博碩士論文 111329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:52.15.194.238
姓名 簡宜婷(Yi-Ting Jian)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 釕-硼基電催化觸媒在酸性和鹼性海水電解液中 的高效析氫反應
(Ruthenium-Boride Based Electrocatalysts for Efficient Hydrogen Evolution Reaction in both Acidic and Alkaline Seawater Media)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 由於能源危機和環境污染問題,所以再生能源的發展便為相當重要。其中,氫氣因為燃燒時不產生碳排放而被視為潔淨能源,而電解水產氫的研究也因此備受關注。然而在鹼性環境中,陰極的析氫反應(hydrogen evolution reaction, HER)受到緩慢動力學的影響,導致較高的過電位,而在酸性環境中,觸媒穩定度較差。另外,由於海水資源豐富,透過海水電解生產氫氣被視為一永續且環保的策略。因此,設計高活性、穩定性的觸媒是發展海水和淡水產氫技術的關鍵。
釕(Ru)具有與Pt相當的氫鍵結強度,然而,其對氫吸附能強,所以需要降低氫的吸附能才能改善產氫,而硼化可有效調節Ru的電子結構,使其位於火山圖中更靠近Pt。在本研究中,透過NaBH4 還原法製備出具有高HER活性及高穩定性的RuB基觸媒,而微量Pt的添加不僅能增加觸媒在0.5 M H2SO4電解液中的活性,還可促進其長時間測試的結構穩定性。此外,Co可以提升觸媒在鹼性模擬海水(1 M KOH+3.5wt% NaCl)中的水解能力,值得注意的是,RuB-Pt/C及RuB-CoPt/C分別在酸性及鹼性模擬海水電解液中表現出色的穩定性及活性,在電流密度10 mA/cm2 的過電位分別為20 及15 mV, Tafel 斜率為11及23 mV dec-1,質量活性為7803 及1194 mA/mg Ru+Pt,並且經過5000圈循環的穩定度測試後仍保有優異的HER性能。
另一方面,透過感應耦合電漿放射光譜儀(Inductively coupled plasma optical emission, ICP-OES)分析穩定度測試後的電解液,結果顯示添加Co、B和Pt可以防止或減少Ru觸媒在酸及海水電解液中的溶解,從而提高觸媒的結構穩定性。在酸性中的穩定度也透過原位X射線吸收光譜(in-situ X-ray absorption spectroscopy, in-situ XAS)分析,觸媒的主要活性位點為Ru-B,且添加Pt能顯著增強觸媒結構的穩定性,使其在酸性電解液中展現出卓越的HER性能。此外,也透過CO 剝離測試(CO-stripping)結果顯示Co的添加有利於海水的解離。本研究製備出低貴重金屬含量且在酸性及鹼性模擬海水電解液中具高HER性能的RuB基觸媒,並了解優異HER性能的促進機制,提供了製備高活性HER酸及海水觸媒的思維。
摘要(英) Due to the energy crisis and environmental pollution issues, the development of renewable energy is of paramount importance. Hydrogen is regarded as clean energy because it does not produce carbon emissions when burned and hydrogen production through water electrolysis has attracted much attention. However, the hydrogen evolution reaction (HER) at the cathode in alkaline environments is hindered by sluggish kinetics, resulting in higher overpotentials, whereas in acidic environments, the stability of catalysts is a concern. Additionally, given the abundance of seawater resources, producing hydrogen through seawater electrolysis is a sustainable and eco-friendly strategy. Therefore, designing catalysts with high activity and stability is crucial for advancing hydrogen production technologies from both seawater and freshwater.
Ru possesses hydrogen bonding strength comparable to Pt, yet its strong hydrogen adsorption energy necessitates reduction to improve HER performance. Boronization can effectively tune the electronic structure of Ru, aligning it closer to Pt in the volcano plot. In this study, RuB-based catalysts with high noble metal utilization, and high HER activity and stability are synthesized using the NaBH4 reduction method, and the addition of low amounts of Pt not only enhances the catalyst′s activity in 0.5 M H2SO4 electrolytes but also promotes structural stability during long-term test. Additionally, Co improves the catalyst′s hydrolysis ability in alkaline simulated seawater (1 M KOH + 3.5wt% NaCl). Notably, RuB-Pt/C and RuB-CoPt/C exhibit excellent stability and activity in acidic and alkaline simulated seawater electrolytes, with overpotentials of 20 and 15 mV at a current density of 10 mA/cm2, Tafel slopes of 11 and 23 mV dec-1, and mass activities of 7803 and 1194 mA/mgRu+Pt, respectively. Both catalysts maintain superior HER performance after 5000 cycles of stability test.
Additionally, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the electrolytes after ADT reveals that the addition of Co, B, and Pt can effectively prevent or mitigate the dissolution of Ru catalysts in acidic and seawater electrolytes, thereby enhancing the structural stability of catalysts. The stability under acidic conditions is further explored using in-situ X-ray absorption spectroscopy (in-situ XAS), identifying Ru-B as the predominant active site, with Pt addition significantly promoting catalyst structural stability and resulting in exceptional HER performance in acidic electrolytes. Furthermore, CO-stripping test indicates that the addition of Co facilitates seawater dissociation. This study introduces RuB-based catalysts with low noble metal content and high HER performance in both acidic and alkaline simulated seawater electrolytes, shedding light on the mechanisms driving their superior HER performance and providing insights into the development of highly active HER acid and seawater catalysts.
關鍵字(中) ★ 釕
★ 鈷
★ 鉑
★ 硼化
★ 析氫反應
★ 電解海水
★ X 射線吸收光譜
★ 低貴重金 屬負載量
★ 穩定性
關鍵字(英) ★ ruthenium
★ cobalt
★ platinum
★ boronization
★ hydrogen evolution reaction (HER)
★ seawater electrolysis
★ X-ray absorption spectroscopy
★ low noble metal loading
★ stability
論文目次 摘要.............i
Abstract........iii
致謝........... v
Table of Contents...... vii
List of Figures..........ix
List of Tables...........xi
Chapter 1 Introduction....1
1.1 Mechanism of HER......2
1.2 The Effect of Boronization on Ru-Based Catalysts.....4
1.3 Ru-Based Catalysts Alloyed with 3d Transition Metals and Platinum...........6
1.4 Motivation and Approach............ 7
Chapter 2 Experimental Section......... 8
2.1 Preparation of Catalysts........... 8
2.1.1 Materials and reagents........... 8
2.1.2 Synthesis of RuB-CoPt/C catalysts........8
2.1.3 Synthesis of RuB/C, RuB-Co/C and RuB-Pt/C catalysts ...............................................8
2.1.4 Synthesis of Ru/C catalyst...............9
2.2 Materials Characterization 10
2.3 Electrochemical Measurements....... 12
Chapter 3 Results and Discussion....... 15
3.1 The Characterizations of Catalysts......... 15
3.2 Electrocatalytic Performances...... 27
3.2.1 HER performance in acidic electrolyte.... 27
3.2.2 HER performance in alkaline simulated seawater electrolyte.... 32
3.3 Operando XAS Characterization...... 38
3.4 CO-Stripping Test.......... 43
Chapter 4 Conclusions.......... 45
References..................... 46
參考文獻 [1] Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A. 2021, 9, 6316-6324.
[2] Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy. 2021, 83, 105838.
[3] Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a multilayered oxygen‐evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.
[4] Cui, B.; Hu, Z.; Liu, C.; Liu, S.; Chen, F.; Hu, S.; Zhang, J.; Zhou, W.; Deng, Y.; Qin, Z. Heterogeneous lamellar-edged Fe-Ni (OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149-1155.
[5] Zang, W.; Sun, T.; Yang, T.; Xi, S.; Waqar, M.; Kou, Z.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni‐N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.
[6] Li, R.; Xu, J.; Ba, J.; Li, Y.; Liang, C.; Tang, T. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. Int. J. Hydrogen Energy. 2018, 43, 7956-7963.
[7] Ali, Y.; Nguyen, V. T.; Nguyen, N. A.; Shin, S.; Choi, H. S. Transition-metal-based NiCoS/C-dot nanoflower as a stable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy. 2019, 44, 8214-8222.
[8] Zhao, Y.; Wang, X.; Cheng, G.; Luo, W. Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 2020, 10, 11751-11757.
[9] Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.
[10] Yang, Y.; Wu, D.; Yu, Y.; Li, J.; Rao, P.; Jia, C.; Liu, Z.; Chen, Q.; Huang, W.; Luo, J. Bridge the activity and durability of Ruthenium for hydrogen evolution reaction with the RuOC link. Chem. Eng. J. 2022, 433, 134421.
[11] Wang, S.; Wang, M.; Liu, Z.; Liu, S.; Chen, Y.; Li, M.; Zhang, H.; Wu, Q.; Guo, J.; Feng, X. Synergetic function of the single-atom Ru–N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces. 2022, 14, 15250-15258.
[12] Zhang, Z.; Li, P.; Wang, Q.; Feng, Q.; Tao, Y.; Xu, J.; Jiang, C.; Lu, X.; Fan, J.; Gu, M. Mo modulation effect on the hydrogen binding energy of hexagonal-close-packed Ru for hydrogen evolution. J. Mater. Chem. A. 2019, 7, 2780-2786.
[13] Sriphathoorat, R.; Wang, K.; Luo, S.; Tang, M.; Du, H.; Du, X.; Shen, P. K. Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A. 2016, 4, 18015-18021.
[14] Chen, Y.; Zheng, X. X.; Huang, X. Y.; Wang, A. J.; Zhang, Q. L.; Huang, H.; Feng, J.-J. Trimetallic PtRhCo petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J. Colloid Interface Sci. 2020, 559, 206-214.
[15] Jia, Y.; Zhang, Y.; Xu, H.; Li, J.; Gao, M.; Yang, X. Recent Advances in Doping Strategies to Improve Electrocatalytic Hydrogen Evolution Performance of Molybdenum Disulfide. ACS Catal. 2024, 14, 4601-4637.
[16] Li, Y.; Feng, L. Recent advances and perspectives in Ru hybrid electrocatalysts for the hydrogen evolution reaction. Energy Fuels. 2023, 37, 8079-8098.
[17] Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10, 9165-9181.
[18] Yoo, R. M.; Yesudoss, D.; Johnson, D.; Djire, A. A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catal. 2023, 13, 10570-10601.
[19] Li, D.; Liu, H.; Feng, L. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuels. 2020, 34, 13491-13522.
[20] Jin, J.; Yin, J.; Liu, H.; Huang, B.; Hu, Y.; Zhang, H.; Sun, M.; Peng, Y.; Xi, P.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem. 2021, 133, 14236-14242.
[21] Li, D.; Liao, L.; Zhou, H.; Zhao, Y.; Cai, F.; Zeng, J.; Liu, F.; Wu, H.; Tang, D.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.
[22] Yin, Z.; He, R.; Zhang, Y.; Feng, L.; Wu, X.; Wågberg, T.; Hu, G. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585-592.
[23] Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[24] Lao, M.; Li, P.; Jiang, Y.; Pan, H.; Dou, S. X.; Sun, W. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy. 2022, 98, 107231.
[25] Qian, C.; Shao, W.; Zhang, X.; Mu, X.; Gu, X.; Yu, M.; Ma, L.; Liu, S.; Mu, S. Competitive coordination‐pairing between Ru clusters and single‐atoms for efficient hydrogen evolution reaction in alkaline seawater. Small. 2022, 18, 2204155.
[26] Xu, J.; Zhong, M.; Song, N.; Wang, C.; Lu, X. General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chin. Chem. Lett. 2023, 34, 107359.
[27] Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium‐based single‐atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.
[28] Li, W.; Zhao, Y.; Liu, Y.; Sun, M.; Waterhouse, G. I.; Huang, B.; Zhang, K.; Zhang, T.; Lu, S. Exploiting Ru‐induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. 2021, 133, 3327-3335.
[29] Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; De Groot, F. M.; Tan, Y. Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2019, 5, 192-199.
[30] Shen, L.W.; Wang, Y.; Chen, J. B.; Tian, G.; Xiong, K. Y.; Janiak, C.; Cahen, D.; Yang, X. Y. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Lett. 2023, 23, 1052-1060.
[31] Chen, H.; Zhang, B.; Liang, X.; Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611-635.
[32] Ai, X.; Zou, X.; Chen, H.; Su, Y.; Feng, X.; Li, Q.; Liu, Y.; Zhang, Y.; Zou, X. Transition‐metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high‐performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961-3965.
[33] Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[34] Ding, Y.; Miao, B. Q.; Jiang, Y. C.; Yao, H. C.; Li, X. F.; Chen, Y. Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. J. Mater. Chem. A. 2019, 7, 13770-13776.
[35] Luo, F.; Zhang, Q.; Yu, X.; Xiao, S.; Ling, Y.; Hu, H.; Guo, L.; Yang, Z.; Huang, L.; Cai, W. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew. Chem., Int. Ed. 2018, 57, 14862-14867.
[36] Yoon, D.; Seo, B.; Lee, J.; Nam, K. S.; Kim, B.; Park, S.; Baik, H.; Joo, S. H.; Lee, K. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 850-856.
[37] Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall‐water‐splitting activity. Angew. Chem. 2016, 128, 6814-6819.
[38] Xu, Y.; Chai, X.; Ren, T.; Yu, H.; Yin, S.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Synergism of Interface and Electronic Effects: Bifunctional N‐Doped Ni3S2/N‐Doped MoS2 Hetero‐Nanowires for Efficient Electrocatalytic Overall Water Splitting. CHEM-EUR J. 2019, 25, 16074-16080.
[39] Yao, N.; Li, P.; Zhou, Z.; Zhao, Y.; Cheng, G.; Chen, S.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.
[40] Chen, L.; Zhang, L. R.; Yao, L. Y.; Fang, Y. H.; He, L.; Wei, G. F.; Liu, Z. P. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099-3105.
[41] Sun, H.; Xu, X.; Yan, Z.; Chen, X.; Jiao, L.; Cheng, F.; Chen, J. Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A. 2018, 6, 22062-22069.
[42] Deng, K.; Ren, T.; Xu, Y.; Liu, S.; Dai, Z.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Transition metal M (M= Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A. 2020, 8, 5595-5600.
[43] Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
[44] Xu, J.; Liu, T.; Li, J.; Li, B.; Liu, Y.; Zhang, B.; Xiong, D.; Amorim, I.; Li, W.; Liu, L. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819-1827.
[45] Feng, J. X.; Wu, J.-Q.; Tong, Y.-X.; Li, G.-R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610-617.
[46] Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self‐supported transition‐metal‐based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[47] Dhavale, V. M.; Kurungot, S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catal. 2015, 5, 1445-1452.
[48] Yu, Y.; Lee, S. J.; Theerthagiri, J.; Lee, Y.; Choi, M. Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal., B. 2022, 316, 121603.
[49] Ge, S.; Zhang, L.; Hou, J.; Liu, S.; Qin, Y.; Liu, Q.; Cai, X.; Sun, Z.; Yang, M.; Luo, J. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487-9494.
[50] Gao, R.; Wang, J.; Huang, Z. F.; Zhang, R.; Wang, W.; Pan, L.; Zhang, J.; Zhu, W.; Zhang, X.; Shi, C. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy. 2021, 6, 614-623.
[51] Zhao, W.; Luo, C.; Lin, Y.; Wang, G. B.; Chen, H. M.; Kuang, P.; Yu, J. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 2022, 12, 5540-5548.
[52] Cao, D.; Wang, J.; Xu, H.; Cheng, D. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small. 2020, 16, 2000924.
[53] Wang, H.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Multifunctional electrocatalysts: Ru–M (M= Co, Ni, Fe) for alkaline fuel cells and electrolyzers. ACS Catal. 2020, 10, 4608-4616.
[54] Xu, H.; Shang, H.; Wang, C.; Jin, L.; Chen, C.; Du, Y. Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses. Nanoscale. 2020, 12, 2126-2132.
[55] Zhu, T.; Huang, J.; Huang, B.; Zhang, N.; Liu, S.; Yao, Q.; Haw, S. C.; Chang, Y. C.; Pao, C. W.; Chen, J. M. High‐index faceted RuCo nanoscrews for water electrosplitting. Adv. Energy Mater. 2020, 10, 2002860.
[56] Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. A general route to prepare low‐ruthenium‐content bimetallic electrocatalysts for pH‐universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718-1726.
[57] Hou, L.; Jang, H.; Gu, X.; Cui, X.; Tang, J.; Cho, J.; Liu, X. Design strategies of ruthenium‐based materials toward alkaline hydrogen evolution reaction. EcoEnergy. 2023, 1, 16-44.
[58] Huynh, T. T.; Mai, V. T. T.; Nguyen, A. Q. K.; Pham, H. Q. Ni‐Doped RuPt Nanoalloy on Acid‐Treated Carbon for pH‐Universal Hydrogen Evolution Reaction. Adv. Sustainable Syst. 2024, 8, 2300380.
[59] Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.
[60] Chen, J.; Ying, J.; Xiao, Y.; Dong, Y.; Ozoemena, K. I.; Lenaerts, S.; Yang, X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Sci. China Mater. 2022, 65, 2685-2693.
[61] Dresp, S. r.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 2019, 4, 933-942.
[62] Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439-3446.
[63] Li, J.; Hou, C.; Chen, C.; Ma, W.; Li, Q.; Hu, L.; Lv, X.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano. 2023, 17, 10947-10957.
[64] Cheng, X.; Xiao, B.; Chen, Y.; Wang, Y.; Zheng, L.; Lu, Y.; Li, H.; Chen, G. Ligand charge donation–acquisition balance: a unique strategy to boost single pt atom catalyst mass activity toward the hydrogen evolution reaction. ACS Catal. 2022, 12, 5970-5978.
[65] Wang, B.; Lu, M.; Chen, D.; Zhang, Q.; Wang, W.; Kang, Y.; Fang, Z.; Pang, G.; Feng, S. NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A. 2021, 9, 13562-13569.
[66] Sun, J. A.; Kots, P. A.; Hinton, Z. R.; Marinkovic, N. S.; Ma, L.; Ehrlich, S. N.; Zheng, W.; Epps III, T. H.; Korley, L. T.; Vlachos, D. G. Size and Structure Effects of Carbon-Supported Ruthenium Nanoparticles on Waste Polypropylene Hydrogenolysis Activity, Selectivity, and Product Microstructure. ACS Catal. 2024, 14, 3228-3240.
[67] Liang, J.; Gao, X.; Xu, K.; Lu, J.; Liu, D.; Zhao, Z.; Tse, E. C.; Peng, Z.; Zhang, W.; Liu, J. Unraveling the Asymmetric O─O Radical Coupling Mechanism on Ru─ O─ Co for Enhanced Acidic Water Oxidation. Small. 2023, 19, 2304889.
[68] Cai, L.; Bai, H.; Kao, C. w.; Jiang, K.; Pan, H.; Lu, Y. R.; Tan, Y. Platinum–Ruthenium Dual‐Atomic Sites Dispersed in Nanoporous Ni0. 85Se Enabling Ampere‐Level Current Density Hydrogen Production. Small. 2024, 2311178.
[69] Chen, Z.; Zhang, P. Electronic structure of single-atom alloys and its impact on the catalytic activities. ACS Omega. 2022, 7, 1585-1594.
[70] Li, Y.; Liu, X.; Xue, S.; Liu, A.; Wen, S.; Chen, S. Boosting the electrocatalytic performance of CoPt alloy with enhanced electron transfer via atomically dispersed cobalt sites. Small. 2023, 19, 2302170.
[71] Nguyen, N. A.; Ali, Y.; Nguyen, V. T.; Omelianovych, O.; Larina, L. L.; Choi, H. S. NiCoPt/graphene-dot nanosponge as a highly stable electrocatalyst for efficient hydrogen evolution reaction in acidic electrolyte. J. Alloys Compd. 2020, 849, 156651.
[72] Wang, C.; Qi, L. Hollow nanosheet arrays assembled by ultrafine ruthenium–cobalt phosphide nanocrystals for exceptional pH-universal hydrogen evolution. ACS Mater. Lett. 2021, 3, 1695-1701.
[73] Li, C.; Zhang, L.; Zhang, Y.; Zhou, Y.; Sun, J.; Ouyang, X.; Wang, X.; Zhu, J.; Fu, Y. PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chem. Eng. J. 2022, 428, 131085.
[74] Kuang, Y.; Qiao, W.; Yang, F.; Feng, L. Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe2 embedded mesoporous hollow carbon spheres. J. Energy Chem. 2023, 85, 447-454.
[75] Yao, R.; Sun, K.; Zhang, K.; Wu, Y.; Du, Y.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y.; Li, J. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.
[76] Zhou, Y.; Kuang, Y.; Hu, G.; Wang, X.; Feng, L. An effective Pt–CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation. Mater. Today Phys. 2022, 27, 100831.
[77] Zhang, D.; Miao, H.; Wu, X.; Wang, Z.; Zhao, H.; Shi, Y.; Chen, X.; Xiao, Z.; Lai, J.; Wang, L. Scalable synthesis of ultra-small Ru2P@ Ru/CNT for efficient seawater splitting. Chin. J. Catal. 2022, 43, 1148-1155.
[78] Liu, G.; Zhang, Z.; Liu, W.; Yang, W.; An, L.; Qu, D.; Liu, Y.; Wang, X.; Sun, Z. Ultra-small carbon-supported FeRu alloy as a superior electrocatalyst for hydrogen evolution reaction. Sci. China Mater. 2023, 66, 2672-2679.
[79] Gu, X.; Yu, M.; Chen, S.; Mu, X.; Xu, Z.; Shao, W.; Zhu, J.; Chen, C.; Liu, S.; Mu, S. Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy. 2022, 102, 107656.
[80] Zhu, J.; Lu, R.; Shi, W.; Gong, L.; Chen, D.; Wang, P.; Chen, L.; Wu, J.; Mu, S.; Zhao, Y. Epitaxially grown Ru clusters–nickel nitride heterostructure advances water electrolysis kinetics in alkaline and seawater media. Energy Environ. Mater. 2023, 6, e12318.
[81] Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3 d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[82] Tian, M.; Shi, S.; Shen, Y.; Yin, H. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochim. Acta. 2019, 293, 390-398.
[83] Zhu, Y.; Klingenhof, M.; Gao, C.; Koketsu, T.; Weiser, G.; Pi, Y.; Liu, S.; Sui, L.; Hou, J.; Li, J. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.
[84] Zhang, J.; Zhang, L.; Liu, J.; Zhong, C.; Tu, Y.; Li, P.; Du, L.; Chen, S.; Cui, Z. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nat. Commun. 2022, 13, 5497.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明