博碩士論文 111324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:180 、訪客IP:18.118.146.163
姓名 李丞軒(Cheng-Hsuan Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計
(Utilizing Aspen Plus to Simulate The Continuous Reactor for Hydroxyl-Terminated Polybutadiene Free Radical Polymerization and Separation Purification Process Design)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 端羥基聚丁二烯(hydroxyl-terminated polybutadiene, HTPB)為一種遙爪聚合物,分子結構是由末端氫氧基,中間為不同形式的丁二烯單元所組成。HTPB具有多功能特性,常用於黏合劑、燃料和塗料等不同領域中。然而,目前國內大多數的HTPB皆仰賴國外進口,這可能會帶來一些不便,如國內外法規、原料品質不穩定和物價波動等。因此,我們希望未來能夠自主生產合格的HTPB,以降低對外部的依賴。
本研究之目的為使用Aspen Plus建立連續式製成HTPB的方法。進料方面設計兩條管線,通過改變壓力與溫度,以確保原料以液體型態進入反應器,可減少安全隱患。反應方面採用可控性高、反應機制單純的自由基聚合(free radical polymerization, FRP),並利用真實實驗數據,計算3/8吋管塞流式反應器(3/8’’plug flow reactor, 3/8’’PFR)和微通道反應器(Microchannal reactor, MCR)的動力學參數。此外,使用Aspen Plus中內建分析工具,透過改變進料比例、反應時間、反應溫度等參數,調節HTPB的規格。在分離方面,我們使用分離器與蒸餾塔將HTPB、丁二稀和異丙醇純化,並將純化後的丁二烯與異丙醇進行循環再利用。
這項研究已成功建立了Aspen Plus快速計算動力參數之方法,並且模擬結果與真實實驗數據相當吻合,這表明在流程設計與參數計算上具有相當高的參考性。此外,我們在保持原料完全於液相的條件下,找到合適的反應參數,使轉化率達到40%,並且數均分子量保持於3000左右。通過純化後的HTPB、丁二烯與異丙醇,純度皆能達到99%以上。丁二烯與異丙醇回收率可達99%以上,且經回收再利用後,不會造成HTPB之性質改變,有效地避免原料的浪費。
摘要(英) Hydroxyl-terminated polybutadiene (HTPB) is a telechelic polymer, with a molecular structure composed of terminal hydroxyl groups and various forms of butadiene units in the middle. HTPB possesses multifunctional characteristics and is commonly used in adhesives, fuels, and coatings across various fields. However, most HTPB used domestically is imported, which can lead to certain inconveniences, such as differences in domestic and international regulations, instability in raw material quality, and price fluctuations. Therefore, we aim to independently produce qualified HTPB in the future to reduce our reliance on external sources.
The purpose of this study is to establish a continuous process for producing HTPB using Aspen Plus. The feed design includes two pipelines that adjust pressure and temperature to ensure the materials enter the reactor in liquid form, reducing safety hazards. The reaction uses free radical polymerization (FRP), which has high controllability and a simple reaction mechanism. By utilizing actual experimental data, we calculate the kinetic parameters for a 3/8’’ plug flow reactor (3/8’’PFR) and a microchannel reactor (MCR). Additionally, we use built-in analysis tools in Aspen Plus to adjust HTPB specifications by altering parameters such as feed ratio, reaction time, and reaction temperature. In the separation process, we use separator and distillation columns to purify HTPB, butadiene, and isopropanol, and recycle the purified butadiene and isopropanol.
This study successfully established a method for quickly calculating kinetic parameters using Aspen Plus. The simulation results closely matched actual experimental data, indicating high reliability in process design and parameter calculations. Furthermore, under conditions that keep the materials entirely in the liquid phase, we found suitable reaction parameters that achieved a conversion rate of 40%, with the number-average molecular weight maintained around 3000. The purified HTPB, butadiene, and isopropanol all achieve a purity of over 99%. The recovery rates of butadiene and isopropanol are also above 99%, and their recycling does not alter the properties of HTPB, effectively preventing material waste.
關鍵字(中) ★ 端羥基聚丁二烯
★ 微通道反應器
★ Aspen plus
關鍵字(英) ★ hydroxyl-terminated polybutadiene (HTPB)
★ microchannel reactor (MCR)
★ Aspen Plus
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 文獻回顧 6
2-1 HTPB介紹 6
2-2 HTPB規格 9
2-2-1 數均分子量、重均分子量、分子量分佈介紹 10
2-2-2 鏈段比例介紹 11
2-2-3 產量與轉化率介紹 12
2-3 HTPB聚合方式 14
2-3-1 自由基聚合 14
2-3-2 活性陰離子聚合 16
2-3-3 開環復分解聚合 17
2-4 起始劑選擇 19
2-5 溶劑選擇 22
2-6 微流道反應器介紹 25
2-7 Aspen Plus介紹 28
第三章 實驗方法及步驟 30
3-1 模擬軟體介紹 30
3-1-1 模擬軟體操作設置 30
3-2 HTPB自由基聚合反應動力學 31
3-2-1 HTPB自由基聚合反應機制 31
3-2-2 起始劑解離速率常速(kd) 32
3-2-3 反應中間體單自由基長鏈分子的濃度([RM·]) 32
3-2-4 動力學鏈長("ν" )與聚合度(Xn) 33
3-3 Aspen Plus程序設計與參數設定 35
第四章 結果與討論 38
4-1 動力參數計算 38
4-2 3/8’’PFR參數模擬 40
4-2-1 初級自由基添加單體步驟(Ra)對HTPB所造成之影響 41
4-2-2 鏈增長反應速率常數(kp)與鏈終止反應速率常數(kt)之特殊關係式 42
4-2-3 動力參數校正 43
4-2-4 3/8’’PFR動力參數與模擬結果 44
4-2-5 3/8’’PFR模擬HTPB鏈段 45
4-3 MCR參數模擬 48
4-3-1 校正MCR動力參數 50
4-3-2 溫度與壓力對HTPB之影響 51
4-3-3 氣化壓力與進料流率比例關係 53
4-3-4 進料流率比例對HTPB之影響 56
4-3-5 滯留時間對HTPB之影響 59
4-3-6 比較MCR與3/8’’PFR 61
4-4 提升反應轉化率 63
4-4-1 提升MCR之反應器規格 63
4-4-2 MCR45串聯3/8’’PFR 64
4-5 分離純化之程序設計 67
4-5-1 HTPB純化分離 67
4-5-2 BD純化分離 68
4-5-3 IPA純化分離 73
4-5-4 原料循環 78
4-5-5 循環前後之反應結果 81
第五章 結論與未來展望 82
第六章 附錄 84
6-1 流程圖(圖3- 2)管線內部流率與組成 84
6-2 於Aspen Plus中PDI之變化 88
參考文獻 90
參考文獻 1. Sutton, G.P.O. Biblarz, Rocket propulsion elements. 2016, John Wiley & Sons.
2. Kuentzmann, P., Introduction to solid rocket propulsion. Office National d’Etudes et de Recherches Aérospatiales, 2002, 29.
3. Hunley, J. The history of solid-propellant rocketry-What we do and do not know. in 35th joint propulsion conference and exhibit. 1999.
4. Williams, F.A.; M. BarrèreN. Huang, Fundamental aspects of solid propellant rockets. Vol. 116. 1969, Technivision Services Slough, England.
5. Sutton, G.P., History of liquid propellant rocket engines. 2006, AIAA.
6. Casiano, M.J.; J.R. HulkaV. Yang, Liquid-propellant rocket engine throttling: A comprehensive review. Journal of propulsion and power, 2010, 26(5), 897-923.
7. Goddard, R.H., Liquid-Propellant Rocket Development. Scientific American, 1936, 155(3), 148-151.
8. Lopata, J.B. Rutan. RASCAL: A demonstration of operationally responsive space launch. in AIAA-Proceedings of 2nd Responsive Space Conference RS2-2004-8004. 2004.
9. Cantwell, B.; A. KarabeyogluD. Altman, Recent advances in hybrid propulsion. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(4).
10. Altman, D. Hybrid rocket development history. in 27th Joint Propulsion Conference. 1991.
11. Neufeld, M.J., The Three Heroes of Spaceflight: The Rise of the Tsiolkovsky-Goddard-Oberth Interpretation and Its Current Validity. Quest: The History of Spaceflight Quarterly, 2012.
12. Davenas, A., Development of modern solid propellants. Journal of propulsion and power, 2003, 19(6), 1108-1128.
13. Ma, X.; W. Zhu; J. XiaoH. Xiao, Molecular dynamics study of the structure and performance of simple and double bases propellants. Journal of hazardous materials, 2008, 156(1-3), 201-207.
14. Ghassemi, H.; M. MeibodyK. Shaabani Lakeh, Experimental investigation on the hybrid motor using HTPB/AP composite fuel and hydrogen peroxide oxidizer. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(7), 1171-1182.
15. Chmielarek, M.; P. Maksimowski; K. Cieślak; T. GołofitH. Drozd, Study of the synthesis of GAP-HTPB-GAP Liquid Copolymer. Central European Journal of Energetic Materials, 2020, 17(4), 566-583.
16. Quagliano Amado, J.C.; P.G. Ross; L. Mattos Silva MurakamiJ.C. Narciso Dutra, Properties of Hydroxyl‐Terminal Polybutadiene (HTPB) and Its Use as a Liner and Binder for Composite Propellants: A Review of Recent Advances. Propellants, Explosives, Pyrotechnics, 2022, 47(5), e202100283.
17. Gopala Krishnan, P.S.; K. AyyaswamyS. Nayak, Hydroxy terminated polybutadiene: chemical modifications and applications. Journal of Macromolecular Science, Part A, 2013, 50(1), 128-138.
18. Pang, W.; X. Fan; F. Zhao; H. Xu; W. Zhang; H. Yu; Y. Li; F. Liu; W. XieN. Yan, Effects of Different Metal Fuels on the Characteristics for HTPB‐based Fuel Rich Solid Propellants. Propellants, Explosives, Pyrotechnics, 2013, 38(6), 852-859.
19. Nanda, J.K.P. Ramakrishna, Development of AP/HTPB based fuel-rich propellant for solid propellant ramjet. in 49th AIAA/ASME/SAE/ASEE Joint PropulsionConference. 2013, 4171.
20. Pang, W.; X. Fan; W. Zhang; H. Xu; J. Li; Y. Li; X. ShiY. Li, Application of Amorphous Boron Granulated With Hydroxyl‐Terminated Polybutadiene in Fuel‐Rich Solid Propellant. Propellants, Explosives, Pyrotechnics, 2011, 36(4), 360-366.
21. Park, S.; J. Song; E. Park; T. RhoS. Choi, A Study on Improvement of Adhesion HTPB Propellant/liner/insulation. Journal of the Korean Society of Propulsion Engineers, 2019, 23(4), 92-97.
22. Sheikhy, H.; M. ShahidzadehB. Ramezanzadeh, An evaluation of the mechanical and adhesion properties of a hydroxyl-terminated polybutadiene (HTPB)-based adhesive including different kinds of chain extenders. Polymer Bulletin, 2015, 72, 755-777.
23. Tu, J.; H. Xu; L. Liang; P. LiX. Guo, Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. New Journal of Chemistry, 2020, 44(44), 19184-19191.
24. Gopinath, S.; N.N. Adarsh; P.R. NairS. Mathew, Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. Polymer-Plastics Technology and Materials, 2023, 62(5), 563-581.
25. Liu, Y.; X. Du; H. Wang; Y. Yuan; L. Wei; X. Liu; A. SunY. Li, Anti-corrosive, weatherproof and self-healing polyurethane developed from hydrogenated hydroxyl-terminated polybutadiene toward surface-protective applications. Frontiers of Materials Science, 2022, 16(2), 220598.
26. Torbati-Fard, N.; S.M. HosseiniM. Razzaghi-Kashani, Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polymer Journal, 2020, 52(10), 1223-1234.
27. McManus, S.P.; H.S. BrunerH. Coble, Stabilization of Cure Rates of Diisocyanates with Hydroxy-Terminated Polybutadiene Binders. UAH Res. Report, 1973, (140).
28. Hendel, F.J., Review of solid propellants for space exploration. 1965.
29. Allan, W.; W. BaumgartnerG. Meyer, HTPB polymer improvement. Prepared for Air Force Rocket Propulsion Laboratory, NTIS (National Technical Information Service), 1972.
30. Layton, L., Chemical structural aging studies on an HTPB propellant. Morton Thiokol INC Brigham City UT Wasatch Operations, 1975.
31. Daniel, M.A., Polyurethane binder systems for polymer bonded explosives. 2006, DSTO.
32. Yuan, J.; J. Liu; Y. Zhou; Y. ZhangK. Cen, Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3935-3944.
33. Trache, D.; F. Maggi; I. PalmucciL.T. DeLuca, Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1601-1615.
34. Dubois, C.; S. Desilets; A. Ait‐KadiP. Tanguy, Bulk polymerization of hydroxyl terminated polybutadiene (HTPB) with tolylene diisocyanate (TDI): A kinetics study using 13C‐NMR spectroscopy. Journal of applied polymer science, 1995, 58(4), 827-834.
35. Haska, S.B.; E. Bayramli; F. PekelS. Özkar, Mechanical properties of HTPB‐IPDI‐based elastomers. Journal of applied polymer science, 1997, 64(12), 2347-2354.
36. Vernacchia, M.T., Development, modeling and testing of a slow-burning solid rocket propulsion system. 2017, Massachusetts Institute of Technology, Department of Aeronautics and ….
37. Chen, J.T. Brill, Chemistry and kinetics of hydroxyl-terminated polybutadiene (HTPB) and diisocyanate-HTPB polymers during slow decomposition and combustion-like conditions. Combustion and Flame, 1991, 87(3-4), 217-232.
38. Akram, N.; K.M. Zia; N. Mumtaz; M. Saeed; M. UsmanS. Rehman, Polyurethane Coatings. Polymer Coatings: Technology and Applications, 2020, 135-157.
39. Sartomer, Hydroxyl Terminated Polybutadiene Resin and Derivatives. 2012.
40. Kumar, A.R.K. Gupta, Fundamentals of polymer engineering. 2018, CRC press.
41. BAJPAI, P., BIERMANN′S HANDBOOK OF PULP AND PAPER: Paper and Board Making. 2018, Elsevier.
42. Poletto, S.Q.T. Pham, Hydroxytelechelic polybutadiene, 13. Microstructure, hydroxyl functionality and mechanisms of the radical polymerization of butadiene by H2O2. Macromolecular Chemistry and Physics, 1994, 195(12), 3901-3913.
43. Dey, A.; A.K. SikderJ. Athar, Micro-structural effect on hydroxy terminated poly butadiene (HTPB) prepolymer and HTPB based composite propellant. Journal of Molecular Nanotechnology and Nanomedicine, 2017, 1(1), 104.
44. Dey, A.; M.A.S. Khan; J. Athar; A.K. SikderS. Chattopadhyay, Effect of microstructure on HTPB based polyurethane (HTPB-PU). J. Mater. Sci. Eng. B, 2015, 5(3-4), 145-151.
45. Toosi, F.S.; M. ShahidzadehB. Ramezanzadeh, An investigation of the effects of pre-polymer functionality on the curing behavior and mechanical properties of HTPB-based polyurethane. Journal of Industrial and Engineering Chemistry, 2015, 24, 166-173.
46. Wibowo, H.B.L. Suuk. Design And Integration Test Of Pilot Scale Production Of HTPB By Continuous Process. in Prosiding SIPTEKGAN XV-2011 Seminar Nasional IPTEK Dirgantara XV Tahun 2011. 2013, Pusat Teknologi Penerbangan.
47. Zhu, X.; X. Fan; N. Zhao; J. Liu; X. MinZ. Wang, Comparative study of structures and properties of HTPBs synthesized via three different polymerization methods. Polymer Testing, 2018, 68, 201-207.
48. Reed Jr, S.F.; ROHMH.C.H.A.R.R. LABS, Synthesis of HTPB and CTPB Prepolymers by Anionic and Free-radical Polymerization. US Army Missile Command, Alabama, 1970.
49. Villermaux, J.L. Blavier, Free radical polymerization engineering—I: A new method for modeling free radical homogeneous polymerization reactions. Chemical Engineering Science, 1984, 39(1), 87-99.
50. Colombani, D., Chain-growth control in free radical polymerization. Progress in polymer science, 1997, 22(8), 1649-1720.
51. Braun, D., Origins and development of initiation of free radical polymerization processes. International Journal of Polymer Science, 2009, 2009.
52. Brosse, J.-C.; D. Derouet; F. Epaillard; J.-C. Soutif; G. LegeayK. Dušek, Hydroxyl-terminated polymers obtained by free radical polymerization—Synthesis, characterization, and applications. Catalytical and radical polymerization, 1987, 167-223.
53. Chen, J.-m.; Z.-j. Lu; G.-q. Pan; Y.-x. Qi; J.-j. YiH.-j. Bai, Synthesis of hydroxyl-terminated polybutadiene possessing high content of 1, 4-units via anionic polymerization. Chinese Journal of Polymer Science, 2010, 28, 715-720.
54. Zhu, X.-z.; X.-d. Fan; N. Zhao; X. Min; J. LiuZ.-c. Wang, Influence of mono-lithium based initiators with different steric volumes on 1, 4 unit content of hydroxyl terminated polybutadiene using anionic polymerization. RSC advances, 2017, 7(83), 52712-52718.
55. Coutinho, F.M.; M.C. DelpechL.S. Alves, Anionic waterborne polyurethane dispersions based on hydroxyl‐terminated polybutadiene and poly (propylene glycol): Synthesis and characterization. Journal of Applied Polymer Science, 2001, 80(4), 566-572.
56. Listigovers, N.A.; M.K. Georges; P.G. OdellB. Keoshkerian, Narrow-polydispersity diblock and triblock copolymers of alkyl acrylates by a “living” stable free radical polymerization. Macromolecules, 1996, 29(27), 8992-8993.
57. Bender, J.T.D.M. Knauss, Synthesis of low polydispersity polybutadiene and polyethylene stars by convergent living anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(2), 828-836.
58. Forens, A.; K. Roos; C. Dire; B. GadenneS. Carlotti, Accessible microstructures of polybutadiene by anionic polymerization. Polymer, 2018, 153, 103-122.
59. Bywater, S.; Y. FiratP. Black, Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion‐pair and solvent effects. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22(3), 669-672.
60. Rieger, E.; J. Blankenburg; E. Grune; M. Wagner; K. LandfesterF.R. Wurm, Controlling the polymer microstructure in anionic polymerization by compartmentalization. Angewandte Chemie International Edition, 2018, 57(9), 2483-2487.
61. Bielawski, C.; O. SchermanR. Grubbs, Highly efficient syntheses of acetoxy-and hydroxy-terminated telechelic poly (butadiene) s using ruthenium catalysts containing N-heterocyclic ligands. Polymer, 2001, 42(11), 4939-4945.
62. Hillmyer, M.A.R.H. Grubbs, Preparation of hydroxytelechelic poly (butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules, 1993, 26(4), 872-874.
63. Hillmyer, M.A.; S.T. NguyenR.H. Grubbs, Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules, 1997, 30(4), 718-721.
64. Ji, S.; T.R. HoyeC.W. Macosko, Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules, 2004, 37(15), 5485-5489.
65. Thomas, R.M.R.H. Grubbs, Synthesis of telechelic polyisoprene via ring-opening metathesis polymerization in the presence of chain transfer agent. Macromolecules, 2010, 43(8), 3705-3709.
66. Su, G.A.; P. ReiterM.D. Schulz, Evaluating Catalyst Performance in Synthesizing Hydroxyl-Terminated Polybutadiene by Ring-Opening-Metathesis Polymerization. Synlett, 2023.
67. Dhas, A.M.; K. GhoshS. Banerjee, Self‐Healing of HTPB Based Polyurethane Binder via Ring Opening Metathesis Polymerization. Propellants, Explosives, Pyrotechnics, 2022, 47(10), e202100383.
68. French, D.M., Functionally terminated butadiene polymers. Rubber Chemistry and Technology, 1969, 42(1), 71-109.
69. Reed Jr, S.F., Telechelic diene prepolymers. VI. Di (4‐hydroxybutyl)‐2, 2′‐azobisisobutyrate as initiator. Journal of Polymer Science Part A‐1: Polymer Chemistry, 1972, 10(8), 2493-2495.
70. Lin, C.; F. Smith; N. Ichikawa; T. BabaM. Itow, Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. International Journal of Chemical Kinetics, 1991, 23(11), 971-987.
71. Wang, Q.; X. Zhang; L. WangZ. Mi, Epoxidation of hydroxyl-terminated polybutadiene with hydrogen peroxide under phase-transfer catalysis. Journal of Molecular Catalysis A: Chemical, 2009, 309(1-2), 89-94.
72. Chmielarek, M.; W. SkupińskiZ. Wieczorek, Synthesis of HTPB using a semi-batch method. Materiały Wysokoenergetyczne, 2020, 12.
73. Mohamad Sadeghi, G.M.; J. MorshedianM. Barikani, The effect of initiator‐to‐monomer ratio on the properties of the polybutadiene‐ol synthesized by free radical solution polymerization of 1, 3‐butadiene. Polymer international, 2003, 52(7), 1083-1087.
74. Sadeghi, G.M.M.; J. MorshedianM. Barikani, The effect of solvent on the microstructure, nature of hydroxyl end groups and kinetics of polymerization reaction in synthesize of hydroxyl terminated polybutadiene. Reactive and Functional Polymers, 2006, 66(2), 255-266.
75. Grishchenko, V.K.; V.P. Boiko; E.I. Svistova; T.S. Yatsimirskaya; V.I. ValuevT.S. Dmitrieva, Hydrogen‐peroxide‐initiated polymerization of isoprene in alcohol solutions. Journal of applied polymer science, 1992, 46(12), 2081-2087.
76. Ilare, J.M. Sponchioni, From batch to continuous free-radical polymerization: Recent advances and hurdles along the industrial transfer. Advances in Chemical Engineering, 2020, 56(1), 229-257.
77. Kockmann, N.D.M. Roberge, Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety. Chemical Engineering and Processing: Process Intensification, 2011, 50(10), 1017-1026.
78. Chambers, R.R.H. Spink, Microreactors for elemental fluorine. Chemical Communications, 1999, (10), 883-884.
79. Stroock, A.D.; S.K. Dertinger; A. Ajdari; I. Mezic; H.A. StoneG.M. Whitesides, Chaotic mixer for microchannels. Science, 2002, 295(5555), 647-651.
80. Antonello, F.; J. BuongiornoE. Zio, Insights in the safety analysis of an early microreactor design. Nuclear Engineering and Design, 2023, 404, 112203.
81. Yoshida, J.I., Flash chemistry: flow microreactor synthesis based on high‐resolution reaction time control. The Chemical Record, 2010, 10(5), 332-341.
82. Qiu, M.; L. Zha; Y. Song; L. XiangY. Su, Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization. Reaction Chemistry & Engineering, 2019, 4(2), 351-361.
83. Iwasaki, T.J.-i. Yoshida, Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules, 2005, 38(4), 1159-1163.
84. Schefflan, R., Teach yourself the basics of Aspen Plus. 2016, John Wiley & Sons.
85. Haydary, J., Chemical process design and simulation: Aspen Plus and Aspen Hysys applications. 2019, John Wiley & Sons.
86. Chen, W.; P. ZhaoX. Wang. Simulation and Optimization of Polystyrene Free Radical Polymerization Process. in IOP Conference Series: Earth and Environmental Science. 2019, IOP Publishing.
87. Wibowo, H.B., Treatment Methods Of Butadiene On HTPB (Hydroxy Terminated Polybutadiene) Production To Meet The Purity Requirements Of Fresh Butadiene. Proceedings SIPTEKGAN XVII-2013, 2013, 222-227.
88. Wibowo, H.B.; W.C. Dharmawan; R.S.M. WibowoA. Yulianto, Kinetic study of htpb (Hydroxyl terminated polybutadiene) synthesis using infrared spectroscopy. Indonesian Journal of Chemistry, 2020, 20(4), 919-928.
89. Moad, G., A critical assessment of the kinetics and mechanism of initiation of radical polymerization with commercially available dialkyldiazene initiators. Progress in Polymer Science, 2019, 88, 130-188.
90. Odian, G., Principles of polymerization. 2004, John Wiley & Sons.
91. Barner-Kowollik, C.; M. Buback; M. Egorov; T. Fukuda; A. Goto; O.F. Olaj; G.T. Russell; P. Vana; B. YamadaP.B. Zetterlund, Critically evaluated termination rate coefficients for free-radical polymerization: Experimental methods. Progress in polymer science, 2005, 30(6), 605-643.
92. Buback, M.A.M. van Herk, Radical polymerization: kinetics and mechanism. Vol. 25. 2007, John Wiley & Sons.
93. Mahmoudian, M.; K. Nosratzadegan; M. Ghasemi KochameshkiA. Shokri, Mathematical Modeling of 1, 3-Butadiene Polymerization Initiated by Hydrogen Peroxide. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2020, 39(5), 79-94.
94. Corning, The future flows through Corning® Advanced-Flow™ Reactors. 2018.
95. Gokhale, S.V.; R.K. Tayal; V.K. JayaramanB.D. Kulkarni, Microchannel reactors: applications and use in process development. International Journal of Chemical Reactor Engineering, 2005, 3(1).
96. Haynes Jr, H.W.; R.R. BorgialliT. Zhang, A novel liquid fluidized bed microreactor for coal liquefaction studies. 1. Cold model results. Energy & fuels, 1991, 5(1), 63-68.
97. Yoon, D.S.; Y.-S. Lee; Y. Lee; H.J. Cho; S.W. Sung; K.W. Oh; J. ChaG. Lim, Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. Journal of Micromechanics and microengineering, 2002, 12(6), 813.
98. Kalla, S.; S. Upadhyaya; K. Singh; R.K. DohareM. Agarwal, A case study on separation of IPA-water mixture by extractive distillation using aspen plus. International Journal of Advanced Technology and Engineering Exploration, 2016, 3(24), 187.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明