博碩士論文 110226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:13.59.197.237
姓名 陳宏宇(Hung-Yu Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙重曝光氮化矽環形共振腔製作與熱效應調製
(Fabrication of tunable silicon nitride resonator via double patterning and thermal microheaters)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究
★ 非對稱環形共振腔耦合與品質因子控制★ 奈米壓印製作環形共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽光子電路利用黃光微影技術,將大尺寸的光纖光路架構縮小至微米乃至奈米級的波導結構,並與矽晶圓的CMOS製程相容。矽基半導體結構的相容性提供了一個將光路與電路結合的平台。調製器是矽光子不可或缺的組件,通過不同手段改變材料的折射率,進而影響光譜在外界環境變化下的響應。

本論文利用在環形共振腔上疊加一層微型金屬加熱電阻結構,通過歐姆效應產生熱量,使其穿透光譜產生紅移現象,並探討不同結構對調製效率和調製速率的影響。首先,以Ansys LUMERICAL軟體模擬熱流傳輸,對相同結構但不同金屬材質的微加熱器,以及相同金屬但不同結構的微加熱器進行溫度分布的模擬。結合FDTD與FDE solver的方法,討論上述情況。

隨後,利用國家實驗研究院台灣半導體研究中心(Taiwan Semiconductor Research Institute, TSRI)的步進式曝光機製作並測量各種波導結構,最終驗證在DC直流信號和AC交流信號調製驅動下,鋁微加熱器相比鈦微加熱器僅需要較小的驅動電壓便足以提供同等的調製效率。在不同結構的波導中,驗證了在DC直流信號調製下,脊型波導因其特殊的隔熱特性而具有高熱調製係數;而低限制波導中,DC直流和AC交流調製能力較弱。

此外,鑒於環形共振腔諧振器對製程線寬的要求,通常需要高解析度的曝光機(例如步進式曝光機、電子束微影曝光機)支持,這無疑增加了製作環形共振腔或其他高精度元件的難度。因此,本論文利用AZ5214光阻,結合其正光阻與負光阻的特性,在同一基板上同時使用兩種相反的光阻,最終將解析度從常規的2μm微縮至1μmu以下,一定程度上提高接觸式曝光的解析度。
摘要(英) Silicon photonic circuits utilize photolithography with yellow light to miniaturize large-scale optical fiber pathways into micron- and nanometer-scale waveguide structures, while also being compatible with CMOS processes on silicon wafers. The compatibility of silicon-based semiconductor structures provides a platform for integrating optical and electrical circuits. Modulators are indispensable components in silicon photonics, affecting the final spectral response to external environmental changes by altering the refractive index of the materials through various means.

This thesis employs a micro metal heating resistor structure layered on a ring resonator. By generating heat through the Ohmic effect, a redshift phenomenon in the transmission spectrum is observed. The study explores the impact of different structures on modulation efficiency and rate. Initially, thermal flow transmission is simulated using Ansys LUMERICAL software. Simulations are performed to observe the temperature distribution differences for micro-heaters made of various metals with identical structures, as well as for micro-heaters made of the same metal but with different structures. The FDTD and FDE solvers are combined to discuss these scenarios.

Subsequently, various waveguide structures are fabricated and measured using a stepper at the National Applied Research Laboratories Taiwan Semiconductor Research Institute (TSRI). It is verified that under DC and AC signal modulation, aluminum micro-heaters require a lower driving voltage compared to titanium micro-heaters to achieve the same modulation efficiency. Among different waveguide structures, it is confirmed that under DC signal modulation, rib waveguides have a high thermal modulation coefficient due to their unique insulation properties, whereas the modulation capabilities of DC and AC signals in low confinement waveguides are weaker.

Additionally, due to the smaller linewidth requirements of ring resonator resonators, high-resolution exposure tools (such as steppers and electron beam lithography tools) are usually necessary, which undoubtedly increases the complexity of fabricating ring resonators or other high-resolution components. Therefore, this thesis aims to use AZ5214 photoresist, which possesses both positive and negative photoresist characteristics, to simultaneously use two opposite photoresists on the same substrate. This approach enhances the resolution in contact lithography to a certain extent, ultimately improving the resolution from the conventional 2μm to below 1μm.
關鍵字(中) ★ 雙重曝光
★ 微環形共振腔
★ 熱調製
★ 氮化矽
關鍵字(英) ★ double pattern
★ mircoring
★ thermal
★ heat
★ silicon nitride
論文目次 目錄
國立中央大學圖書館學位論文授權書 I
國立中央大學碩士班研究生論文指導教授推薦書 II
國立中央大學碩士班研究生論文口試委員審定書 III
摘要 IV
ABSTRACT V
誌謝 VII
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 微環形共振腔介紹 1
1-2 熱調製介紹 5
1-3 多重顯影 6
1-4 論文概要 8
第二章 波導與熱光效應模擬 9
2-1 熱光效應原理 9
2-2 相同波導型式與不同金屬模擬 10
2-3 不同波導型式與鈦微加熱器模擬 19
第三章 微環形共振腔之製程與熱調製結果 27
3-1 微環形共振腔製程流程與量測架構 27
3-1-1 製程流程 27
3-1-2 量測系統之介紹 31
3-1-3 微環形共振腔穿透頻譜及品質因子分析 33
3-1-4 高限制波導(h=500nm)微環形共振腔鈦微加熱器 33
3-1-5 高限制波導(h=500nm)微環形共振腔鋁微加熱器 36
3-1-6 正常限制波導(h=200nm)微環形共振腔鈦微加熱器 37
3-1-7 低限制波導(h=100nm)微環形共振腔鈦微加熱器 38
3-1-8 脊型波導微環形共振腔鈦微加熱器 40
3-1-9 微環形共振腔結構與金屬層間二氧化矽厚度與穿透光譜的討論 41
3-2 微環形共振腔DC直流訊號熱效應分析 47
3-2-1 高限制波導(h=500nm)微環形共振腔鈦微加熱器 47
3-2-2 高限制波導(500nm)微環形共振腔鋁微加熱器 49
3-2-3 高限制波導(500nm)微環形共振腔鈦微加熱器與鋁微加熱器量測與模擬等效折射率之比較 50
3-2-4 正常限制波導(h=200nm)微環形共振腔鈦微加熱器 53
3-2-5 低限制波導(h=100nm)微環形共振腔鈦微加熱器 54
3-2-6 脊型波導微環形共振腔鈦微加熱器 55
3-2-7 不同形制波導DC直流訊號熱調製能力比較 57
3-3 微環形共振腔AC交流流訊號熱效應分析 62
3-3-1 高限制波導(h=500nm)微環形共振腔鈦微加熱器與鋁微加熱器 66
3-3-2 正常限制波導(h=200nm)微環形共振腔鈦微加熱器 69
3-3-3 低限制波導(h=100nm)微環形共振腔鈦微加熱器 70
3-3-4 不同形制波導AC交流訊號熱調製能力比較 72
第四章 多重曝光製程與量測結果 75
4-1 AZ 5214負光阻微環形共振腔製作 78
4-2 AZ 5214負光阻結合正光阻微環形共振腔製作與量測 80
第五章 結論與未來展望 84
參考資料 86
參考文獻 參考資料
[1] A. V. Krishnamoorthy et al., "Computer systems based on silicon photonic interconnects," Proceedings of the IEEE, vol. 97, no. 7, pp. 1337-1361, 2009.
[2] K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express, vol. 14, no. 25, pp. 12327-12333, 2006/12/11 2006, doi: 10.1364/OE.14.012327.
[3] S. Chung, M. Nakai, and H. Hashemi, "Low-power thermo-optic silicon modulator for large-scale photonic integrated systems," Opt. Express, vol. 27, no. 9, pp. 13430-13459, 2019/04/29 2019, doi: 10.1364/OE.27.013430.
[4] P. Wong, V. Wiaux, S. Verhaegen, and N. Vandenbroeck, "Litho-process-litho for 2D 32nm hp Logic and DRAM double patterning," SPIE Proceedings, vol. 7640, pp. 185-195, 2010/03/11 2010, doi: 10.1117/12.846998.
[5] T. Ando et al., "Pattern Freezing Process Free Litho–Litho–Etch Double Patterning," Japanese Journal of Applied Physics, vol. 48, no. 6S, p. 06FC01, 2009/06/22 2009, doi: 10.1143/JJAP.48.06FC01.
[6] C. A. Mack, "Seeing double," IEEE Spectrum, vol. 45, no. 11, pp. 46-51, 2008, doi: 10.1109/MSPEC.2008.4659384.
[7] N. Umemura, J. Hirohashi, Y. Nakahara, H. Oda, and Y. Furukawa, "Temperature-dependent quasi phase-matching properties of periodically poled LaBGeO5," Opt. Mater. Express, vol. 9, no. 5, pp. 2159-2164, 2019/05/01 2019, doi: 10.1364/OME.9.002159.
[8] G. Liang et al., "Robust, efficient, micrometre-scale phase modulators at visible wavelengths," Nature Photonics, vol. 15, no. 12, pp. 908-913, 2021/12/01 2021, doi: 10.1038/s41566-021-00891-y.
[9] Y. Ehrlichman, O. Amrani, and S. Ruschin, "Generating arbitrary optical signal constellations using microring resonators," Opt. Express, vol. 21, no. 3, pp. 3793-3799, 2013/02/11 2013, doi: 10.1364/OE.21.003793.
[10] J. K. Rakshit, J. N. Roy, and T. Chattopadhyay, "All-optical XOR/XNOR logic gate using micro-ring resonators," in 2012 5th International Conference on Computers and Devices for Communication (CODEC), 17-19 Dec. 2012 2012, pp. 1-4, doi: 10.1109/CODEC.2012.6509327.
[11] P. Dong et al., "Wavelength-tunable silicon microring modulator," Opt. Express, vol. 18, no. 11, pp. 10941-10946, 2010/05/24 2010, doi: 10.1364/OE.18.010941.
[12] A. Arbabi and L. L. Goddard, "Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances," Optics letters, vol. 38, no. 19, pp. 3878-3881, 2013.
[13] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express, vol. 16, no. 17, pp. 12987-12994, 2008.
[14] Y. Zhang et al., "Engineered second-order nonlinearity in silicon nitride," Opt. Mater. Express, vol. 13, no. 1, pp. 237-246, 2023.
[15] J. F. Bauters et al., "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express, vol. 19, no. 24, pp. 24090-24101, 2011.
[16] Q. Zhao et al., "Experimental study on the forced convection heat transfer characteristics of airflow with variable thermophysical parameters in a circular tube," Case Studies in Thermal Engineering, vol. 40, p. 102495, 2022.
[17] B. Olney. "Beyond Design: The Eye Diagram." https://iconnect007.com/article/134808/beyond-design-the-eye-diagram/134811/design (accessed 5/24, 2024).
[18] A. Zhang and Y. Li, "Thermal conductivity of aluminum alloys—a review," Materials, vol. 16, no. 8, p. 2972, 2023.
[19] R. W. Powell and R. P. Tye, "The thermal and electrical conductivity of titanium and its alloys," Journal of the Less Common Metals, vol. 3, no. 3, pp. 226-233, 1961/06/01/ 1961, doi: https://doi.org/10.1016/0022-5088(61)90064-9.
[20] W. Zhu, G. Zheng, S. Cao, and H. He, "Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study," Scientific Reports, vol. 8, no. 1, p. 10537, 2018/07/12 2018, doi: 10.1038/s41598-018-28925-6.
[21] S. Chae et al., "Thermal conductivity of rutile germanium dioxide," Applied Physics Letters, vol. 117, no. 10, 2020.
[22] T. N. Nunley et al., "Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation," Journal of Vacuum Science & Technology B, vol. 34, no. 6, 2016.
[23] L. Gao, F. Lemarchand, and M. Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering," Opt. Express, vol. 20, no. 14, pp. 15734-15751, 2012/07/02 2012, doi: 10.1364/OE.20.015734.
[24] L. Y. M. Tobing, A. D. Mueller, J. Tong, and D. H. Zhang, "Nanobridges formed through electron beam image reversal lithography for plasmonic mid-infrared resonators with high aspect ratio nanogaps," Nanotechnology, vol. 30, no. 42, p. 425302, 2019/08/06 2019, doi: 10.1088/1361-6528/ab32c5.
[25] T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, "Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, pp. 1-9, 2018, doi: 10.1109/JSTQE.2018.2818459.
[26] H. Yu, B. Li, L. Wang, and F. Qiu, "Polymer micro-ring modulator on silicon nitride platform," Applied Physics Letters, vol. 123, no. 19, 2023.
[27] A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, and D. W. Prather, "Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator," Optics letters, vol. 44, no. 3, pp. 618-621, 2019.
[28] M. Bahadori, L. L. Goddard, and S. Gong, "Fundamental electro-optic limitations of thin-film lithium niobate microring modulators," Opt. Express, vol. 28, no. 9, pp. 13731-13749, 2020/04/27 2020, doi: 10.1364/OE.390179.
[29] Z. Zhou and S. Zhang, "Electro-optically tunable racetrack dual microring resonator with a high quality factor based on a Lithium Niobate-on-insulator," Optics Communications, vol. 458, p. 124718, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.optcom.2019.124718.
[30] Y. Wu et al., "Design of an electro-optical tunable race-track diamond microring resonator on lithium niobate," Diamond and Related Materials, vol. 120, p. 108692, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.diamond.2021.108692.
[31] D.-P. Cai, J.-H. Lu, C.-C. Chen, C.-C. Lee, C.-E. Lin, and T.-J. Yen, "High Q-factor microring resonator wrapped by the curved waveguide," Scientific Reports, vol. 5, no. 1, p. 10078, 2015/05/20 2015, doi: 10.1038/srep10078.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2024-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明