博碩士論文 110226092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:13.59.153.178
姓名 戴立軒(LI-HSUAN TAI)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 即時性動量空間影像量測系統 結合光致發光及顯微鏡量測
(Instantaneous Momentum Space Imaging Measurement System Combined with Photoluminescence and Microscopy)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-23以後開放)
摘要(中) 當代科學研究領域中,利用先進光學系統對材料進行光學性質
分析,已成為檢測物質內在機制的重要手段。本研究通過結合光致
發光(Photoluminescence, PL)和電致發光(Electroluminescence, EL)
技術激發樣品,配合無焦系統和透鏡組,將樣品的發光特性轉換為
適合電荷耦合元件(Charge Coupled Device, CCD)測量的尺寸及形
式。此方法能夠迅速且精準地獲得光強度角度分佈的實驗數據,與
傳統測量方法相比,大幅提升了實驗效率,同時避免了樣品衰退的
問題。
在光學系統的設計過程中,關鍵步驟包括將樣品產生的光線通
過物鏡在不同角度展開,並利用可調式光圈(IRIS)過濾掉高角度
下的雜訊。系統中的無焦組件作為基礎架設,用於調節匹配光束的
尺寸,最終在 CCD 上形成一個角度對角度的二維光強度分佈圖像,
而樣品的激發方式採用了光致發光(PL)的方式,使系統能夠靈活
適應多種樣品的激發需求。
摘要(英) In the realm of contemporary scientific research, utilizing advanced
optical systems for analyzing the optical properties of materials has
become a crucial means for probing the intrinsic mechanisms of
substances.This study integrates Photoluminescence and Electroluminescence techniques to excite samples, combined with a lens-free system and
lens assembly, transforming the sample′s luminescent characteristics into
dimensions and forms suitable for measurement by Charge Coupled
Devices . This method allows for the rapid and precise acquisition of
experimental data on light intensity angle distribution, significantly
enhancing experimental efficiency compared to traditional measurement
methods, while also preventing sample degradation.
During the design process of the optical system, key steps include
dispersing the light generated by the sample through an objective lens at
various angles, and filtering out noise at high angles using an adjustable
iris (IRIS). The lens-free components serve as a fundamental setup to
adjust and match the size of the light beam, ultimately forming a twodimensional light intensity distribution image of angle against angle on the
CCD. The excitation of the sample is achieved through Photoluminescence,enabling the system to flexibly adapt to the excitation needs of
various samples.
關鍵字(中) ★ 光致發光
★ 顯微鏡
★ 動量空間影像
關鍵字(英) ★ Photoluminescence
★ Microscopy
★ Momentum Space Imaging
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 研究動機和目的 3
第二章 基礎理論 4
2-1 即時性動量空間影像量測系統之理論 4
1. 透鏡成像公式 4
2. 無焦系統 5
3. 真實空間與動量空間 6
4. 光學傅立葉轉換 7
5. 空間經由透鏡轉換之流程 7
2-2 光致發光 9
2-3 朗伯輻射體 10
第三章 實驗方式與結果討論 12
3-1即時性動量空間影像量測系統之架設 12
1. 系統原理 12
2. 光學量測架設 13
3. 系統校正 17
 真實空間 18
 動量空間 20
3-2實驗元件製程與結構 24
3-3量測結果與討論 25
1. 實驗結果與測量方式 26
2. 結果討論 26
3-4 P、S波量測結果討論 31
第四章 結論與未來展望 35
附錄1. Matlab使用與編寫 36
1. 動量空間影像模擬 36
2. 光強度分布圖之轉換 38
參考文獻 43


圖目錄
圖2- 1透鏡成像光路圖 5
圖2- 2無焦系統光路概念圖 6
圖2- 3真實空間轉換動量空間示意圖 8
圖2- 4 LAMBERT′S COSINE LAW示意圖 11
-----------------------------------------------------------------------------------------
圖3- 1真實空間光學系統架設示意圖 15
圖3- 2 動量空間光學系統架設示意圖 15
圖3- 3 光致發光量測架設示意圖 15
圖3- 4 實際架設俯瞰圖 17
圖3- 5 真實空間量測影像 19
圖3- 6 Y軸角度對印之像素點 21
圖3- 7 X軸角度對印之像素點 21
圖3- 8模擬動量空間 23
圖3- 9實際動量空間 23
圖3- 10 待測元件結構 24
圖3- 11 單層膜發光影像光強分布 27
圖3- 12 共振腔發光影像光強分布 27
圖3- 13 單層膜一維光強曲線 28
圖3- 14 共振腔一維光強曲線 28
圖3- 15 共振腔與單層膜光強度分布比較圖 29
圖3- 16 P、S量測架設 31
圖3- 17 單層膜在P方向通過偏振片之光強分布 32
圖3- 18 單層膜在S方向通過偏振片之光強分布 32
圖3- 19 共振腔在P方向通過偏振片之光強分布 33
圖3- 20 共振腔在S方向通過偏振片之光強分布 33
參考文獻 [1] Q. Wang et al., "High‐Performance, Phosphorescent, Top‐Emitting Organic
Light‐Emitting Diodes with p–i–n Homojunctions," Advanced Functional
Materials, vol. 21, no. 9, pp. 1681‐1686, 2011.
[2] C. R. Gubbin, S. A. Maier, and S. Kéna‐Cohen, "Low‐voltage polariton
electroluminescence from an ultrastrongly coupled organic light‐emitting
diode," Applied Physics Letters, vol. 104, no. 23, 2014.
[3] J. Jang and S. H. Han, "High‐performance OTFT and its application," Current
Applied Physics, vol. 6, pp. e17‐e21, 2006.
[4] L.‐M. Chen, Z. Xu, Z. Hong, and Y. Yang, "Interface investigation and
engineering–achieving high performance polymer photovoltaic devices,"
Journal of Materials Chemistry, vol. 20, no. 13, pp. 2575‐2598, 2010.
[5] I. D. W. Samuel and G. A. Turnbull, "Organic semiconductor lasers," Chemical
reviews, vol. 107, no. 4, pp. 1272‐1295, 2007.
[6] A. McClelland and M. Mankin, Optical measurements for scientists and
engineers: a practical guide. Cambridge University Press, 2018.
[7] J.‐F. Chang, S.‐Y. Hong, Y. Chen, Y.‐R. Huang, C.‐K. Lin, and G.‐S. Ciou, "Snapshot
angle‐resolved spectroscopy and its application for study of highly efficient
polariton OLEDs," Crystals, vol. 11, no. 12, p. 1553, 2021.
[8] E. Archer et al., "Accurate Efficiency Measurements of Organic Light‐Emitting
Diodes via Angle‐Resolved Spectroscopy," Advanced Optical Materials, vol. 9,
no. 1, p. 2000838, 2021.
[9] C. Lai et al., "Coherent zero‐state and π‐state in an exciton–polariton
condensate array," Nature, vol. 450, no. 7169, pp. 529‐532, 2007.
[10] T. I. Sommer, G. Weinberg, and O. Katz, "K‐space interpretation of image‐
scanning‐microscopy," Applied Physics Letters, vol. 122, no. 14, 2023.
[11] F.‐k. Hsu, W. Xie, Y.‐S. Lee, S.‐D. Lin, and C.‐W. Lai, "Ultrafast spin‐polarized lasing
in a highly photoexcited semiconductor microcavity at room temperature,"
Physical Review B, vol. 91, no. 19, p. 195312, 2015.
[12] X. Yuan et al., "Spontaneous emission modulation of colloidal quantum dots
via efficient coupling with hybrid plasmonic photonic crystal," Optics express,
vol. 22, no. 19, pp. 23473‐23479, 2014.
[13] R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, "Mitigating
chromatic dispersion with hybrid optical metasurfaces," Advanced Materials,
vol. 31, no. 3, p. 1805555, 2019.
44
[14] S.‐Y. Xu et al., "Momentum‐space imaging of Cooper pairing in a half‐Dirac‐gas
topological superconductor," Nature Physics, vol. 10, no. 12, pp. 943‐950, 2014.
[15] P. Mouroulis and J. Macdonald, "Geometrical optics and optical design," (No
Title), 1997.
[16] M. Katz, Introduction to geometrical optics. World scientific, 2002.
[17] V. N. Mahajan, Fundamentals of geometrical optics. 2014.
[18] R. Penrose, The road to reality. Random house, 2006.
[19] J. W. Goodman, Introduction to Fourier optics. Roberts and Company publishers,
2005.
[20] M. Born and E. Wolf, Principles of optics: electromagnetic theory of
propagation, interference and diffraction of light. Elsevier, 2013.
[21] Y. Zhang et al., "Momentum‐space imaging spectroscopy for the study of
nanophotonic materials," Science Bulletin, vol. 66, no. 8, pp. 824‐838, 2021.
[22] J. W. Goodman and P. Sutton, "Introduction to Fourier optics," Quantum and
Semiclassical Optics-Journal of the European Optical Society Part B, vol. 8, no.
5, p. 1095, 1996.
[23] A. Small, "Spherical aberration, coma, and the Abbe sine condition for
physicists who don′t design lenses," American Journal of Physics, vol. 86, no. 7,
pp. 487‐494, 2018.
[24] A. Ernst, "On the estimation of aperture in the microscope," JR Microsc. Soc,
vol. 1, no. 3, pp. 388‐423, 1881.
[25] D. Garbuzov, V. Bulović, P. Burrows, and S. Forrest, "Photoluminescence
efficiency and absorption of aluminum‐tris‐quinolate (Alq3) thin films,"
Chemical Physics Letters, vol. 249, no. 5‐6, pp. 433‐437, 1996.
[26] C. Mulder, K. Celebi, K. Milaninia, and M. Baldo, "Saturated and efficient blue
phosphorescent organic light emitting devices with Lambertian angular
emission," Applied Physics Letters, vol. 90, no. 21, 2007.
[27] M.‐T. Lee and M.‐R. Tseng, "Efficient, long‐life and Lambertian source of top‐
emitting white OLEDs using low‐reflectivity molybdenum anode and co‐doping
technology," Current Applied Physics, vol. 8, no. 5, pp. 616‐619, 2008.
指導教授 張瑞芬(JUI-FEN CHANG) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明