參考文獻 |
參考資料
[1] A. V. Krishnamoorthy et al., "Computer systems based on silicon photonic interconnects," Proceedings of the IEEE, vol. 97, no. 7, pp. 1337-1361, 2009.
[2] K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express, vol. 14, no. 25, pp. 12327-12333, 2006/12/11 2006, doi: 10.1364/OE.14.012327.
[3] S. Chung, M. Nakai, and H. Hashemi, "Low-power thermo-optic silicon modulator for large-scale photonic integrated systems," Opt. Express, vol. 27, no. 9, pp. 13430-13459, 2019/04/29 2019, doi: 10.1364/OE.27.013430.
[4] P. Wong, V. Wiaux, S. Verhaegen, and N. Vandenbroeck, "Litho-process-litho for 2D 32nm hp Logic and DRAM double patterning," SPIE Proceedings, vol. 7640, pp. 185-195, 2010/03/11 2010, doi: 10.1117/12.846998.
[5] T. Ando et al., "Pattern Freezing Process Free Litho–Litho–Etch Double Patterning," Japanese Journal of Applied Physics, vol. 48, no. 6S, p. 06FC01, 2009/06/22 2009, doi: 10.1143/JJAP.48.06FC01.
[6] C. A. Mack, "Seeing double," IEEE Spectrum, vol. 45, no. 11, pp. 46-51, 2008, doi: 10.1109/MSPEC.2008.4659384.
[7] N. Umemura, J. Hirohashi, Y. Nakahara, H. Oda, and Y. Furukawa, "Temperature-dependent quasi phase-matching properties of periodically poled LaBGeO5," Opt. Mater. Express, vol. 9, no. 5, pp. 2159-2164, 2019/05/01 2019, doi: 10.1364/OME.9.002159.
[8] G. Liang et al., "Robust, efficient, micrometre-scale phase modulators at visible wavelengths," Nature Photonics, vol. 15, no. 12, pp. 908-913, 2021/12/01 2021, doi: 10.1038/s41566-021-00891-y.
[9] Y. Ehrlichman, O. Amrani, and S. Ruschin, "Generating arbitrary optical signal constellations using microring resonators," Opt. Express, vol. 21, no. 3, pp. 3793-3799, 2013/02/11 2013, doi: 10.1364/OE.21.003793.
[10] J. K. Rakshit, J. N. Roy, and T. Chattopadhyay, "All-optical XOR/XNOR logic gate using micro-ring resonators," in 2012 5th International Conference on Computers and Devices for Communication (CODEC), 17-19 Dec. 2012 2012, pp. 1-4, doi: 10.1109/CODEC.2012.6509327.
[11] P. Dong et al., "Wavelength-tunable silicon microring modulator," Opt. Express, vol. 18, no. 11, pp. 10941-10946, 2010/05/24 2010, doi: 10.1364/OE.18.010941.
[12] A. Arbabi and L. L. Goddard, "Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances," Optics letters, vol. 38, no. 19, pp. 3878-3881, 2013.
[13] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides," Opt. Express, vol. 16, no. 17, pp. 12987-12994, 2008.
[14] Y. Zhang et al., "Engineered second-order nonlinearity in silicon nitride," Opt. Mater. Express, vol. 13, no. 1, pp. 237-246, 2023.
[15] J. F. Bauters et al., "Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding," Opt. Express, vol. 19, no. 24, pp. 24090-24101, 2011.
[16] Q. Zhao et al., "Experimental study on the forced convection heat transfer characteristics of airflow with variable thermophysical parameters in a circular tube," Case Studies in Thermal Engineering, vol. 40, p. 102495, 2022.
[17] B. Olney. "Beyond Design: The Eye Diagram." https://iconnect007.com/article/134808/beyond-design-the-eye-diagram/134811/design (accessed 5/24, 2024).
[18] A. Zhang and Y. Li, "Thermal conductivity of aluminum alloys—a review," Materials, vol. 16, no. 8, p. 2972, 2023.
[19] R. W. Powell and R. P. Tye, "The thermal and electrical conductivity of titanium and its alloys," Journal of the Less Common Metals, vol. 3, no. 3, pp. 226-233, 1961/06/01/ 1961, doi: https://doi.org/10.1016/0022-5088(61)90064-9.
[20] W. Zhu, G. Zheng, S. Cao, and H. He, "Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study," Scientific Reports, vol. 8, no. 1, p. 10537, 2018/07/12 2018, doi: 10.1038/s41598-018-28925-6.
[21] S. Chae et al., "Thermal conductivity of rutile germanium dioxide," Applied Physics Letters, vol. 117, no. 10, 2020.
[22] T. N. Nunley et al., "Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation," Journal of Vacuum Science & Technology B, vol. 34, no. 6, 2016.
[23] L. Gao, F. Lemarchand, and M. Lequime, "Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering," Opt. Express, vol. 20, no. 14, pp. 15734-15751, 2012/07/02 2012, doi: 10.1364/OE.20.015734.
[24] L. Y. M. Tobing, A. D. Mueller, J. Tong, and D. H. Zhang, "Nanobridges formed through electron beam image reversal lithography for plasmonic mid-infrared resonators with high aspect ratio nanogaps," Nanotechnology, vol. 30, no. 42, p. 425302, 2019/08/06 2019, doi: 10.1088/1361-6528/ab32c5.
[25] T. A. Huffman, G. M. Brodnik, C. Pinho, S. Gundavarapu, D. Baney, and D. J. Blumenthal, "Integrated Resonators in an Ultralow Loss Si3N4/SiO2 Platform for Multifunction Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, pp. 1-9, 2018, doi: 10.1109/JSTQE.2018.2818459.
[26] H. Yu, B. Li, L. Wang, and F. Qiu, "Polymer micro-ring modulator on silicon nitride platform," Applied Physics Letters, vol. 123, no. 19, 2023.
[27] A. N. R. Ahmed, S. Shi, M. Zablocki, P. Yao, and D. W. Prather, "Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator," Optics letters, vol. 44, no. 3, pp. 618-621, 2019.
[28] M. Bahadori, L. L. Goddard, and S. Gong, "Fundamental electro-optic limitations of thin-film lithium niobate microring modulators," Opt. Express, vol. 28, no. 9, pp. 13731-13749, 2020/04/27 2020, doi: 10.1364/OE.390179.
[29] Z. Zhou and S. Zhang, "Electro-optically tunable racetrack dual microring resonator with a high quality factor based on a Lithium Niobate-on-insulator," Optics Communications, vol. 458, p. 124718, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.optcom.2019.124718.
[30] Y. Wu et al., "Design of an electro-optical tunable race-track diamond microring resonator on lithium niobate," Diamond and Related Materials, vol. 120, p. 108692, 2021/12/01/ 2021, doi: https://doi.org/10.1016/j.diamond.2021.108692.
[31] D.-P. Cai, J.-H. Lu, C.-C. Chen, C.-C. Lee, C.-E. Lin, and T.-J. Yen, "High Q-factor microring resonator wrapped by the curved waveguide," Scientific Reports, vol. 5, no. 1, p. 10078, 2015/05/20 2015, doi: 10.1038/srep10078. |