755-777.
23. Tu, J.; H. Xu; L. Liang; P. LiX. Guo, Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. New Journal of Chemistry, 2020, 44(44), 19184-19191.
24. Gopinath, S.; N.N. Adarsh; P.R. NairS. Mathew, Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. Polymer-Plastics Technology and Materials, 2023, 62(5), 563-581.
25. Liu, Y.; X. Du; H. Wang; Y. Yuan; L. Wei; X. Liu; A. SunY. Li, Anti-corrosive, weatherproof and self-healing polyurethane developed from hydrogenated hydroxyl-terminated polybutadiene toward surface-protective applications. Frontiers of Materials Science, 2022, 16(2), 220598.
26. Torbati-Fard, N.; S.M. HosseiniM. Razzaghi-Kashani, Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polymer Journal, 2020, 52(10), 1223-1234.
27. McManus, S.P.; H.S. BrunerH. Coble, Stabilization of Cure Rates of Diisocyanates with Hydroxy-Terminated Polybutadiene Binders. UAH Res. Report, 1973, (140).
28. Hendel, F.J., Review of solid propellants for space exploration. 1965.
29. Allan, W.; W. BaumgartnerG. Meyer, HTPB polymer improvement. Prepared for Air Force Rocket Propulsion Laboratory, NTIS (National Technical Information Service), 1972.
30. Layton, L., Chemical structural aging studies on an HTPB propellant. Morton Thiokol INC Brigham City UT Wasatch Operations, 1975.
31. Daniel, M.A., Polyurethane binder systems for polymer bonded explosives. 2006, DSTO.
32. Yuan, J.; J. Liu; Y. Zhou; Y. ZhangK. Cen, Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3935-3944.
33. Trache, D.; F. Maggi; I. PalmucciL.T. DeLuca, Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1601-1615.
34. Dubois, C.; S. Desilets; A. Ait‐KadiP. Tanguy, Bulk polymerization of hydroxyl terminated polybutadiene (HTPB) with tolylene diisocyanate (TDI): A kinetics study using 13C‐NMR spectroscopy. Journal of applied polymer science, 1995, 58(4), 827-834.
35. Haska, S.B.; E. Bayramli; F. PekelS. Özkar, Mechanical properties of HTPB‐IPDI‐based elastomers. Journal of applied polymer science, 1997, 64(12), 2347-2354.
36. Vernacchia, M.T., Development, modeling and testing of a slow-burning solid rocket propulsion system. 2017, Massachusetts Institute of Technology, Department of Aeronautics and ….
37. Chen, J.T. Brill, Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions. Combustion and Flame, 1991, 87(3-4), 217-232.
38. Akram, N.; K.M. Zia; N. Mumtaz; M. Saeed; M. UsmanS. Rehman, Polyurethane Coatings. Polymer Coatings: Technology and Applications, 2020, 135-157.
39. Sartomer, Hydroxyl Terminated Polybutadiene Resin and Derivatives. 2012.
40. Kumar, A.R.K. Gupta, Fundamentals of polymer engineering. 2018, CRC press.
41. BAJPAI, P., BIERMANN′S HANDBOOK OF PULP AND PAPER: Paper and Board Making. 2018, Elsevier.
42. Poletto, S.Q.T. Pham, Hydroxytelechelic polybutadiene, 13. Microstructure, hydroxyl functionality and mechanisms of the radical polymerization of butadiene by H2O2. Macromolecular Chemistry and Physics, 1994, 195(12), 3901-3913.
43. Dey, A.; A.K. SikderJ. Athar, Micro-structural effect on hydroxy terminated poly butadiene (HTPB) prepolymer and HTPB based composite propellant. Journal of Molecular Nanotechnology and Nanomedicine, 2017, 1(1), 104.
44. Dey, A.; M.A.S. Khan; J. Athar; A.K. SikderS. Chattopadhyay, Effect of microstructure on HTPB based polyurethane (HTPB-PU). J. Mater. Sci. Eng. B, 2015, 5(3-4), 145-151.
45. Toosi, F.S.; M. ShahidzadehB. Ramezanzadeh, An investigation of the effects of pre-polymer functionality on the curing behavior and mechanical properties of HTPB-based polyurethane. Journal of Industrial and Engineering Chemistry, 2015, 24, 166-173.
46. Wibowo, H.B.L. Suuk. Design And Integration Test Of Pilot Scale Production Of HTPB By Continuous Process. in Prosiding SIPTEKGAN XV-2011 Seminar Nasional IPTEK Dirgantara XV Tahun 2011. 2013, Pusat Teknologi Penerbangan.
47. Zhu, X.; X. Fan; N. Zhao; J. Liu; X. MinZ. Wang, Comparative study of structures and properties of HTPBs synthesized via three different polymerization methods. Polymer Testing, 2018, 68, 201-207.
48. Reed Jr, S.F.; ROHMH.C.H.A.R.R. LABS, Synthesis of HTPB and CTPB Prepolymers by Anionic and Free-radical Polymerization. US Army Missile Command, Alabama, 1970.
49. Villermaux, J.L. Blavier, Free radical polymerization engineering—I: A new method for modeling free radical homogeneous polymerization reactions. Chemical Engineering Science, 1984, 39(1), 87-99.
50. Colombani, D., Chain-growth control in free radical polymerization. Progress in polymer science, 1997, 22(8), 1649-1720.
51. Braun, D., Origins and development of initiation of free radical polymerization processes. International Journal of Polymer Science, 2009, 2009.
52. Brosse, J.-C.; D. Derouet; F. Epaillard; J.-C. Soutif; G. LegeayK. Dušek, Hydroxyl-terminated polymers obtained by free radical polymerization—Synthesis, characterization, and applications. Catalytical and radical polymerization, 1987, 167-223.
53. Chen, J.-m.; Z.-j. Lu; G.-q. Pan; Y.-x. Qi; J.-j. YiH.-j. Bai, Synthesis of hydroxyl-terminated polybutadiene possessing high content of 1, 4-units via anionic polymerization. Chinese Journal of Polymer Science, 2010, 28, 715-720.
54. Zhu, X.-z.; X.-d. Fan; N. Zhao; X. Min; J. LiuZ.-c. Wang, Influence of mono-lithium based initiators with different steric volumes on 1, 4 unit content of hydroxyl terminated polybutadiene using anionic polymerization. RSC advances, 2017, 7(83), 52712-52718.
55. Coutinho, F.M.; M.C. DelpechL.S. Alves, Anionic waterborne polyurethane dispersions based on hydroxyl‐terminated polybutadiene and poly (propylene glycol): Synthesis and characterization. Journal of Applied Polymer Science, 2001, 80(4), 566-572.
56. Listigovers, N.A.; M.K. Georges; P.G. OdellB. Keoshkerian, Narrow-polydispersity diblock and triblock copolymers of alkyl acrylates by a “living” stable free radical polymerization. Macromolecules, 1996, 29(27), 8992-8993.
57. Bender, J.T.D.M. Knauss, Synthesis of low polydispersity polybutadiene and polyethylene stars by convergent living anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(2), 828-836.
58. Forens, A.; K. Roos; C. Dire; B. GadenneS. Carlotti, Accessible microstructures of polybutadiene by anionic polymerization. Polymer, 2018, 153, 103-122.
59. Bywater, S.; Y. FiratP. Black, Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion‐pair and solvent effects. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22(3), 669-672.
60. Rieger, E.; J. Blankenburg; E. Grune; M. Wagner; K. LandfesterF.R. Wurm, Controlling the polymer microstructure in anionic polymerization by compartmentalization. Angewandte Chemie International Edition, 2018, 57(9), 2483-2487.
61. Bielawski, C.; O. SchermanR. Grubbs, Highly efficient syntheses of acetoxy-and hydroxy-terminated telechelic poly (butadiene) s using ruthenium catalysts containing N-heterocyclic ligands. Polymer, 2001, 42(11), 4939-4945.
62. Hillmyer, M.A.R.H. Grubbs, Preparation of hydroxytelechelic poly (butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules, 1993, 26(4), 872-874.
63. Hillmyer, M.A.; S.T. NguyenR.H. Grubbs, Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules, 1997, 30(4), 718-721.
64. Ji, S.; T.R. HoyeC.W. Macosko, Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules, 2004, 37(15), 5485-5489.
65. Thomas, R.M.R.H. Grubbs, Synthesis of telechelic polyisoprene via ring-opening metathesis polymerization in the presence of chain transfer agent. Macromolecules, 2010, 43(8), 3705-3709.
66. Su, G.A.; P. ReiterM.D. Schulz, Evaluating Catalyst Performance in Synthesizing Hydroxyl-Terminated Polybutadiene by Ring-Opening-Metathesis Polymerization. Synlett, 2023.
67. Dhas, A.M.; K. GhoshS. Banerjee, Self‐Healing of HTPB Based Polyurethane Binder via Ring Opening Metathesis Polymerization. Propellants, Explosives, Pyrotechnics, 2022, 47(10), e202100383.
68. French, D.M., Functionally terminated butadiene polymers. Rubber Chemistry and Technology, 1969, 42(1), 71-109.
69. Reed Jr, S.F., Telechelic diene prepolymers. VI. Di (4‐hydroxybutyl)‐2, 2′‐azobisisobutyrate as initiator. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1972, 10(8), 2493-2495.
70. Lin, C.; F. Smith; N. Ichikawa; T. BabaM. Itow, Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. International Journal of Chemical Kinetics, 1991, 23(11), 971-987.
71. Wang, Q.; X. Zhang; L. WangZ. Mi, Epoxidation of hydroxyl-terminated polybutadiene with hydrogen peroxide under phase-transfer catalysis. Journal of Molecular Catalysis A: Chemical, 2009, 309(1-2), 89-94.
72. Chmielarek, M.; W. SkupińskiZ. Wieczorek, Synthesis of HTPB using a semi-batch method. Materiały Wysokoenergetyczne, 2020, 12.
73. Mohamad Sadeghi, G.M.; J. MorshedianM. Barikani, The effect of initiator‐to‐monomer ratio on the properties of the polybutadiene‐ol synthesized by free radical solution polymerization of 1, 3‐butadiene. Polymer international, 2003, 52(7), 1083-1087.
74. Sadeghi, G.M.M.; J. MorshedianM. Barikani, The effect of solvent on the microstructure, nature of hydroxyl end groups and kinetics of polymerization reaction in synthesize of hydroxyl terminated polybutadiene. Reactive and Functional Polymers, 2006, 66(2), 255-266.
75. Grishchenko, V.K.; V.P. Boiko; E.I. Svistova; T.S. Yatsimirskaya; V.I. ValuevT.S. Dmitrieva, Hydrogen‐peroxide‐initiated polymerization of isoprene in alcohol solutions. Journal of applied polymer science, 1992, 46(12), 2081-2087.
76. Ilare, J.M. Sponchioni, From batch to continuous free-radical polymerization: Recent advances and hurdles along the industrial transfer. Advances in Chemical Engineering, 2020, 56(1), 229-257.
77. Kockmann, N.D.M. Roberge, Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety. Chemical Engineering and Processing: Process Intensification, 2011, 50(10), 1017-1026.
78. Chambers, R.R.H. Spink, Microreactors for elemental fluorine. Chemical Communications, 1999, (10), 883-884.
79. Stroock, A.D.; S.K. Dertinger; A. Ajdari; I. Mezic; H.A. StoneG.M. Whitesides, Chaotic mixer for microchannels. Science, 2002, 295(5555), 647-651.
80. Antonello, F.; J. BuongiornoE. Zio, Insights in the safety analysis of an early microreactor design. Nuclear Engineering and Design, 2023, 404, 112203.
81. Yoshida, J.I., Flash chemistry: flow microreactor synthesis based on high‐resolution reaction time control. The Chemical Record, 2010, 10(5), 332-341.
82. Qiu, M.; L. Zha; Y. Song; L. XiangY. Su, Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization. Reaction Chemistry & Engineering, 2019, 4(2), 351-361.
83. Iwasaki, T.J.-i. Yoshida, Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules, 2005, 38(4), 1159-1163.
84. Schefflan, R., Teach yourself the basics of Aspen Plus. 2016, John Wiley & Sons.
85. Haydary, J., Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. 2019, John Wiley & Sons.
86. Chen, W.; P. ZhaoX. Wang. Simulation and Optimization of Polystyrene Free Radical Polymerization Process. in IOP Conference Series: Earth and Environmental Science. 2019, IOP Publishing.
87. Wibowo, H.B., Treatment Methods Of Butadiene On HTPB (Hydroxy Terminated Polybutadiene) Production To Meet The Purity Requirements Of Fresh Butadiene. Proceedings SIPTEKGAN XVII-2013, 2013, 222-227.
88. Wibowo, H.B.; W.C. Dharmawan; R.S.M. WibowoA. Yulianto, Kinetic study of htpb (Hydroxyl terminated polybutadiene) synthesis using infrared spectroscopy. Indonesian Journal of Chemistry, 2020, 20(4), 919-928.
89. Moad, G., A critical assessment of the kinetics and mechanism of initiation of radical polymerization with commercially available dialkyldiazene initiators. Progress in Polymer Science, 2019, 88, 130-188.
90. Odian, G., Principles of polymerization. 2004, John Wiley & Sons.
91. Barner-Kowollik, C.; M. Buback; M. Egorov; T. Fukuda; A. Goto; O.F. Olaj; G.T. Russell; P. Vana; B. YamadaP.B. Zetterlund, Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Progress in polymer science, 2005, 30(6), 605-643.
92. Buback, M.A.M. van Herk, Radical polymerization: kinetics and mechanism. Vol. 25. 2007, John Wiley & Sons.
93. Mahmoudian, M.; K. Nosratzadegan; M. Ghasemi KochameshkiA. Shokri, Mathematical Modeling of 1, 3-Butadiene Polymerization Initiated by Hydrogen Peroxide. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2020, 39(5), 79-94.
94. Corning, The future flows through Corning® Advanced-Flow™ Reactors. 2018.
95. Gokhale, S.V.; R.K. Tayal; V.K. JayaramanB.D. Kulkarni, Microchannel reactors: applications and use in process development. International Journal of Chemical Reactor Engineering, 2005, 3(1).
96. Haynes Jr, H.W.; R.R. BorgialliT. Zhang, A novel liquid fluidized bed microreactor for coal liquefaction studies. 1. Cold model results. Energy & fuels, 1991, 5(1), 63-68.
97. Yoon, D.S.; Y.-S. Lee; Y. Lee; H.J. Cho; S.W. Sung; K.W. Oh; J. ChaG. Lim, Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. Journal of Micromechanics and microengineering, 2002, 12(6), 813.
98. Kalla, S.; S. Upadhyaya; K. Singh; R.K. DohareM. Agarwal, A case study on separation of IPA-water mixture by extractive distillation using aspen plus. International Journal of Advanced Technology and Engineering Exploration, 2016, 3(24), 187. |