參考文獻 |
[1] "European Environmental Agency(EEA)," https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/environmental-performance/.
[2] C. Moore, S. Brown, P. MacDonald, M. Ewen, and H. Broadbent, “European electricity review 2022,” Ember: London, UK, 2022.
[3] D. Gibb, N. Ledanois, L. Ranalder, and H. Yaqoob, “Renewables 2022 global status report,” REN21: Paris, France, 2022.
[4] R. Basu, “Thermoelectric modules: key issues in architectural design and contact optimization,” ChemNanoMat, vol. 9, no. 3, pp. e202200551, 2023.
[5] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, “A comprehensive review of Thermoelectric Generators: Technologies and common applications,” Energy reports, vol. 6, pp. 264-287, 2020.
[6] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, “A review on thermoelectric generators: Progress and applications,” Energies, vol. 13, no. 14, pp. 3606, 2020.
[7] X.-L. Shi, J. Zou, and Z.-G. Chen, “Advanced thermoelectric design: from materials and structures to devices,” Chemical reviews, vol. 120, no. 15, pp. 7399-7515, 2020.
[8] A. Ali, H. Shaukat, S. Bibi, W. A. Altabey, M. Noori, and S. A. Kouritem, “Recent progress in energy harvesting systems for wearable technology,” Energy Strategy Reviews, vol. 49, pp. 101124, 2023.
[9] M. Li, M. Hong, M. Dargusch, J. Zou, and Z.-G. Chen, “High-efficiency thermocells driven by thermo-electrochemical processes,” Trends in Chemistry, vol. 3, no. 7, pp. 561-574, 2021.
[10] T. Cao, X.-L. Shi, and Z.-G. Chen, “Advances in the design and assembly of flexible thermoelectric device,” Progress in Materials Science, vol. 131, pp. 101003, 2023.
[11] Z. Wu, S. Zhang, Z. Liu, E. Mu, and Z. Hu, “Thermoelectric converter: Strategies from materials to device application,” Nano Energy, vol. 91, pp. 106692, 2022.
[12] K. Tyagi, B. Gahtori, S. Kumar, and S. Dhakate, “Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation,” Solar Energy, vol. 254, pp. 195-212, 2023.
[13] J. He, K. Li, L. Jia, Y. Zhu, H. Zhang, and J. Linghu, “Advances in the applications of thermoelectric generators,” Applied Thermal Engineering, pp. 121813, 2023.
[14] H. Liu, G. Li, X. Zhao, X. Ma, and C. Shen, “Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler,” Energy, vol. 267, pp. 126471, 2023.
[15] Z. Liu, S. Zhang, Z. Wu, E. Mu, H. Wei, Y. Liu, H. Shi, and Z. Hu, “High-performance integrated chip-level thermoelectric device for power generation and microflow detection,” Nano Energy, vol. 114, pp. 108611, 2023.
[16] T. Gong, L. Li, M. Shi, G. Hou, L. Kang, L. Gao, and J. Li, “A novel cascaded thin-film thermoelectric cooler for on-chip hotspot cooling,” Applied Thermal Engineering, vol. 231, pp. 120968, 2023.
[17] T. Kucova, M. Prauzek, J. Konecny, D. Andriukaitis, M. Zilys, and R. Martinek, “Thermoelectric energy harvesting for internet of things devices using machine learning: A review,” CAAI Transactions on Intelligence Technology, vol. 8, no. 3, pp. 680-700, 2023.
[18] S. Masoumi, M. Jabri, and A. Pakdel, “Investigating thin-film thermoelectric generators: Leg shapes, TEG configurations, and contact resistance analysis,” Energy Conversion and Management: X, pp. 100597, 2024.
[19] L. Huang, Y. Zheng, L. Xing, and B. Hou, “Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications,” Thermal Science and Engineering Progress, pp. 102064, 2023.
[20] H. Liu, H. Fu, L. Sun, C. Lee, and E. M. Yeatman, “Hybrid energy harvesting technology: From materials, structural design, system integration to applications,” Renewable and sustainable energy reviews, vol. 137, pp. 110473, 2021.
[21] S. Corbett, D. Gautam, S. Lal, K. Yu, N. Balla, G. Cunningham, K. M. Razeeb, R. Enright, and D. McCloskey, “Electrodeposited thin-film micro-thermoelectric coolers with extreme heat flux handling and microsecond time response,” ACS Applied Materials & Interfaces, vol. 13, no. 1, pp. 1773-1782, 2021.
[22] S. Xu, X.-L. Shi, M. Dargusch, C. Di, J. Zou, and Z.-G. Chen, “Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications,” Progress in Materials Science, vol. 121, pp. 100840, 2021.
[23] W. Y. Chen, X. L. Shi, J. Zou, and Z. G. Chen, “Thermoelectric coolers: progress, challenges, and opportunities,” Small Methods, vol. 6, no. 2, pp. 2101235, 2022.
[24] W. A. Salah, and M. Abuhelwa, “Review of thermoelectric cooling devices recent applications,” Journal of Engineering Science and Technology, vol. 15, no. 1, pp. 455-476, 2020.
[25] T. Kajikawa, “Thermoelectric application for power generation in Japan,” Advances in Science and Technology, vol. 74, pp. 83-92, 2011.
[26] N. Bisht, P. More, P. K. Khanna, R. Abolhassani, Y. K. Mishra, and M. Madsen, “Progress of hybrid nanocomposite materials for thermoelectric applications,” Materials Advances, vol. 2, no. 6, pp. 1927-1956, 2021.
[27] D. Ji, H. Cai, Z. Ye, D. Luo, G. Wu, and A. Romagnoli, “Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Techno-economic analysis,” Sustainable Energy Technologies and Assessments, vol. 55, pp. 102914, 2023.
[28] Z. Chen, J. Li, G. Tang, J. Zhang, D. Zhang, and P. Gao, “High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review,” Renewable and Sustainable Energy Reviews, vol. 192, pp. 114209, 2024.
[29] P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, “Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber,” Applied Energy, vol. 152, pp. 121-130, 2015.
[30] K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, "Thermoelectric module and generator for gasoline engine vehicles." pp. 464-467.
[31] W. B. Nader, “Thermoelectric generator optimization for hybrid electric vehicles,” Applied Thermal Engineering, vol. 167, pp. 114761, 2020.
[32] T. C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser, and B. Sievers, “Increasing the efficiency of the multi-mission radioisotope thermoelectric generator,” Journal of Electronic Materials, vol. 44, pp. 1814-1821, 2015.
[33] D. Woerner, “A Progress Report on the eMMRTG,” J. Electron. Mater., vol. 45, no. March 2016, pp. 1278–1283, 2016.
[34] S. A. Abdul-Wahab, A. Elkamel, A. M. Al-Damkhi, A. Is′ Haq, H. S. Al-Rubai′ey, A. K. Al-Battashi, A. R. Al-Tamimi, K. H. Al-Mamari, and M. U. Chutani, “Design and experimental investigation of portable solar thermoelectric refrigerator,” Renewable energy, vol. 34, no. 1, pp. 30-34, 2009.
[35] Z. Chen, M. Liao, X. Hu, Y. Ma, S. Jiang, X. Chen, F. Zou, and Z. He, “Study on the performance of thermoelectric refrigerator under natural convection heat transfer condition,” Applied Thermal Engineering, vol. 230, pp. 120822, 2023.
[36] S. D. Patil, and K. D. Devade, “Review on thermoelectric refrigeration: applications and technology,” International Journal of Modern Trends in Engineering and Research (IJMTER), vol. 2, no. 7, 2015.
[37] Y.-W. Chang, C.-C. Chang, M.-T. Ke, and S.-L. Chen, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Engineering, vol. 29, no. 13, pp. 2731-2737, 2009.
[38] H.-S. Huang, Y.-C. Weng, Y.-W. Chang, S.-L. Chen, and M.-T. Ke, “Thermoelectric water-cooling device applied to electronic equipment,” International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 140-146, 2010.
[39] M. M. Hameed, M. Mansor, M. Azrin Mohd Azau, and S. Muhsin, “Thermoelectric cooler performance enhancement using thermoelectric generators and their use as a single model to improve the performance of thermal battery management systems for electric vehicles,” Energy Storage, vol. 5, no. 5, pp. e406, 2023.
[40] Y. Lyu, A. Siddique, S. H. Majid, M. Biglarbegian, S. Gadsden, and S. Mahmud, “Electric vehicle battery thermal management system with thermoelectric cooling,” Energy Reports, vol. 5, pp. 822-827, 2019.
[41] M. S. Raut, and P. Walke, “Thermoelectric air cooling for cars,” International Journal of Engineering Science and Technology (IJEST), vol. 4, no. 5, pp. 2381-2394, 2012.
[42] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, “GeTe thermoelectrics,” Joule, vol. 4, no. 5, pp. 986-1003, 2020.
[43] S. H. Zaferani, M. W. Sams, R. Ghomashchi, and Z.-G. Chen, “Thermoelectric coolers as thermal management systems for medical applications: Design, optimization, and advancement,” Nano energy, vol. 90, pp. 106572, 2021.
[44] J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, and Y. Pei, “Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides,” NPG Asia Materials, vol. 9, no. 3, pp. e353-e353, 2017.
[45] M. R. Shankar, and A. Prabhu, “A review on structural characteristics and thermoelectric properties of mid-temperature range Chalcogenide-based thermoelectric materials,” Journal of Materials Science, vol. 58, no. 43, pp. 16591-16633, 2023.
[46] J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen, and Y. Pei, “Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics,” Advanced Science, vol. 4, no. 12, pp. 1700341, 2017.
[47] H. Okamoto, “Ge-Te (germanium-tellurium),” Journal of Phase Equilibria, vol. 21, no. 5, pp. 496-496, Oct, 2000.
[48] B. Huang, and J. Robertson, “Nature of defects and gap states in GeTe model phase change materials,” Physical Review B, vol. 85, no. 12, pp. 125305, 2012.
[49] M. Hong, K. Zheng, W. Lyv, M. Li, X. Qu, Q. Sun, S. Xu, J. Zou, and Z.-G. Chen, “Computer-aided design of high-efficiency GeTe-based thermoelectric devices,” Energy & Environmental Science, vol. 13, no. 6, pp. 1856-1864, 2020.
[50] G. J. Snyder, and E. S. Toberer, “Complex thermoelectric materials,” Nature materials, vol. 7, no. 2, pp. 105-114, 2008.
[51] A. Dadhich, M. Saminathan, K. Kumari, S. Perumal, M. R. Rao, and K. Sethupathi, “Physics and technology of thermoelectric materials and devices,” Journal of Physics D: Applied Physics, 2023.
[52] H. Zhu, T. Zhao, B. Zhang, Z. An, S. Mao, G. Wang, X. Han, X. Lu, J. Zhang, and X. Zhou, “Entropy engineered cubic n‐type AgBiSe2 alloy with high thermoelectric performance in fully extended operating temperature range,” Advanced Energy Materials, vol. 11, no. 5, pp. 2003304, 2021.
[53] F. Guo, M. Liu, J. Zhu, Z. Liu, Y. Zhu, M. Guo, X. Dong, Q. Zhang, Y. Zhang, and W. Cai, “Suppressing lone-pair expression endows room-temperature cubic structure and high thermoelectric performance in GeTe-based materials,” Materials Today Physics, vol. 27, pp. 100780, 2022.
[54] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature, vol. 473, no. 7345, pp. 66-69, 2011.
[55] T. Xing, Q. Song, P. Qiu, Q. Zhang, X. Xia, J. Liao, R. Liu, H. Huang, J. Yang, and S. Bai, “Superior performance and high service stability for GeTe-based thermoelectric compounds,” National Science Review, vol. 6, no. 5, pp. 944-954, 2019.
[56] M. Samanta, T. Ghosh, R. Arora, U. V. Waghmare, and K. Biswas, “Realization of both n-and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying,” Journal of the American Chemical Society, vol. 141, no. 49, pp. 19505-19512, 2019.
[57] P.-C. Wei, C.-X. Cai, C.-R. Hsing, C.-M. Wei, S.-H. Yu, H.-J. Wu, C.-L. Chen, D.-H. Wei, D.-L. Nguyen, and M. M. Chou, “Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1− xBix) Te crystals,” Scientific reports, vol. 9, no. 1, pp. 8616, 2019.
[58] Z. Liu, J. Sun, J. Mao, H. Zhu, W. Ren, J. Zhou, Z. Wang, D. J. Singh, J. Sui, and C.-W. Chu, “Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping,” Proceedings of the National Academy of Sciences, vol. 115, no. 21, pp. 5332-5337, 2018.
[59] Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, and C. Wolverton, “Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance,” Journal of the American Chemical Society, vol. 140, no. 7, pp. 2673-2686, 2018.
[60] D. Z. Wang, W. D. Liu, Y. Mao, S. Li, L. C. Yin, H. Wu, M. Li, Y. Wang, X. L. Shi, X. Yang, Q. Liu, and Z. G. Chen, “Decoupling Carrier-Phonon Scattering Boosts the Thermoelectric Performance of n-Type GeTe-Based Materials,” J Am Chem Soc, vol. 146, no. 2, pp. 1681-1689, Jan 17, 2024.
[61] D. K. Bhat, and U. S. Shenoy, “Mg/Ca doping ameliorates the thermoelectric properties of GeTe: influence of electronic structure engineering,” Journal of Alloys and Compounds, vol. 843, pp. 155989, 2020.
[62] L. C. Yin, W. D. Liu, M. Li, D. Z. Wang, H. Wu, Y. Wang, L. Zhang, X. L. Shi, Q. Liu, and Z. G. Chen, “Interstitial Cu: an effective strategy for high carrier mobility and high thermoelectric performance in GeTe,” Advanced Functional Materials, vol. 33, no. 25, pp. 2301750, 2023.
[63] H. Liu, X. Zhang, J. Li, Z. Bu, X. Meng, R. Ang, and W. Li, “Band and phonon engineering for thermoelectric enhancements of rhombohedral GeTe,” ACS applied materials & interfaces, vol. 11, no. 34, pp. 30756-30762, 2019.
[64] Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, and Y. Pei, “Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics,” Materials Today Physics, vol. 9, pp. 100096, 2019.
[65] Z. Liu, W. Gao, W. Zhang, N. Sato, Q. Guo, and T. Mori, “High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: Insights into the hidden role of rhombohedral distortion degree,” Advanced Energy Materials, vol. 10, no. 42, pp. 2002588, 2020.
[66] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, and A. Jain, “Low-symmetry rhombohedral GeTe thermoelectrics,” Joule, vol. 2, no. 5, pp. 976-987, 2018.
[67] H. He, W. Liu, Y. Wu, M. Rong, P. Zhao, and X. Tang, “An approximate and efficient characterization method for temperature-dependent parameters of thermoelectric modules,” Energy conversion and management, vol. 180, pp. 584-597, 2019.
[68] C. Chaki, M. Chaki, and K. Roy, “Formation of Intermetallic Compounds in Diffusion Soldering Joints in High Temperature Power Electronic Applications,” International journal of innovative research in technology, vol. 5, no. 11, pp. 724-732, 2019.
[69] T. H. C. L.C. Tsao, W. Gust, and E.J. Mittemeijer, “Proceedings of the 6th International Conference on Joining Ceramics, Glass and Metal,” Sep. 30–Oct. 1, 2002.
[70] W. Zhang, P. Limaye, Y. Civale, R. Labie, and P. Soussan, "Fine pitch Cu/Sn solid state diffusion bonding for making high yield bump interconnections and its application in 3D integration." pp. 1-4.
[71] I. Kwiecien, P. Bobrowski, A. Wierzbicka-Miernik, L. Litynska-Dobrzynska, and J. Wojewoda-Budka, “Growth kinetics of the selected intermetallic phases in Ni/Al/Ni system with various nickel substrate microstructure,” Nanomaterials, vol. 9, no. 2, pp. 134, 2019.
[72] C. Yang, H. Lai, J. Hwang, and T. Chuang, “Diffusion soldering of Pb-doped GeTe thermoelectric modules with Cu electrodes using a thin-film Sn interlayer,” Journal of electronic materials, vol. 42, pp. 359-365, 2013.
[73] O. Kostyuk, B. Dzundza, M. Maksymuk, V. Bublik, L. Chernyak, and Z. Dashevsky, “Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb) 2Te3,” Physics and Chemistry of Solid State, vol. 21, no. 4, pp. 628-634, 2020.
[74] S. Muthiah, S. Choudhary, P. Sangwan, M. Yadav, C. Prajapati, N. K. Upadhyay, R. Shyam, and S. R. Dhakate, “High-Performance Functionalized Mg2Si0. 9Sn0. 1 Thermoelectric Leg Synthesis by a Single-Step Reactive SPS Process,” ACS Applied Energy Materials, vol. 5, no. 12, pp. 15710-15718, 2022.
[75] J. Li, S. Zhao, J. Chen, C. Han, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, and C. Zhang, “Al–Si alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical strength,” ACS applied materials & interfaces, vol. 12, no. 16, pp. 18562-18569, 2020.
[76] T. Xing, Q. Song, P. Qiu, Q. Zhang, M. Gu, X. Xia, J. Liao, X. Shi, and L. Chen, “High efficiency GeTe-based materials and modules for thermoelectric power generation,” Energy & Environmental Science, vol. 14, no. 2, pp. 995-1003, 2021.
[77] L. Xie, C. Ming, Q. Song, C. Wang, J. Liao, L. Wang, C. Zhu, F. Xu, Y.-Y. Sun, and S. Bai, “Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%,” Science Advances, vol. 9, no. 27, pp. eadg7919, 2023.
[78] V. Sokolova, L. Dudkin, and L. Petrova, “Diffusion processes at GeTe/SnTe/Fe contacts,” Inorganic materials, vol. 36, pp. 16-21, 2000.
[79] Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z. Chen, S. Lin, W. Li, and Y. Pei, “Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys,” Science Advances, vol. 7, no. 19, pp. eabf2738, 2021.
[80] J. W. Choi, G. H. Hwang, W. K. Han, and S. G. Kang, “Phase transformation of Ni–B, Ni–P diffusion barrier deposited electrolessly on Cu interconnect,” Applied Surface Science, vol. 253, no. 4, pp. 2171-2178, 2006.
[81] L. Liu, Z. Chen, Z. Zhou, G. Chen, F. Wu, and C. Liu, “Diffusion barrier property of electroless Ni-WP coating in high temperature Zn-5Al/Cu solder interconnects,” Journal of Alloys and Compounds, vol. 722, pp. 746-752, 2017.
[82] E. Yusufu, T. Sugahara, M. Okajima, S. Nambu, and K. Suganuma, “Effects of microstructure of Ni barrier on bonding interface diffusion behaviors of Bi–Te-based thermoelectric material,” Journal of Alloys and Compounds, vol. 817, pp. 152731, 2020.
[83] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G. J. Snyder, “Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications,” Journal of Materials Science, vol. 49, pp. 1716-1723, 2014.
[84] K. Xiong, W. Wang, H. N. Alshareef, R. P. Gupta, J. B. White, B. E. Gnade, and K. Cho, “Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces,” Journal of Physics D: Applied Physics, vol. 43, no. 11, pp. 115303, 2010.
[85] D. Tripathi, and T. K. Dey, “Thermal conductivity, coefficient of linear thermal expansion and mechanical properties of LDPE/Ni composites,” Indian Journal of Physics, vol. 87, pp. 435-445, 2013.
[86] S. Perumal, S. Roychowdhury, and K. Biswas, “High performance thermoelectric materials and devices based on GeTe,” Journal of Materials Chemistry C, vol. 4, no. 32, pp. 7520-7536, 2016.
[87] R. N. Jarrett, and J. K. Tien, “Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy,” Metallurgical Transactions A, vol. 13, pp. 1021-1032, 1982.
[88] M. Li, and J. Lu, “Cobalt in lithium-ion batteries,” Science, vol. 367, no. 6481, pp. 979-980, 2020.
[89] L. Tian, J. Xu, and S. Xiao, “The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition,” Vacuum, vol. 86, no. 1, pp. 27-33, 2011.
[90] D. Kaur, D. K. Pandya, and S. Chaudhary, “Texture changes in electrodeposited cobalt nanowires with bath temperature,” Journal of The Electrochemical Society, vol. 159, no. 12, pp. D713, 2012.
[91] T. Cohen-Hyams, W. D. Kaplan, and J. Yahalom, “Structure of electrodeposited cobalt,” Electrochemical and solid-state letters, vol. 5, no. 8, pp. C75, 2002.
[92] A. E.-H. M. Abd EL, M. H. Fawzy, and M. A. Mahmoud, “Cobalt Electroplating from Aqueous Electrolytes of Different Anionic Species,” Denki Kagaku oyobi Kogyo Butsuri Kagaku, vol. 61, no. 11, pp. 1270-1276, 1993.
[93] S.-W. Chen, J.-C. Wang, and L.-C. Chen, “Interfacial reactions at the joints of PbTe thermoelectric modules using Ag-Ge braze,” Intermetallics, vol. 83, pp. 55-63, 2017.
[94] M. Aljaghtham, and E. Celik, “Design of cascade thermoelectric generation systems with improved thermal reliability,” Energy, vol. 243, pp. 123032, 2022.
[95] B. Cook, T. Chan, G. Dezsi, P. Thomas, C. Koch, J. Poon, T. Tritt, and R. Venkatasubramanian, “High-performance three-stage cascade thermoelectric devices with 20% efficiency,” Journal of Electronic Materials, vol. 44, pp. 1936-1942, 2015.
[96] E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, “A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator,” Journal of Power Sources, vol. 365, pp. 266-272, 2017.
[97] W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, “Understanding of the contact of nanostructured thermoelectric n-type Bi 2 Te 2.7 Se 0.3 legs for power generation applications,” Journal of Materials Chemistry A, vol. 1, no. 42, pp. 13093-13100, 2013.
[98] Z. Wu, Y. Lei, Y. Wang, and H. Fu, “Effect of cobalt content on microstructure and property of electroplated nickel‐cobalt alloy coatings,” Materialwissenschaft und Werkstofftechnik, vol. 44, no. 7, pp. 593-600, 2013.
[99] H. Noro, K. Sato, and H. Kagechika, “The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering,” Journal of Applied Physics, vol. 73, no. 3, pp. 1252-1260, 1993.
[100] K. Klepp, and K. Komarek, “Transition metal—chalcogene Systems, IV: The Systems Co− Te and Co− Ni− Te,” Monatshefte für Chemie/Chemical Monthly, vol. 104, pp. 105-117, 1973.
[101] 2024/06/03; https://oqmd.org/materials/composition/Co2Te3.
[102] K. Persson. "Materials Data on CoTe2 (SG:164) by Materials Project," 2024/06/03; https://legacy.materialsproject.org/materials/mp-1009641/.
[103] S.-W. Chen, Y. Chen, J. R. Chang, and H.-j. Wu, “Co/GeTe interfacial reactions and Co-Ge-Te phase equilibria,” Journal of the Taiwan Institute of Chemical Engineers, vol. 146, pp. 104890, 2023.
[104] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, and D. Li, “Achieving high thermoelectric quality factor toward high figure of merit in GeTe,” Materials Today Physics, vol. 14, pp. 100239, 2020.
[105] K. S. Bayikadi, R. Sankar, C. T. Wu, C. Xia, Y. Chen, L.-C. Chen, K.-H. Chen, and F.-C. Chou, “Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control,” Journal of materials chemistry A, vol. 7, no. 25, pp. 15181-15189, 2019.
[106] F. Tong, X. Miao, Y. Wu, Z. Chen, H. Tong, and X. Cheng, “Effective method to identify the vacancies in crystalline GeTe,” Applied Physics Letters, vol. 97, no. 26, 2010. |