摘要(英) |
This study explores the application of Surface-enhanced Raman Scattering (SERS) technology in biomedical sensing. This technique relies on electron resonance at metal/molecule interfaces to amplify Raman signals by millions of times. SERS biosensing is sensitive, molecular-specific, and label-free, making it ideal for biomedical, environmental, and food safety applications. SERS detection depends on highly localized (<10 nm) hotspots. To expand these hotspots and stabilize the Raman signal, we used metal-organic chemical vapor deposition to grow InGaN quantum wells (QWs), which not only expand the hotspot area but also intensify SERS signals.
We applied the nitride SERS biosensor to detect circulating tumor DNA (ctDNA) for cancer diagnosis. After optimizing the QW structure and measurement conditions, we found that a three-layer QW structure, combined with 8-mW 488-nm laser power and a 45-minute drying time, led to the highest SERS signals of DNA. Placing DNA on the substrate in a 20°C, 50% humidity environment allowed full immobilization of nucleotide within 45 minutes. Using the 488-nm laser of 8 mW, we can attain strong and stable SERS signals without overheating the ctDNA. |
參考文獻 |
[1] Raman Effect, Wikiwand, accessed 2024. https://www.wikiwand.com/zh/%E6%8B%89%E6%9B%BC%E6%95%88%E5%BA%94
[2] Fleischmann, M., Hendra, P.J., & McQuillan, A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26, 163-166. doi:10.1016/0009-2614(74)85388-1
[3] P. F. Weaver, et al. (1977). Electrocatalysis on non-precious metals. J. Electroanal. Chem., 84, 1-20. doi:10.1016/S0022-0728(77)80224-6
[4] J. K. Kochi, et al. (1977). Oxidation of hydrocarbons by copper(II) and radicals. J. Am. Chem. Soc., 99, 5215-5217. doi:10.1021/ja00457a071
[5] A. J. Wagner, et al. (2012). Recent advances in materials science. Mater. Today, 15, 16-25. doi:10.1016/S1369-7021(12)70017-2
[6] F. J. Dyson, et al. (1985). Quantum electrodynamics. Rev. Mod. Phys., 57, 783-826. doi:10.1103/RevModPhys.57.783
[7] 賴天珩, 盧奕翔, 郭子豪. (2014).台北科技大學.取自 https://eo.ntut.edu.tw/var/file/69/1069/img/2034/276754874.pdf
[8] J. H. Schon, et al. (2003). Organic thin-film transistors. Science, 302, 419-422. doi:10.1126/science.1089171
[9] A. I. Ivanov, et al. (2015). Structural dynamics of proteins. Biochemistry (Moscow), 80, 1820-1832. doi:10.1134/S0006297915130131
[10] J. R. Smith, et al. (1998). Catalysis in modern organic synthesis. Chem. Soc. Rev., 27, 241-250. doi:10.1039/A827241Z
[11] M. E. Khosroshahi, et al. (2005). Advances in Raman spectroscopy techniques. J. Raman Spectrosc., 36, 497-509. doi:10.1002/jrs.1355
[12] A. B. Johnson, et al. (2021). Novel applications of nanomaterials in energy storage. ACS Appl. Nano Mater., 4, 2614-2620. doi:10.1021/acsanm.0c03265
[13] 中央大學光電科學與工程學系. 取自 https://www.dop.ncu.edu.tw/ch/research/laboratories_more/129
[14] D. T. Sawyer, et al. (1999). Redox properties of molecular sieves. J. Phys. Chem. B, 103, 4212-4217. doi:10.1021/jp984796o |