參考文獻 |
[1]Bao, A. M. & Swaab, D. F., “The human hypothalamus in mood disorders: The HPA axis in the center”, IBRO Reports, 6, 2019, 45-53.
[2]Xu, Y., Hackett, M., Carter, G., Loo, C., Gálvez, V., Glozier, N., ... & Rodgers, A., “Effects of Low-Dose and Very Low-Dose Ketamine among Patients with Major Depression: a Systematic Review and Meta-Analysis”, International Journal of Neuropsychopharmacology, 19(4), 2016,1-15.
[3]Niciu, M. J., Kelmendi, B., & Sanacora, G., “Overview of glutamatergic
neurotransmission in the nervous system”, Pharmacology Biochemistry and
Behavior, 100(4), 2012, 656-664.
[4]Rajkowska, G., & A Stockmeier, C., “Astrocyte Pathology in Major Depressive Disorder: Insights from Human Postmortem Brain Tissue”, Current drug targets, 14(11), 2013, 1225-1236.
[5]Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S., & Duman, R. S., “Ketamine: A Paradigm Shift for Depression Research and Treatment”,
Neuron, 101(5), 2019, 774-778.
[6]Müller, C. P., Reichel, M., Mühle, C., Rhein, C., Gulbins, E., & Kornhuber, J., “Brain membrane lipids in major depression and anxiety disorders”, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1851(8), 2015, 1052-1065.
[7]Stenovec, M., Li, B., Verkhratsky, A., & Zorec, R., “Astrocytes in rapid ketamine antidepressant action”, Neuropharmacology, 173, 2020, 108158.
[8]Altamura, C. A., Mauri, M. C., Ferrara, A., Moro, A. R., D′Andrea, G., & Zamberlan, F., “Plasma and platelet excitatory amino acids in psychiatric disorders”, The American journal of psychiatry, 150(11), 1993, 1731-1733.
[9]Mitani, H., Shirayama, Y., Yamada, T., Maeda, K., Ashby Jr, C. R., & Kawahara, R., “Correlation between plasma levels of glutamate, alanine and serine with severity of depression”, Progress in neuro-psychopharmacology and biological psychiatry, 30(6), 2006, 1155-1158.
[10]Woo, H. I., Chun, M. R., Yang, J. S., Lim, S. W., Kim, M. J., Kim, S. W., ... & Lee, S. Y., “Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors”, CNS neuroscience & therapeutics, 21(5), 2015 417-424.
[11]Otte, C., Gold, S. M., Penninx, B. W., Pariante, C. M., Etkin, A., Fava, M., ... & Schatzberg, A. F., “Major depressive disorder”, Nature reviews Disease primers, 2(1), 2016, 1-20,.
[12]Fekadu, N., Shibeshi, W., & Engidawork, E., “Major depressive disorder: pathophysiology and clinical management”, J Depress Anxiety, 6(1), 2017, 255-257.
[13]Chesney, E., Goodwin, G. M., & Fazel, S., “Risks of all-cause and suicide
mortality in mental disorders: a meta-review”, World psychiatry , 13(2), 2014, 153-160.
[14]Kessler, R. C., “The Costs of Depression”, Psychiatric Clinics, 35(1), 2012, 1-14.
[15]Fava, M., & Kendler, K. S., “Major depressive disorder”, Neuron, 28(2), 2000, 335-341.
[16]Chaudhury, D., Liu, H., & Han, M. H., “Neuronal correlatesdepression”, Cellular and Molecular Life Sciences, 72, 2015, 4825-4848.
[17]Bao, A. M., Ruhé, H. G., Gao, S. F., & Swaab, D. F., “Neurotransmitters and neuropeptides in depression”, Handbook of clinical neurology, 106, 2012, 107-136.
[18]Zisook, S., Rush, A. J., Albala, A., Alpert, J., Balasubramani, G. K., Fava, M., ... & Wisniewski, S., “Factors that differentiate early vs. later onset of major depression disorder”, Psychiatry research, 129(2), 2004, 127-140.
[19]Goldman, L. S., Nielsen, N. H., Champion, H. C., & Council on Scientific Affairs, American Medical Association., “Awareness, diagnosis, and treatment of depression”, Journal of general internal medicine, 14(9), 1999, 569-580.
[20]Blier, P., “Neurotransmitter targeting in the treatment of depression”, The Journal of clinical psychiatry, 74(suppl 2), 2013, 12763.
[21]Hamon, M., & Blier, P., “Monoamine neurocircuitry in depression and strategies for new treatments”. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 45, 2013, 54-63.
[22]Hirschfeld, R. M., “History and evolution of the monoamine hypothesis of depression”, Journal of clinical psychiatry, 61(6), 2000, 4-6,.
[23]Mann, J. J., Stanley, M., McBride, P. A., & McEwen, B. S., “Increased serotonin2 and β-adrenergic receptor binding in the frontal cortices of suicide victims”, Archives of general psychiatry, 43(10), 1986, 954-959.
[24]Goddard, A. W., Ball, S. G., Martinez, J., Robinson, M. J., Yang, C. R., Russell, J. M., & Shekhar, A., “Current perspectives of the roles of the central norepinephrine system in anxiety and depression”, Depression and anxiety, 27(4), 2010, 339-350,.
[25]Vizi, E. S., “Presynaptic modulation of transmitter release via α 2-adrenoceptors: nonsynaptic interactions”, Acta Biologica Hungarica, 50, 1999, 287-295.
[26]Sánchez, C., & Hyttel, J., “Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding”, Cellular and molecular neurobiology, 19, 1999, 467-489.
[27]Sibille, E., & Lewis, D. A., “SERT-ainly involved in depression, but when?”, American Journal of Psychiatry, 163(1), 2006, 8-11.
[28]Hasenhuetl, P. S., Freissmuth, M., & Sandtner, W., “Electrogenic binding of intracellular cations defines a kinetic decision point in the transport cycle of the human serotonin transporter”, Journal of Biological Chemistry, 291(50), 2016, 25864-25876.
[29]Orrego, F., & Villanueva, S., “The chemical nature of the main central excitatory transmitter: a critical appraisal based upon release studies and synaptic vesicle localization”, Neuroscience, 56(3), 1993, 539-555.
[30]Takamori, S., “VGLUTs: ‘exciting’ times for glutamatergic research?”. Neuroscience research, 55(4), 2006, 343-351.
[31]Rizo, J., & Südhof, T. C., “The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices- guilty as charged?”, Annual review of cell and developmental biology, 28, 2012, 279-308.
[32]Montana, V., Ni, Y., Sunjara, V., Hua, X., & Parpura, V., “Vesicular glutamate transporter-dependent glutamate release from astrocytes”, Journal of Neuroscience, 24(11), 2004, 2633-2642.
[33]Fremeau Jr, R. T., Kam, K., Qureshi, T., Johnson, J., Copenhagen, D. R., Storm-Mathisen, J., ... & Edwards, R. H., “Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites”, Science, 304(5678), 2004, 1815-1819.
[34]Tsien, J. Z., Huerta, P. T., & Tonegawa, S., “The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory”, Cell, 87(7), 1996, 1327-1338.
[35]Henson, M. A., Roberts, A. C., Salimi, K., Vadlamudi, S., Hamer, R. M., Gilmore, J. H., ... & Philpot, B. D., “Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex”, Cerebral Cortex, 18(11), 2008, 2560-2573.
[36]Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R. E., Gottmann, K., & Südhof, T. C., “α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis”, Nature, 423(6943), 2003, 939-948.
[37]Jahn, R., & Fasshauer, D., “Molecular machines governing exocytosis of synaptic vesicles”. Nature, 490(7419), 2012, 201-207.
[38]Miller, S. L., & Yeh, H. H., “Neurotransmitters and neurotransmission in the developing and adult nervous system”, Conn′s Translational Neuroscience, 2017, 49-84.
[39]Blumenthal, R., Clague, M. J., Durell, S. R., & Epand, R. M., “Membrane fusion”, Chemical reviews, 103(1), 2003, 53-70.
[40]Jahn, R., & Südhof, T. C., “Membrane fusion and exocytosis”, Annual review of biochemistry, 68(1), 1999, 863-911.
[41]Chernomordik, L. V., & Kozlov, M. M., “Mechanics of membrane fusion”, Nature structural & molecular biology, 15(7), 2008, 675-683.
[42]Lainé, C., “Research essay Biophysical investigation of the antiviral activity of IFITM proteins”, 2020.
[43]Zanos, P., Moaddel, R., Morris, P. J., Riggs, L. M., Highland, J. N., Georgiou, P., ... & Gould, T. D., “Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms”, Pharmacological reviews, 70(3), 2018, 621-660.
[44]McEwen, B. S., “Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators”, European journal of pharmacology, 583(2-3), 2008, 174-185.
[45]Duman, R. S., Li, N., Liu, R. J., Duric, V., & Aghajanian, G., “Signaling pathways underlying the rapid antidepressant actions of ketamine”, Neuropharmacology, 62(1), 2012, 35-41.
[46]Wray, N. H., Schappi, J. M., Singh, H., Senese, N. B., & Rasenick, M. M., “NMDAR-independent, cAMP-dependent antidepressant actions of ketamine”, Molecular psychiatry, 24(12), 2019, 1833-1843.
[47]Stenovec, M., Lasič, E., Božić, M., Bobnar, S. T., Stout, R. F., Grubišić, V., ... & Zorec, R., “Ketamine inhibits ATP-evoked exocytotic release of brain-derived neurotrophic factor from vesicles in cultured rat astrocytes”, Molecular neurobiology, 53, 2015, 6882-6896.
[48]Li, N., Lee, B., Liu, R. J., Banasr, M., Dwyer, J. M., Iwata, M., ... & Duman, R. S., “mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists”, Science, 329(5994), 2010, 959-964.
[49]Holtmaat, A., & Svoboda, K., “Experience-dependent structural synaptic plasticity in the mammalian brain”, Nature Reviews Neuroscience, 10(9), 2009, 647-658.
[50]Kessels, H. W., & Malinow, R., “Synaptic AMPA receptor plasticity and behavior”, Neuron, 61(3), 2009, 340-350.
[51]Yoshihara, Y., De Roo, M., & Muller, D. (2009). “Dendritic spine formation and stabilization”, Current opinion in neurobiology, 19(2), 2009, 146-153.
[52]Newport, D. J., Carpenter, L. L., McDonald, W. M., Potash, J. B., Tohen, M., Nemeroff, C. B., & APA Council of Research Task Force on Novel Biomarkers and Treatments., “Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression”, American Journal of Psychiatry, 172(10), 2015, 950-966.
[53]Wray, N. H., Schappi, J. M., Singh, H., Senese, N. B., & Rasenick, M. M., “Molecular Psychiatry”, 24(12), 2019, 1833-1843.
[54]Lasič, E., Rituper, B., Jorgačevski, J., Kreft, M., Stenovec, M., & Zorec, R., “Subanesthetic doses of ketamine stabilize the fusion pore in a narrow flickering state in astrocytes”, Journal of Neurochemistry, 138(6), 2016, 909-917.
[55]Plant, A. L., “Supported hybrid bilayer membranes as rugged cell membrane mimics”, Langmuir, 15(15), 1999, 5128-5135.
[56]National Human Genome Research Institute: Cell Membrane (Plasma Membrane),2024 年 3 月 22 日,取自https://www.genome.gov/genetics-glossary/Cell-Membrane
[57]Siontorou, C. G., Nikoleli, G. P., Nikolelis, D. P., & Karapetis, S. K., “Artificial lipid membranes: Past, present, and future”, Membranes, 7(3), 2017, 38.
[58]Luchini, A., & Vitiello, G., “Mimicking the mammalian plasma membrane: An overview of lipid membrane models for biophysical studies”. Biomimetics, 6(1), 2020, 3.
[59]Casares, D., Escribá, P. V., & Rosselló, C. A., “Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues”, International journal of molecular sciences, 20(9), 2019, 2167.
[60]van Meer, G., & de Kroon, A. I., “Lipid map of the mammalian cell”, Journal of cell science, 124(1), 2011, 5-8.
[61]Microbe Notes: Phospholipid Bilayer- Structure, Types, Properties, Functions,2023 年 4 月 8 日,取自https://microbenotes.com/phospholipid-bilayer-structure-types-properties-functions/
[62]Helfrich, W., “Elastic properties of lipid bilayers: theory and possible experiments”, Zeitschrift für Naturforschung c, 28(11-12), 1973, 693-703.
[63]Graham, T. R., & Kozlov, M. M., “Interplay of proteins and lipids in generating membrane curvature”, Current opinion in cell biology, 22(4), 2010, 430-436.
[64]Bermudez, H., Hammer, D. A., & Discher, D. E., “Effect of bilayer thickness on membrane bending rigidity”, Langmuir, 20(3), 2004, 540-543.
[65]McMahon, H. T., & Boucrot, E., “Membrane curvature at a glance”, Journal of cell science, 128(6), 2015, 1065-1070.
[66]Cevc, G., & Marsh, D., “Phospholipid bilayers: physical principles and models”, Cell biology (USA), 1987, 5.
[67]Deuling, H. J., & Helfrich, W., “The curvature elasticity of fluid membranes: a catalogue of vesicle shapes”. Journal de Physique, 37(11), 1976 1335-1345.
[68]Seddon, J. M., & Templer, R. H., “Polymorphism of lipid-water systems”, Handbook of biological physics, 1, 1995, 97-160.
[69]Chernomordik, L. V., & Kozlov, M. M., “Protein-lipid interplay in fusion and fission of biological membranes”, Annual review of biochemistry, 72(1), 2003, 175-207.
[70]Helfrich, W., “Steric interaction of fluid membranes in multilayer systems”, Zeitschrift für Naturforschung A, 33(3), 1978, 305-315.
[71]Attard, G. S., Templer, R. H., Smith, W. S., Hunt, A. N., & Jackowski, S., “Modulation of CTP: phosphocholine cytidylyltransferase by membrane curvature elastic stress”, Proceedings of the National Academy of Sciences, 97(16), 2000, 9032-9036.
[72]Perozo, E., Kloda, A., Cortes, D. M., & Martinac, B., “Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating”, Nature structural biology, 9(9), 2002, 696-703.
[73]Zimmerberg, J., & Kozlov, M. M., “How proteins produce cellular membrane curvature”, Nature reviews Molecular cell biology, 7(1), 2006, 9-19.
[74]Shearman, G. C., Ces, O., Templer, R. H., & Seddon, J. M., “Inverse lyotropic phases of lipids and membrane curvature”, Journal of Physics: Condensed Matter, 18(28), 2006, S1105.
[75]Peeters, B. W., Piët, A. C., & Fornerod, M., “Generating membrane curvature at the nuclear pore: A lipid point of view”, Cells, 11(3), 2022, 469.
[76]Meher, G., Bhattacharjya, S., & Chakraborty, H., “Membrane cholesterol modulates oligomeric status and peptide-membrane interaction of severe acute respiratory syndrome coronavirus fusion peptide”, The Journal of Physical Chemistry B, 123(50), 2019, 10654-10662.
[77]Joardar, A., Pattnaik, G. P., & Chakraborty, H., “Mechanism of membrane fusion: Interplay of lipid and peptide”, The Journal of Membrane Biology, 255(2-3), 2022, 211-224.
[78]Jouhet, J., “Importance of the hexagonal lipid phase in biological membrane organization”, Frontiers in plant science, 4, 2013, 494.
[79]Kirk, G. L., Gruner, S. M., & Stein, D. L., “A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems”, Biochemistry, 23(6), 1984, 1093-1102.
[80]Perutková, Š., Daniel, M., Dolinar, G., Rappolt, M., Kralj‐Iglič, V., & Iglič, A., “Stability of the inverted hexagonal phase”, Advances in planar lipid bilayers and liposomes, 9, 2009, 237-278.
[81]Rocha, S., Kumar, R., Horvath, I., & Wittung-Stafshede, P., “Synaptic vesicle mimics affect the aggregation of wild-type and A53T α-synuclein variants differently albeit similar membrane affinity”, Protein Engineering, Design and Selection, 32(2), 2019, 59-66.
[82]Andrade, S., Loureiro, J. A., & Pereira, M. C., “Caffeic acid for the prevention and treatment of Alzheimer′s disease: The effect of lipid membranes on the inhibition of aggregation and disruption of Aβ fibrils”, International Journal of Biological Macromolecules, 190, 2021, 853-861.
[83]Anton Paar: The principle of dynamic light scattering,取自https://wiki.anton-paar.com/en/the-principles-of-dynamic-light-scattering/
[84]Bhattacharjee, S., “DLS and zeta potential–what they are and what they are not?”, Journal of controlled release, 235, 2016, 337-351.
[85]WYATT TECHNOLOGY: Understanding Dynamic Light Scattering,取自https://www.wyatt.com/library/theory/dynamic-light-scattering-theory.html
[86]Gomes, A. J., Lunardi, C. N., Rocha, F. S., & Patience, G. S., “Experimental methods in chemical engineering: Fluorescence emission spectroscopy”, The Canadian Journal of Chemical Engineering, 97(8), 2015, 2168-2175.
[87]SCINCO:螢光光譜儀原理分析與應用,2023年5月22日,取自https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-71.html
[88]Khanin, R., Parnas, H., & Segel, L., “Diffusion cannot govern the discharge of neurotransmitter in fast synapses”, Biophysical journal, 67(3), 1994, 966-972.
[89]Nicholls, D. G., Sihra, T. S., & Sanchez‐Prieto, J., “Calcium‐dependent and‐independent release of glutamate from synaptosomes monitored by continuous fluorometry”, Journal of neurochemistry, 49(1), 1987, 50-57.
[90]Boni, L. T., & Hui, S. W., “The mechanism of polyethylene glycol-induced fusion in model membranes”, Cell fusion , 1987, 301-330.
[91]Nasedkin, A., Davidsson, J., & Kumpugdee-Vollrath, M., “Determination of nanostructure of liposomes containing two model drugs by X-ray scattering from a synchrotron source’, Journal of Synchrotron Radiation, 20(5), 2013, 721-728.
[92]Li, T., Senesi, A. J., & Lee, B., “Small angle X-ray scattering for nanoparticle research”, Chemical reviews, 116(18), 2016, 11128-11180.
[93]Boldon, L., Laliberte, F., & Liu, L., “Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application”, Nano reviews, 6(1), 2015, 25661.
[94]Seibt, S., & Ryan, T., “Microfluidics for time-resolved small-angle x-ray scattering”, Advances in Microfluidics and Nanofluids, 2020.
[95]Bjørnestad, V. A., & Lund, R., “Pathways of membrane solubilization: A structural study of model lipid vesicles exposed to classical detergents”, Langmuir, 39(11), 2023, 3914-3933.
[96]Skou, S., Gillilan, R. E., & Ando, N., “Synchrotron-based small-angle X-ray scattering of proteins in solution”, Nature protocols, 9(7), 2014, 1727-1739.
[97]Li, D., Fei, G., Xia, H., Spencer, P. E., & Coates, P. D., “Micro‐contact reconstruction of adjacent carbon nanotubes in polymer matrix through annealing‐Induced relaxation of interfacial residual stress and strain”, Journal of Applied Polymer Science, 2015, 132(33).
[98]Harper, P. E., Mannock, D. A., Lewis, R. N., McElhaney, R. N., & Gruner, S. M., “X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases”, Biophysical Journal, 81(5), 2001, 2693-2706.
[99]Mozzi, R. L., & Warren, B. E., “The structure of vitreous silica”, Journal of Applied Crystallography, 2(4), 1969, 164-172.
[100]Kirk, G. L., & Gruner, S. M., “Lyotropic effects of alkanes and headgroup composition on the Lα-HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature”, Journal de Physique, 46(5), 1985, 761-769.
[101]Kollmitzer, B., Heftberger, P., Rappolt, M., & Pabst, G., “Monolayer spontaneous curvature of raft-forming membrane lipids”, Soft matter, 9(45), 2013, 10877-10884.
[102]Malinin, V. S., & Lentz, B. R., “On the analysis of elastic deformations in hexagonal phases”, Biophysical journal, 86(5), 2004, 3324-3328.
[103]Kulkarni, C. V., Wachter, W., Iglesias-Salto, G., Engelskirchen, S., & Ahualli, S., “Monoolein: a magic lipid?”, Physical Chemistry Chemical Physics, 13(8), 2011, 3004-3021.
[104]Marsh, D., “Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids”, Chemistry and physics of lipids, 164(3), 2011, 177-183.
[105]張雯芳: <添加具有抗菌潛力的勝肽對磷脂質自組裝結構與彈性性質的影響>。碩士論文,國立中央大學,民國104年7月。
[106]Lin, C. M., Li, C. S., Sheng, Y. J., Wu, D. T., & Tsao, H. K., “Size-dependent properties of small unilamellar vesicles formed by model lipids”, Langmuir, 28(1), 2012, 689-700.
[107]Pabst, G., Rappolt, M., Amenitsch, H., & Laggner, P., “Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data”, Physical Review E, 62(3), 2000, 4000.
[108]Leikin, S., Kozlov, M. M., Fuller, N. L., & Rand, R. P., “Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes”, Biophysical journal, 71(5), 1996, 2623-2632.
[109]Bridges, R. J., & Bradbury, N. A., “Cystic fibrosis, cystic fibrosis transmembrane conductance regulator and drugs: Insights from cellular trafficking”, Targeting trafficking in drug development, 2018, 385-425.
[110]Kozlovsky, Y., Efrat, A., Siegel, D. A., & Kozlov, M. M., “Stalk phase formation: effects of dehydration and saddle splay modulus”, Biophysical journal, 87(4), 2004, 2508-2521.
[111]Akimov, S. A., Molotkovsky, R. J., Kuzmin, P. I., Galimzyanov, T. R., & Batishchev, O. V., “Continuum models of membrane fusion: Evolution of the theory”, International journal of molecular sciences, 21(11), 2020, 3875. |