博碩士論文 111327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:157 、訪客IP:18.117.7.6
姓名 張書菡(Shu-Han Chang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 雙光束偏振干涉術應用於滾轉與俯仰角位移量測
(Dual Beam Polarization Interferometry for Roll and Pitch Angular Displacement Measurement)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-30以後開放)
摘要(中) 本研究開發一種「雙光束偏振干涉術應用於滾轉與俯仰角位移量測」技術,改善傳統的旋轉誤差量測技術缺乏滾轉角的量測,有效克服現有技術在量測範圍受限、易受環境變化影響、體積過大及系統結構過於複雜等問題。本技術使用雙折射晶體作為量測元件,以偏振相機解析由晶體角位移引起的相位變化。並模擬在固定滾轉與俯仰角下,雙光束入射晶體所產生的相位變化關係曲線,以此做為依據將相位差量測值轉換為精確的滾轉與俯仰角位移量。在一系列量測實驗中,利用電控旋轉平台的回傳值與量測值進行誤差分析,同時透過重複性實驗確認系統的穩定性。本研究通過實驗評估系統的解析度及非線性週期性誤差,並對系統架構可能引起的誤差進行分析與提出解決辦法。實驗證實,本系統在6°的量測範圍內能精確地同時量測滾轉與俯仰角位移,其量測解析度分別達到2.9 arcsec與21.6 arcsec。
摘要(英) This research develops a technique of “Dual Beam Polarization Interferometry for Roll and Pitch Angular Displacement Measurement”, addressing the deficiencies of traditional rotational error measurement methods that lack the capability for roll angle measurement. This technique effectively overcomes the limitations of existing technologies, such as restricted measurement range, susceptibility to environmental changes, excessive size, and overly complex system structures. The method uses a birefringent crystal as the measurement component, with a polarization camera analyzing the phase differences variations caused by the crystal′s angular displacement. By simulating the incidence of dual beams on the crystal at fixed roll and pitch angles, the resulting phase differences variation relationship curves are analyzed. These curves serve as a basis for converting measured phase differences into precise roll and pitch angular displacements. In a series of measurement experiments, error analysis is conducted by comparing the feedback values from an electronically controlled rotary stage with the measured values, while repeatability experiments are used to confirm the system′s stability. This study evaluates the system′s resolution and nonlinear periodic errors through experiments and analyzes potential errors introduced by the system′s architecture, proposing solutions to these issues. The experiments demonstrate that within a 6° measurement range, the system can accurately measure roll and pitch angular displacements, achieving measurement resolutions of 2.9 arcseconds and 21.6 arcseconds, respectively.
關鍵字(中) ★ 滾轉角量測
★ 俯仰角量測
★ 雙折射晶體
★ 偏振干涉解相技術
★ 偏振相機
關鍵字(英) ★ Roll angular displacement measurement
★ Pitch angular displacement measurement
★ birefringent crystals
★ polarization interference
★ polarization camera
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1滾轉角位移量測 4
1-2-2 姿態角三軸量測 6
1-3 研究動機、目的與方法 8
1-4 論文架構 9
第二章 實驗原理 10
2-1 雙折射原理 10
2-1-1 雙折射與相位延遲 11
2-1-2 雙折射晶體的滾轉與俯仰位移與相位延遲之關係 12
2-1-3 相位延遲與相位差之關係 15
2-2 偏振干涉解相法 17
2-3滾轉與俯仰角位移與相位差之關係 22
2-4 小結 26
第三章 系統架構 27
3-1 系統設計及元件 27
3-2 實驗步驟與流程 32
3-3量測訊號處理 34
3-4小結 36
第四章 實驗結果與討論 37
4-1滾轉與俯仰角定位量測 37
4-1-1滾轉角位移之定位量測實驗 37
4-1-2 俯仰角位移之定位量測實驗 42
4-1-3 滾轉與俯仰角同時位移之定位量測實驗 45
4-2 滾轉與俯仰角位移量測 50
4-2-1滾轉角與俯仰角順序位移之量測 50
4-2-2 滾轉角與俯仰角同時位移之量測 51
4-3 系統性能 52
4-3-1 系統解析度 52
4-3-2 非線性週期性誤差 54
4-3-3 系統靈敏度與量測範圍 54
4-4 小結 56
第五章 誤差分析 57
5-1 系統誤差 57
5-1-1 偏振相機的非線性增益 57
5-1-2 四分之一波片的不完美特性與對位誤差 59
5-2 隨機誤差 73
5-3 小結 75
第六章 結論與未來展望 76
6-1 結論 76
6-2 未來展望 77
參考文獻 78
參考文獻 參考文獻
[1] 李家同,「為工具機及機械手臂設計的精密量測系統」,機械工業雜誌,452,2020年,2-4頁。
[2] C. S. Liu, J. J. Lai, and Y. T. Luo, "Design of a measurement system for six-degree-of-freedom geometric errors of a linear guide of a machine tool," Sensors 19(1), 5 (2018).
[3] Y. T. Chen, W. C. Lin, and C. S. Liu, "Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage," Opt. Lasers Eng. 92, 94 (2017).
[4] S. Xiang and Y. Altintas, "Modeling and compensation of volumetric errors for five-axis machine tools," Int. J. Mach. Tools Manuf. 101, 65 (2016).
[5] J. Yuan and X. Long, "CCD-area-based autocollimator for precision small-angle measurement," Rev. Sci. Instrum. 74(3), 1362 (2003).
[6] S. Wang, R. Ma, F. Cao, L. Luo, and X. Li, "A Review: High-Precision Angle Measurement Technologies," Sensors 24(6), 1755 (2024).
[7] S. Zhou, V. Le, Q. Mi, and G. Wu, "Grating-corner-cube-based roll angle sensor," Sensors 20(19), 5524 (2020).
[8] W. Ren, J. Cui, and J. Tan, "A novel enhanced roll-angle measurement system based on a transmission grating autocollimator," IEEE Access 7, 2169 (2019).
[9] T. Jin, G. Xia, W. Hou, Y. Le, and S. Han, "High resolution and stability roll angle measurement method for precision linear displacement stages," Rev. Sci. Instrum. 88(2), 023102 (2017).
[10] W. Dwi Astuti, H. Matsukuma, M. Nakao, K. Li, Y. Shimizu, and W. Gao, "An optical frequency domain angle measurement method based on second harmonic generation," Sensors 21(2), 670 (2021).
[11] J. Y. Lin and Y. C. Liao, "Small-angle measurement with highly sensitive total-internal-reflection heterodyne interferometer," Appl. Opt. 53(9), 1903 (2014).
[12] Y. Liu, C. Kuang, and Y. Ku, "Small angle measurement method based on the total internal multi-reflection," Opt. Laser Technol. 44(5), 1346 (2012).
[13] X. Liang, J. Lin, T. Wu, L. Yang, Y. Wang, Y. Liu, and J. Zhu, "Absolute angular measurement with optical frequency comb using a dispersive interferometry," Opt. Express 28(24), 36095 (2020).
[14] Y. T. Hsu and H. L. Hsieh, "Development of a coplanar grating interferometer for displacement and angle measurements," Proc. SPIE 12137, 22 (2022).
[15] Y. Zhu, S. Liu, C. Kuang, S. Li, and X. Liu, "Roll angle measurement based on common path compensation principle," Opt. Lasers Eng. 67, 66 (2015).
[16] J. Qi, Z. Wang, J. Huang, Q. Wang, and J. Gao, "Heterodyne interferometer with two parallel-polarized input beams for high-resolution roll angle measurement," Opt. Express 27(10), 13820 (2019).
[17] S. Wu, J. Yang, W. Li, F. Wu, and M. Dong, "Precision roll angle measurement based on digital speckle pattern interferometry," Meas. Sci. Technol. 30(4), 045005 (2019).
[18] W. Ren, J. Cui, and J. Tan, "A three-dimensional small angle measurement system based on autocollimation method," Rev. Sci. Instrum. 93(5), 055102 (2022).
[19] Y. Guo, H. Cheng, Y. Wen, and Y. Feng, "Three-degree-of-freedom autocollimator based on a combined target reflector," Appl. Opt. 59(8), 2262 (2020).
[20] J. Y. Lee, C. T. Hsu, S. H. Chang, and W. Y. Chen, "Dual beam polarization interferometry for roll angular displacement measurement," Measurement 222, 113571 (2023).
[21] E. Hecht, Optics, 5e Pearson Education India (2002).
[22] W. H. Chen, W. K. Kuo, S. L. Huang, Y. T. Huang, and H. Z. Cheng, "On-wafer 2D etectric-field-vector mapping using one-beam electro-optic probing technique," Conference on Lasers and Electro-Optics, Optica Publishing Group (2000).
[23] 陳林裕,「雙折射外差干涉術之角度量測及定位技術開發」,國立中央大學,碩士論文,民國 103 年。
[24] 趙凱華,鍾錫華,「光學」,儒林圖書有限公司,民國 86 年。
[25] H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, "Development of an angular displacement measurement technique through birefringence heterodyne interferometry," Opt. Express 24(7), 6802 (2016).
[26] A. Yariv and P. Yeh, "Optical Waves in Crystals," John Wiley, 1st Edition. (2003).
[27] M. Zou, "Analyses of Jones matrix of polarized-light interference," Coll. Phys. 27(10), 10 (2008).
[28] J. Y. Lee, T. K. Chou, and H. C. Shih, "Polarization-interferometric surface- plasmonresonance imaging system," Opt. Lett. 33(5), 434 (2008).
[29] 陳柏翰,「四步移相解相位系統應用於光柵耦合表面電漿共振」,國立中央大學,碩士論文,民國 102 年。
[30] 偏振相機 BFS-U3-51S5P-C (Edmund Optics).
https://www.edmundoptics.com.tw/p/bfs-u3-51s5p-c-usb3-blackflyreg-s-polarization-camera/41357/
[31] 宋瑋益,「基於雙折射偏振干涉術之滾轉角量測技術」,國立中央大學,碩士論文,民國110年。
[32] 許敬澤,「雙光束偏振干涉術應用於滾轉角位移量測」,國立中央大學,碩士論文,民國 111 年。
[33] J. Y. Lee, W. Y. Sung, and C. T. Hsu, "Dynamic range enhancement of the roll angle displacement measurement with birefringence using a polarization camera," Appl. Opt. 60(29), 9110 (2021).
[34] K. Itoh, "Analysis of the phase unwrapping algorithm," Appl. Opt. 21(14), 2470 (1982).
[35] 電控旋轉平台 PRM1-Z8 (Thorlabs).
https://www.thorlabs.us/thorProduct.cfm?partNumber=PRM1Z8#ad-image-0
[36] 蕭宇傑,「雙共交顯微鏡用於物體厚度量測」,國立中央大學,碩士論文,民國107年。
[37] Thorlabs APT software.
https://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=Motion_Contr ol&viewtab=1
[38] 偏振相機感光元件 (Polarization Image Sensor-Sony IMX250MYR).
https://www.sony-semicon.co.jp/e/products/IS/industry/product/polarization.html
[39] 偏振相機計算單元組成圖
http://thinklucid.cn/tech-briefs/polarization-explained-sony-polarized-sensor/
[40] R. J. Moffat, “Describing the uncertainties in experimental results, " Exp. Therm. Fluid Sci. 1(1), 3 (1988).
[41] M. Nehir, C. Frank, S. Aßmann, and E. P. Achterberg, "Improving optical measurements: non-linearity compensation of compact charge-coupled device (CCD) spectrometers," Sensors 19(12), 2833 (2019).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明