博碩士論文 110324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.135.206.98
姓名 林浚煒(Jun-Wei Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備規則有序矽單晶微奈米孔洞陣列及增強其近紅外光吸收特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究透過奈米球微影術結合濕式化學蝕刻法製備出大面積均一尺寸之奈米倒金字塔陣列取代傳統光阻及光罩以低成本將單晶矽表面圖案化,並以此為基礎成功在N-type(100)矽晶圓上以室溫光輔助電化學蝕刻法製備出大面積規則矽單晶奈米孔洞陣列,利用此方法可以透過形成高深寬比且具有漸變折射率之錐型結構,並探討隨著蝕刻時間增加對光學性質及親疏水性質的變化。
本研究透過兩種方式改善近紅外光波段的吸收率,其一為透過無電鍍沉積法沉積銀奈米顆粒形成矽單晶奈米通道/銀奈米顆粒異質結構,並探討沉積時間對光學之影響。第二種方法為透過金屬濺鍍沉積法均勻濺鍍鎳金屬薄膜於結構表面,並在高溫爐中退火形成矽化鎳奈米孔洞結構,透過近紅外光光譜量測發現和純矽基材料相比在近紅外光波段鎳矽化物奈米孔洞陣列的吸收率提升,並且在可見光波段的吸收度比矽/銀奈米顆粒異質結構較佳,證明金屬矽化物在改善在近紅外光波段矽基奈米材料的可用性。本研究提供一簡易途徑可製備高效且高穩定性之矽化鎳奈米孔洞陣列製備過程,並在各式光學器件都有良好的前景。
摘要(英) In this study, we combined the polystyrene nanosphere lithography and wet chemical etching to fabricate large-area, uniform-sized inverted pyramid arrays, replacing traditional photoresists and photomasks to pattern silicon surfaces at low cost. After that, we developed a novel and room-temperature approach, a large-area, regular silicon single-crystal nanochannel array was successfully fabricated on N-type (100) silicon wafer This method allows for the formation of high aspect ratio tapered structures with gradient refractive indices. The study investigates the changes in optical properties and hydrophobic/hydrophilic properties with increased etching time.
Two strategies be considered to enhance the absorption in the near-infrared wavelength. The first method involves depositing silver nanoparticles by electroless plating to form silicon/silver heterostructure, and the impact of deposition time on optical properties is explored. The second method employs metal sputtering to uniformly deposit a nickel metal film on the surface of the structure, followed by high-temperature annealing in a furnace with pure nitrogen to form a nickel silicide nanochannel structure. Spectral measurements reveal that compared to pure silicon nanostructure, the NiSi nanostructure exhibit enhanced the near-infrared absorption and better absorption in the visible region compared to the silicon channel/silver nanoparticle heterostructure. This study provides a simple approach to fabricate high-efficiency and high-stability nickel silicide nanochannel arrays, showing good prospects for various optical devices.
關鍵字(中) ★ 奈米球微影術
★ 矽單晶微奈米孔洞陣列
★ 無電鍍沉積銀奈米顆粒
★ 鎳矽化物奈米結構
關鍵字(英)
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽單晶奈米結構 2
1-2-1奈米孔洞結構特性及相關應用 2
1-2-2微奈米孔洞結構製備方式 3
1-3 接觸角理論 4
1-4 近紅外光相關技術之運用 6
1-5 金屬奈米粒子特性之探討 7
1-6 金屬矽化物奈米結構 8
1-6-1 金屬矽化物之製程演進 8
1-6-2一維鎳矽化物奈米結構製備 10
1-7 研究動機及目標 10
第二章 實驗步驟及實驗設備 12
2-1 規則有序且尺寸可調控之矽單晶奈米孔洞陣列結構 12
2-1-1 矽晶基材使用前處理 12
2-1-2 自組裝尺寸可調之奈米球模板製備 12
2-1-3 奈米球微影術結合鹼性溶液蝕刻法製備奈米尖孔結構 13
2-1-4 光輔助電化學蝕刻法製備矽單晶微奈米孔洞陣列 13
2-2 矽微奈米孔洞陣列/銀奈米顆粒異質結構 13
2-3 鎳矽化物微奈米孔洞陣列結構 14
2-3-1 濺鍍沉積鎳金屬薄膜 14
2-3-2高溫熱退火處理形成鎳矽微奈米孔洞結構 14
2-3 試片分析 15
2-3-1 掃描式電子顯微鏡 15
2-3-2 影像式水滴接觸角量測儀 15
2-3-3可見光-近紅外光光譜儀 15
2-3-4 X光繞射儀 16
第三章 結果與討論 17
3-1 單層自主裝奈米球模板陣列及奈米尖孔陣列製備 17
3-2 規則有序排列之矽單晶微奈米孔洞陣列 19
3-2-1微奈米孔洞陣列製備 19
3-2-2微奈米孔洞陣列光學性質量測分析 23
3-2-3微奈米孔洞陣列水滴接觸角量測分析 24
3-3奈米銀顆粒/矽單晶微奈米孔洞異質結構 25
3-3-1 光學性質量測 26
3-4 規則有序排列之鎳矽化物微奈米孔洞陣列 27
3-4-1 金屬矽化物光學性質量測分析 28
第四章 結論與未來展望 29
參考文獻 30
圖目錄 38
參考文獻 [1] G. E. Moore, “Cramming more components onto integrated circuits,” Electron. Mag. (1965) 4.
[2] D.M. Newman, M.L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology. 18 (2007) 205301.
[3] K.-Q. Peng, X. Wang, X. Wu, and S.-T. Lee, "Fabrication and photovoltaic property of ordered macroporous silicon," Appl. Phys. Lett. 95 (2009) 143119.
[4] T. Søndergaard and S.I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express. 15 (2007) 4198.
[5] J.L. Duan, D.Y. Lei, F. Chen, S.P. Lau, W.I. Milne, M.E. Toimil-Molares, C. Trautmann, and J. Liu, “Vertically-aligned single-crystal nanocone arrays: controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces 8 (2016) 472-479.
[6] J. Bieker, F. Roustaie, H.F. Schlaak, C. Langer, R. Schreiner, M. Lotz, and S. Wilfert, “Field emission characterization of in situ deposited gold nanocones with variable cone densities,” J. Vac. Sci. Technol. 36 (2018) 2.
[7] P.V. Trinh, N.N. Anh, N.T. Cham, L.T. Tu, N.V. Hao, B.H. Thang, N.V. Chuc, C.T. Thanh, P.N. Minh, and N. Fukata, “ Enhanced power conversion efficiency of an n Si PEDOTPSS hybrid solar cell using nanostructured silicon and gold nanoparticles,” RSC Adv. 12 (2022) 10514.
[8] G. Otnes, E. Barrigón, C. Sundvall, K.E. Svensson, M. Heurlin, G. Siefer, L. Samuelson, I. Åberg, and M.T . Borgström, “Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements,” Nano Lett. 18 (2018) 3038-3046.
[9] O. Lupan, N. Ababii, A.K. Mishra, O. Gronenberg, A. Vahl, U. Schürmann, V. Duppel, H. Krüger, L. Chow, L. Kienle, F. Faupel, R. Adelung, N.H. de Leeuw, and S. Hansen, “Single CuO/Cu2O/Cu microwire covered by a nanowire network as a gas sensor for the detection of battery hazards,” ACS Appl. Mater. Interfaces 12 (2020) 42248-42263.
[10] D. Yang, I. Cho, D. Kim, M.A. Lim, Z.Y. Li, J.G.Ok, M. Lee, and I. Park, “Gas sensor by direct growth and functionalization of metal oxide/metal sulfide core–shell nanowires on flexible substrates,” ACS Appl. Mater. Interfaces 11 (2019) 24298-24307.
[11] Q.S. Hong, Y. Cao, J,Xu, H.M. Lu, J.H. He, and J.L. Sun,“Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array,” ACS Appl. Mater. Interfaces 6 (2014) 20887-20894.
[12] C. Wang, F. Luo, H. Lu, X. Rong, B. Liu, G. Chu, Y. Sun, B. Quan, J. Zheng, J. Li, C. Gu, X. Qiu, H. Li, L. Chen. “A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-Ion batteries,” ACS Appl. Mater. Interfaces 9 (2017) 2806-2814.
[13] A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler, S. Dörfler, F. Fauth, T. Mikolajick, and W.M. Weber. “In situ raman spectroscopy on silicon nanowire anodes Integrated in lithium Ion batteries,” J. Electrochem. Soc.166 (2019) A5378-A5385.
[14] R. Ning, Y. Jiang, Y.T. Zeng, H.X. Gong, J.H. Zhao, J. Weisse, X.J. Shi, T.M. Gill, and X.L. Zheng, “On-demand production of hydrogen by reacting porous silicon nanowires with water,” Nano Res. 13 (2020) 1459-1464.
[15] Z.Q. Yang, K. Du, F.F. Lu, Y. Pang, S.J. Hua, X.T. Gan, W.D. Zhang, S.J. Chua, and T. Mei, “Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector,” Photonics Research 7 (2019) 294-299.
[16] X. Yan, B. Li, Y. Wu, X. Zhang, and X.M. Ren, “A single crystalline InP nanowire photodetector,” Appl. Phys. Lett. 109 (2016) 5.
[17] A. E. Ashenafi and K. Tetsuo, “Enhanced photodetection capabilities of smaller size 2D Au/PtSi/P-Si nanohole array-based MIR schottky detector,” IEEE 37th International Conference on Micro Electro Mechanical Systems (2024).
[18] R.K. Kothandaraman, Y. Jiang, T. Feurer, A.N. Tiwari, and F. Fu, “Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics,” Small Methods 4 (2020) 2000395.
[19] Z.Y. Qi, Y.S. Zhai, L. Wen, Q.L. Wang, Q. Chen, S. Iqbal, G.DA. Chen, J. Xu, and Y. Tu, “Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection,” Nanotechnology 28 (2017) 275202.
[20] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, and M. Kusko, “Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 29234-29247.
[21] S.Y. Zhu, M.B. Yu, G.Q. Lo, D.L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92 (2008) 8.
[22] S.E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10 (2010) 1012-1015.
[23] S. Thiyagu, H.J. Syu, C.C. Hsueh, C.T. Liu, T.C. Lin, and C.F. Lin, “Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells,” RSC Adv. 5 (2015) 13224-13233.
[24] K. Nishio, S. Tagawa, T. Fukushima, and H. Masuda, “Highly ordered nanoporous Si for negative electrode of rechargeable lithium-ion battery,” electrochem. Solid-State Lett. 15 (2012) A41-A44.
[25] J.Y. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z.Y. Huo, T.P. Russell, and P.D. Yang, “Holey silicon as an efficient thermoelectric material,” Nano Lett. 10 (2010) 4279-4283.
[26] Z.Q. Ren, J.H. Cao, J.Y. Lim, Z.Q. Yu, J.C. Kim, and J. Lee, “Experimental Demonstration of holey silicon-based thermo electric cooling,” IEEE Trans Electron Devices 69 (2022) 3446-3454.
[27] T.G. Chen, P. Yu, S.W. Chen, F.Y. Chang, B.Y. Huang, Y.C. Cheng, J.C. Hsiao, C.K. Li, and Y.R. Wu, “Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics,” Prog. Photovolt. Res. Appl. 22 (2014) 452-461.
[28] T. Subramani, C.C. Hsueh, H.J. Syu, C.T. Liu, S.T. Yang, and C.F. Lin, “Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells,” RSC Adv. 6 (2016) 12374-12381.
[29] P. Varasteanu, A. Radoi, O. Tutunaru, A. Ficai, R. Pascu, M. Kusko, and I. Mihalache, “Plasmon-enhanced photoresponse of self-powered Si nanoholes photodetector by metal nanowires,” Nanomaterials 11 (2021) 9.
[30] J. Yang, L.L. Tang, W. Luo, J. Shen, D.H. Zhou, S.L. Feng, X.Z. Wei, and H.F. Shi, “Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors,” ACS Appl. Mater. Interfaces 11 (2019) 30421-30429.
[31] C. Escobedo, “On-chip nanohole array based sensing: A review,” Lab Chip 13 (2013) 2445.
[32] N.N.N.M. Ibrahim, and A.M. Hashim, “fabrication of Si micropore and graphene nanohole structures by focused ion beam,” Sensors 20 (2020) 1572.
[33] N. Khinevich, H. Bandarenka, S. Zavatski, K. Girel, A. Tamuleviciene, T. Tamulevicius, and S. Tamulevicius, “Porous silicon - A versatile platform for mass-production of ultrasensitive SERS-active substrates,” Microporous Mesoporous Mater. 323 (2021) 111204.
[34] J.Y. Jung, M.J. Choi, K. Zhou, X.P. Li, S.W. Jee, H.D. Um, M.J. Park, K.T. Park, J.H. Bang, and J.H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A 2 (2014) 833-842.
[35] F.A. Harraz, K. Kamada, K. Kobayashi, T. Sakka, and Y.H. Ogata, “Random macropore formation in p-Type silicon in HF-containing organic solutions: host matrix for metal deposition,” J. Electrochem. Soc. 152 (2005) C213-C220.
[36] A.J. Fulton, V.O. Kollath, K. Karan, and Y.J. Shi, “Macroporous silicon formation by electrochemical anodization of n-type silicon without illumination, ” J. Appl. Phys. 124 (2018) 9.
[37] C.X. Lin, L.J. Martínez, and M.L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21 (2013) A872-A882.
[38] H. Asoh, K. Fujihara, and S. Ono, “Triangle pore arrays fabricated on Si (111) substrate by sphere lithography combined with metal-assisted chemical etching and anisotropic chemical etching,” Nanoscale Res. Lett. 7 (2012) 406.
[39] A. Nur′aini and I. Oh, “Deep etching of silicon based on metal-assisted chemical etching,” ACS Omega 7 (2022) 16665-16665.
[40] L. Rahmasari, M.F. Abdullah, A.R.M. Zain, and A.M. Hashim, “Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching,” Sains Malaysiana 48 (2019) 1157-1161.
[41] S.H. Altinoluk, H.E. Ciftpinar, O. Demircioglu, F. Es, G. Baytemir, O. Akar, A. Aydemir, A. Sarac, T. Akin, and R. Turan, “Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells,” 6th International Conference on Silicon Photovoltaics 92 (2016) 291-296.
[42] F.J. Wendisch, M. Abazari, H. Mahdavi, M. Rey, N. Vogel, M. Musso, O. Diwald, and G.R. Bourret, “Morphology-graded silicon nanowire arrays via chemical etching: engineering optical properties at the nanoscale and macroscale,” ACS Appl. Mater. Interfaces 12 (2020) 13140-13147.
[43] C. In, J. Seo, H. Kwon, J. Choi, S. Sim, J. Kim, T. Kim, T. Lee, and H. Choi, “Counter balanced effect of surface trap and Auger recombination on the transverse terahertz carrier dynamics in silicon nanowires,” IEEE Trans. Terahertz Sci. Technol. 5 (2015) 605-612.
[44] Y.M. Tseng, R.Y. Gu, C.W. Chang, and S.L. Cheng, “Facile fabrication of periodic arrays of vertical Si nanoholes on (001)Si substrate with broadband light absorption properties,” Applied Surface Science 480 (2019) 131–137.
[45] L.Y. Kong, Y.S. Zhao, B. Dasgupta, K. Hippalgaonkar, X.L. Li, W.K. Chim, and S.Y. Chiam, “Minimizing isolate catalyst motion in metal-assisted chemical etching for deep trenching of silicon nanohole array,” ACS Appl. Mater. Interfaces 9 (2017) 20981-20990.
[46] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, "Wettability switching techniques on superhydrophobic surfaces, “Nanoscale Res. Lett. 2 (2007) 577.
[47] M. Callies and D. Quere, "On water repellency,” Soft matter. 1 (2005) 55.
[48] K. Ma, T.S. Chung, and R.J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” J. Polym. Sci. B: Polym. Phys. 36 (1998) 2327.
[49] R. Vitorino, A.S. Barros, S. Guedes, D.C. Caixeta, and R. Sabino-Silva, “Diagnostic and monitoring applications using near infrared (NIR) spectroscopy in cancer and other diseases,” Photodiagnosis Photodyn. Ther. 42 (2023) 103633.
[50] K.B. Bec, J. Grabska, and C.W. Huck, “NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation,” J. Pharm. Biomed. Anal. 193 (2021) 113686.
[51] Y.Z. Zhang, T. Liu, B. Meng, X.H. Li, G.Z. Liang, X.N. Hu, and Q.J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4 (2013) 1811.
[52] J.H. Wu, Z.W. Yang, C.Y. Qiu, Y.J. Zhang, Z.Q. Wu, Y J.L.ang, Y.H. Lu, J.F. Li, D.X.Yang, R. Hao, EP. Li, GL. Yu, and S.S. Lin, “Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles” Nanoscale 10 (2018) 8023-8030.
[53] W. Lei, J. Antoszewski, and L. Faraone, “Progress, challenges, and opportunities for HgCdTe infrared materials and detectors,” Appl. Phys. Rev. 2 (2015) 4.
[54] L.Y. Zheng, T. Zhu, W Z.Xu, L. Liu, J. Zheng, X. Gong, and F. Wudl, “Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer,” J. Mater. Chem. C 6 (2018) 3624-3641.
[55] C. Li, J.H. Zhao, and Z.G. Chen, “Infrared absorption and sub-bandgap photo-response of hyperdoped silicon by ion implantation and ultrafast laser melting,” J. Alloys Compd. 883 (2021) 160765.
[56] W.J. Yang, J. Mathews, and J.S. Williams, “Hyperdoping of Si by ion implantation and pulsed laser melting,” Mater. Sci. Semicond. Process. 62 (2017) 103–114.
[57] M. Bednorz, G.J. Matt, E.D. Glowacki, T. Fromherz, C.J. Brabec, M.C. Scharber, H. Sitter, and N.S. Sariciftci, “Silicon/organic hybrid heterojunction infrared photodetector operating in the telecom regime,” Organic Electronics 14 (2013) 1344–1350.
[58] Y.T. Wan, Z.Y. Zhang, R.L. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M.J. Kennedy, D. Liang, C. Zhang, J.W. Shi, A.C. Gossard, K.M. Lau, and J. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25 (2017) 27715-27723.
[59] X.Z. Liu, Q. Zhou, S. Luo, H.W. Du, Z.S. Cao, X.Y. Peng, W.L. Feng, J. Shen, and D.P. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11 (2019) 17663-17669.
[60] Z.H. Lou, L.H. Zeng, Y.G. Wang, D. Wu, T.T. Xu, Z.F. Shi, Y.T. Tian, X.J. Li, and Y.H. Tsang, “High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. 42 (2017) 3335-3338.
[61] Q.Y. Wu, G.B.A. Cen, Y.J. Liu, Z. Ji, and W.J. Mai, “A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging,” Phys. Lett. A 412 (2021) 127586.
[62] T. Kan, Y. Ajiki, K. Matsumoto, and I. Shimoyama, “Si process compatible near-infrared photodetector using AU/SI nano-pillar array,” 2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS) (2016) 624-627.
[63] C.Y. Wu, Z.Q. Pan, Y.Y. Wang, C.W. Ge, Y.Q. Yu, J.Y. Xu, L. Wang, and L.B. Luo, “Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector,” J. Mater. Chem. C 4 (2016) 10804-10811.
[64] M. Fidan, Ö. Ünverdi, and C. Çelebi, “Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes,” Sens. Actuators A: Phys. A 331 (2021) 112829.
[65] J.F. Masson, and “Portable and field-deployed surface plasmon resonance and plasmonic sensors,” Analyst 145 (2020) 3776.
[66] J.J. Xu, W.C. Zhang, Y.W. Guo, X.Y. Chen, and Y.N. Zhang, “Metal nanoparticles as a promising technolog y in targeted cancer treatment,” Drug Delivery 29 (2022) 664-n678.
[67] A. Andleeb, S. Asghar, G. Zaman, M. Tariq, A. Mehmood, M. Nadeem, C. Hano, J.M. Lorenzo, and B.H. Abbasi, “A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy,” Cancers 13 (2021) 2818.
[68] D. D. Lin, Z. L. Wu, S. J. Li, W. Q. Zhao, C. J. Ma, J. Wang, Z. M. Jiang, Z. Y. Zhong, and Y. B. Zheng, and Yang, X. J. ”Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy,” ACS Nano 11 (2017) 1478-1478.
[69] M.W. Shao, M.L. Zhang, N.B. Wong, D.D. Ma, H. Wang, W.W. Chen, and S.T. Lee, “Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy,” Appl. Phys. Lett. 93 (2008) 233118.
[70] M. Tahir, B. Tahir, and N.A.S. Amin, “Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation,” Appl. Surf. Sci. 356 (2015) 1289-1299.
[71] T.T. Hong, Z.F. Liu, X.R. Zheng, J. Zhang, and L. Yan, “Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure,” Appl. Catal. B: Environ. 202 (2017) 454-459.
[72] D. D. Lin, Z. L. Wu, S. J. Li, W. Q. Zhao, C. J. Ma, J. Wang, Z. M. Jiang, Z. Y. Zhong, Y. B. Zheng, and X. J. Yang, “Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy,” ACS Nano 11 (2017) 1478-1487.
[73] Z.W. Zuo, L.Y. Sun, Y.B. Guo, L.J. Zhang, J.H. Li, K.G. Li, and G.L. Cui, “Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering,” Nano Res. 15 (2022) 317-325.
[74] L.F. Wei, J.C. Lin, S.J. Xie, W.C. Ma, Q.H. Zhang, Z.B. Shen, and Y. Wang, “Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays,” Nanoscale 11 (2019) 12530.
[75] Z.X. Zhang, T. Martinsen, G.H. Liu, M. Tayyib, D.F. Cui, M.J. de Boer, F. Karlsen, H. Jakobsen, C.Y. Xue, and K.Y. Wang, “Ultralow broadband reflectivity in black silicon via synergy between hierarchical texture and specific-size Au nanoparticles,” Adv. Opt. Mater. 8 (2020) 19.
[76] S.Q. Lim, C.T.K. Lew, P.K. Chow, J.M. Warrender, J.S. Williams, and B.C. Johnson, “Toward understanding and optimizing Au-hyperdoped Si infrared photodetectors” APL Mater. 8 (2020) 061109.
[77] C.L. Mei, S. Liu, X. Huang, Z.K. Gan, P.Q. Zhou, and H. Wang, “Localized surface plasmon induced position-sensitive photodetection in silicon-nanowire-modified Ag/Si,” Small 13 (2017) 1701726.
[78] K. Ramachandran, S. Columbus, S. Chidambaram, K. Daoudi, M.A. El Khakani, and M. Gaidi, “Fabrication of highly oriented 1D SiNW arrays/Au for femto molar level detection of H1N1 protein,” ACS Mater. Lett. 300 (2021) 130184.
[79] M. Naffeti, P.A. Postigo, R. Chtourou, and M.A. Zaïbi, “Highly efficient silicon nanowire surface passivation by Bismuth nano-coating for multifunctional Bi@SiNWs heterostructures,” Nanomaterials 10 (2020) 1434.
[80] L. Mehrvar, M. Sadeghipari, S.H. Tavassoli, S. Mohajerzadeh, and M. Fathipour, “Optical and Surface enhanced raman scattering properties of Ag modified silicon double nanocone array,” Sci. Rep 7 (2017) 1-13.
[81] T.H. Chaneg, Y.C. Chang, C.M. Chen, and K.W. Chuang, “Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering,” Thin Solid Films 676 (2019) 108-112.
[82] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, and M. Wordeman, "One‐micron polycide (WSi2 on Poly‐Si) MOSFET technology," J. Electrochem. Soc. 128 (1981) 2207.
[83] E. IBOK and S. GARG, “A Characterization of the effect of deposition temperature on polysilicon properties morphology dopability etchability and polycide properties,” J. Electrochem. Soc. 140 (1993) 2927-2937.
[84] H. Iwai, T. Ohguro, and S.-i. Ohmi, “NiSi salicide technology for scaled CMOS ,” Microelectron. Eng. 60 (2002) 157.
[85] S.L. Zhang and U. Smith, “Self-aligned silicides for Ohmic contacts in complementary metal–oxide–semiconductor technology TiSi2 CoSi2  and NiSi,” J. Vac. Sci. Technol. A 22 (2004) 1361-1370.
[86] J.F. DiGregorio and R.N. Wall, “Small area versus narrow line width effects on the C49 to C54 transformation of TiSi/sub 2,” IEEE Electron Device Lett. 47 (2000) 313.
[87] J.B. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi and COSi2,” IEEE Trans. Electron Devices 38 (1991) 2.
[88] J.Y. Lin, H.M. Hsu, and K.C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties," CrystEngComm. 17 (2015) 1911.
[89] W.L. Chiu, C.H. Chiu, J.Y. Chen, C.W. Huang, Y.T. Huang, K.C. Lu, C.L. Hsin, P.H. Yeh, and W.W. Wu, "Single-crystalline δ-Ni 2 Si nanowires with excellent physical properties," Nanoscale Res. Lett. 8 (2013) 1.
[90] A.L. Schmitt, J.M. Higgins, J.R. Szczech, and S. Jin, “Synthesis and applications of metal silicide nanowires,” J. Mater. Chem. 20 (2010) 223–235.
[91] Y. Song, L. Andrew, and J. Song, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett. 7 (2012) 965-969.
[92] K. Kang, S.K. Kim, C.J. Kim, and M.H. Jo, “The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers,” Nano Lett. 8 (2008) 431-436.
[93] A. Kosloff, E. Granot, Z. Barkay, and F. Patolsky, “Controlled formation of radial core-shell Si/metal silicide crystalline heterostructures,” Nano Lett. 18 (2018) 70.
[94] Y.-W. Ok, T.-Y. Seong, C.-J. Choi, and K.N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88 (2006) 043016.
[95] C. Chuang and S.L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Res. 7 (2014) 1592.
[96] S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 33 (2015) 02B101.
[97] V. Lehmann, “The Physics of macropore formation in low doped n‐Type silicon,” J. Electrochem. Soc 140 (1993) 10.
[98] V. Lehmann, R. Stengl, A. Luigart “On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B69 (2000) 11-22.
[99] J. Jakubowicz, “Nanoporous silicon fabricated at different illumination and electrochemical conditions,” Superlattices Microstruct. 41 (2007) 205–215
[100] O. Bisi, Stefano Ossicini, L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38 (2000) 1-126.
[101] X. G. Zhang, “Morphology and formation mechanisms of porous silicon,” J. Electrochem. Soc 151 (2004) C69-C80.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明