博碩士論文 109395001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:175 、訪客IP:13.59.70.123
姓名 楊尚仁(Sang-Ren Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 直接生長過渡金屬氧化物於超級電容器電極之應用研究
(Direct Growth of Transition Metal Oxides (TMOs) on Electrodes for Supercapacitor Applications)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石油的枯竭、可再生能源的發展、電動車以及消費性電子裝備的廣泛應用,導致對各式能源儲存的需求不斷增加。電化學在各種能源儲存技術中扮演著關鍵角色,因此開發高性能的電極材料更顯重要。過渡金屬氧化物(transition metal oxides, TMOs),因可提供多價態和多活性位點,在電極中可做為關鍵的活性物質,但卻也有低導電性與活化能力被電極加工方式降低的問題。因此在本研究探討了直接生長TMOs用於超級電容器電極,主要關注兩個主題:可撓式電極和高熵氧化物(high entropy oxide, HEO)電極。
在可撓式電極研究中,我們使用了電紡絲的方法製作出具有銀顆粒的奈米碳纖維 (CNF/Ag) 基材,並以原位氧化還原(in-situ redox)方式於基材上直接生長二氧化錳(MnO2),最終形成MnO2-CNF/Ag的電極,這樣的架構提高了整體的導電性和電化學性能與電極的可撓性,其在1 A/g的電流密度下具有184 F/g,為CNF電極的17倍,並有16.3 Wh/kg的能量密度和400 W/kg的功率密度;在1,200次循環充、放電測試下仍可保持95 %的電容維持率,並在0-5cm曲率半徑下達到87 %的電容維持率。
在HEO電極的研究中,我們使用含鈷、鉻、鐵、錳、鎳的TMOs作為活性材料,以脈衝雷射掃描方式直接生長HEO在鎳基板上。高熵材料獨特的組合特性導致了優異的性能,該電極在1 A/g電流密度下實現了870 F/g的電容值,以及22.3 Wh/kg的能量密度和212 W/kg的功率密度。並且在1,000次充、放電循環後,仍可保持82 %的電容維持率。
這些結果證明了直接生長過渡金屬氧化物在超級電容器電極的可行性,並同時可提供良好的電化學性能。
摘要(英) The depletion of petroleum, the rise of renewable energy, and the widespread use of electric vehicles and consumer electronics have increased the demand for energy storage. Electrochemistry is crucial in energy storage technologies, making the development of high-performance electrode materials vital. Transition metal oxides (TMOs) offer multiple valence states and active sites but suffer from low conductivity and reduced activation due to electrode fabricate processing. In this thesis explores the direct growth of TMOs for supercapacitor electrodes, focusing on flexible and high-entropy oxide (HEO) electrodes.
For flexible electrodes, we used electrospinning to fabricate a nanocarbon fiber substrate with Ag (CNF/Ag). MnO2 was directly grown on CNF/Ag via in-situ redox reaction, forming MnO₂-CNF/Ag electrode. This structure improved conductivity, flexibility and electrochemical performance. The electrode achieved 184 F/g at 1 A/g, which is 17 times higher than CNF electrodes, with an energy density of 16.3 Wh/kg and a power density of 400 W/kg. The capacitance retention exhibited 87 % across various curvatures (r: 0-5cm), and also shown 95 % capacitance retention after 1,200 charge-discharge cycles.
In the study of HEO electrodes, we employed high entropy (Co, Cr, Fe, Mn, Ni) oxide as the active material, directly grown on Ni substrates. The unique properties of HEO resulted in outstanding performance. The HEO electrode achieved a specific capacitance of 870 F/g at 1 A/g, along with an energy density of 22.3 Wh/kg and a power density of 212 W/kg. The capacitance retention maintained 82 % after 1,000 cycles of charge-discharge.
These results demonstrate the feasibility of directly growing TMOs on electrodes and providing excellent electrochemical performance in supercapacitor.
關鍵字(中) ★ 二氧化錳
★ 奈米碳纖
★ 可撓式電極
★ 高熵金屬氧化物
★ 超級電容
關鍵字(英) ★ Manganese Dioxide
★ Carbon Nanofiber
★ Flexible Electrode
★ High-entropy (Co, Cr, Fe, Mn, Ni) oxides
★ Supercapacitor
論文目次 摘要 I
Abstract II
致謝 III
Table of contents IV
List of figures VII
List of tables XIV
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Supercapacitor 7
1.2.1 Electrical double-layer capacitors 8
1.2.2 Pseudocapacitors 10
1.2.3 Hybrid-capacitors 13
1.2.4 Electrode for supercapacitor 14
1.2.5 Material for electrode 17
1.2.5.1 Carbon-based materials 17
1.2.5.2 Transition metal oxides 23
1.2.5.1 Binder 31
1.3 Improvement directions of electrode 32
1.4 Flexible electrode 34
1.4.1 Carbon-based flexible electrodes 35
1.4.2 CNF network electrodes 37
1.4.2.1 Electrospinning 37
1.4.2.2 Stabilization and carbonization 38
1.4.3 MnO2-CNF electrode 40
1.4.4 Improvement of MnO2-CNF electrode 44
1.4.4.1 Addition of conductive materials into MnO2 44
1.4.4.2 Addition of conductive materials into CNF 47
1.5 High entropy oxides electrode 50
1.5.1 Characteristics of high entropy oxides 51
1.5.2 Fabrication of high entropy oxides 53
1.5.3 Rapid methods 54
1.5.4 Applications in electrode 57
1.6 Motivation 60
Chapter 2 Experimental 63
2.1 Flexible electrode 63
2.1.1 CNF/Ag electrode 63
2.1.2 MnO2-CNF/Ag electrode 64
2.2 HEO electrode 65
2.2.1 Ni substrate 65
2.2.2 HEO/NP electrode 65
2.3 Characterization of the materials 67
2.4 Electrochemical performance 67
Chapter 3 Results and discussion 69
3.1 Flexible electrode 69
3.1.1 Direct growth of MnO2 on CNF/Ag 69
3.1.2 Electrochemical performance 74
3.1.3 Bending test 86
3.2 HEO/NP electrode 88
3.2.1 Direct growth of high-entropy (Co,Cr,Fe,Mn,Ni) oxides on Ni-pellet 88
3.2.2 Electrochemical performance 97
Chapter 4 Conclusions 106
Chapter 5 Future work and outlook 108
References 110
參考文獻 [1] A. Afif, S. M. H. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islan, and A. K. Azad, "Advanced materials and technologies for hybrid supercapacitors for energy storage – A review," Journal of Energy Storage, vol. 25, 100852, 2019.
[2] S. Ould Amrouche, D. Rekioua, T. Rekioua, and S. Bacha, "Overview of energy storage in renewable energy systems," International Journal of Hydrogen Energy, vol. 41, no. 45, 20914, 2016.
[3] A. Phakkhawan, P. Klangtakai, A. Chompoosor, S. Pimanpang, and V. Amornkitbamrung, "A comparative study of MnO2 and composite MnO2–Ag nanostructures prepared by a hydrothermal technique on supercapacitor applications," Journal of Materials Science: Materials in Electronics, vol. 29, no. 11, 9406, 2018.
[4] D. Wu, X. Xie, Y. Zhang, D. Zhang, W. Du, X. Zhang, and B. Wang, "MnO2/Carbon Composites for supercapacitor: synthesis and electrochemical performance," Frontiers in Materials, vol. 7, 2, 2020.
[5] J.-D. Xie, J. Patra, P. Chandra Rath, W.-J. Liu, C.-Y. Su, S.-W. Lee, C.-J. Tseng, Y. A. Gandomi, and J.-K. Chang, "Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes," Journal of Power Sources, vol. 450, 227657, 2020.
[6] M. Li, J. Lu, Z. Chen, and K. Amine, "30 Years of lithium-ion batteries," Advanced Materials, vol. 30, no. 33, 1800561, 2018.
[7] S.-R. Yang, S.-L. Cheng, H.-T. Hsu, B. S. Wardhana, M.-X. Jiang, I. Y. Tsao, W.-H. Hung, K.-W. Wang, and S.-W. Lee, "Enhancing the performance of quasi-solid-state flexible supercapacitors with Ag and MnO2 co-decorated carbon nanofibrous electrodes," Electrochimica Acta, vol. 483, 143986, 2024.
[8] J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, "Supercapacitors: properties and applications," Journal of Energy Storage, vol. 17, 224, 2018.
[9] P.-C. Cheng, S.-W. Lee, K.-R. Lee, N. Setiawan, M. Bhavanari, C.-T. Shen, N. Osman, and C.-J. Tseng, "Carbon resistant Ni1-xCux-BCZY anode for methane-fed protonic ceramic fuel cell," International Journal of Hydrogen Energy, vol. 48, no. 30, 11455, 2023.
[10] M. Singh, D. Zappa, and E. Comini, "Solid oxide fuel cell: Decade of progress, future perspectives and challenges," International Journal of Hydrogen Energy, vol. 46, no. 54, 27643, 2021.
[11] X. Hu, X. Tian, Y. W. Lin, and Z. Wang, "Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media," RSC Advances, vol. 9, no. 54, 31563, 2019.
[12] Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, "Green hydrogen: A pathway to a sustainable energy future," International Journal of Hydrogen Energy, vol. 50, 310, 2024.
[13] M. Yaseen, M. A. K. Khattak, M. Humayun, M. Usman, S. S. Shah, S. Bibi, B. S. U. Hasnain, S. M. Ahmad, A. Khan, N. Shah, A. A. Tahir, and H. Ullah, "A review of supercapacitors: materials design, modification, and applications," Energies, vol. 14, no. 22, 7779, 2021.
[14] P. Forouzandeh, V. Kumaravel, and S. C. Pillai, "Electrode materials for supercapacitors: A review of recent advances," Catalysts, vol. 10, no. 9, 969, 2020.
[15] T. Yue, B. Shen, and P. Gao, "Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review," Renewable and Sustainable Energy Reviews, vol. 158, 112131, 2022.
[16] Zion Market Research, " Supercapacitor market size, share, forecast 2030," 2021, 取自https://www.zionmarketresearch.com/report/super-capacitor-market.
[17] J. Ho, T.R. Jow, S. Boggs, "Historical introduction to capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, 20, 2010.
[18] M. A. A. Mohd Abdah, N. H. N. Azman, S. Kulandaivalu, and Y. Sulaiman, "Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors," Materials & Design, vol. 186, 108199, 2020.
[19] M. Vangari, T. Pryor, and L. Jiang, "Supercapacitors: Review of materials and fabrication methods," Journal of Energy Engineering, vol. 139, no. 2, 72, 2013.
[20] J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, "A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes," Carbon, vol. 61, 190, 2013.
[21] H.-M. Lee, H.-G. Kim, S.-J. Kang, S.-J. Park, K.-H. An, and B.-J. Kim, "Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers," Journal of Industrial and Engineering Chemistry, vol. 21, 736, 2015.
[22] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, and C. Zhi, "Nanostructured Polypyrrole as a flexible electrode material of supercapacitor," Nano Energy, vol. 22, 422, 2016.
[23] Y.-J. Peng, T.-H. Wu, C.-T. Hsu, S.-M. Li, M.-G. Chen, and C.-C. Hu, "Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors," Journal of Power Sources, vol. 272, 970, 2014.
[24] S. R. S. Prabaharan, R. Vimala, and Z. Zainal, "Nanostructured mesoporous carbon as electrodes for supercapacitors," Journal of Power Sources, vol. 161, no. 1, 730, 2006.
[25] X. Mao, T. Hatton, and G. Rutledge, "A review of electrospun carbon fibers as electrode materials for energy storage," Current Organic Chemistry, vol. 17, no. 13, 1390, 2013.
[26] L. Tong, J. Liu, S. M. Boyer, L. A. Sonnenberg, M. T. Fox, D. Ji, J. Feng, W. E. Bernier, and W. E. Jones, "Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors," Electrochimica Acta, vol. 224, 133, 2017.
[27] G. G. Bizuneh, A. M. M. Adam, and J. Ma, "Progress on carbon for electrochemical capacitors," Battery Energy, vol. 2, no. 1, 20220021, 2023.
[28] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, no. 5, 1597, 2014.
[29] W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chemical Society Reviews, vol. 40, no. 3, 1697, 2011.
[30] Y. Hu, " Carbon and metal oxides Based nanomaterials for flexible High performance asymmetric supercapacitors," National University of Singapore, Doctoral Thesis, 2018.
[31] P. Simon, and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, 845, 2008.
[32] O. Gerard, A. Numan, S. Krishnan, M. Khalid, R. Subramaniam, and R. Kasi, "A review on the recent advances in binder-free electrodes for electrochemical energy storage application," Journal of Energy Storage, vol. 50, 104283, 2022.
[33] T. F. Yi, T. T. Wei, J. Mei, W. Zhang, Y. Zhu, Y. G. Liu, S. Luo, H. Liu, Y. Lu, and Z. Guo, "Approaching high-Performance supercapacitors via enhancing pseudocapacitive nickel oxide-based materials," Advanced Sustainable Systems, vol. 4, no. 3, 1900137, 2020.
[34] J. Dong, Z. Wang, and X. Kang, "The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 489, 282, 2016.
[35] K. Shen, S. Zhai, S. Wang, Q. Ru, X. Hou, K. San Hui, K. Nam Hui, and F. Chen, "Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application," Batteries & Supercaps, vol. 4, no. 6, 860, 2021.
[36] H. Wang, H. Niu, H. Wang, W. Wang, X. Jin, H. Wang, H. Zhou, and T. Lin, "Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance," Journal of Power Sources, vol. 482, 2021.
[37] X. Zhang, C. Jiang, J. Liang, and W. Wu, "Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage," Journal of Materials Chemistry A, vol. 9, no. 13, 8099, 2021.
[38] J. Liang, C. Jiang, and W. Wu, "Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs," Nanoscale, vol. 11, no. 15, 7041, 2019.
[39] D. Tian, X. Lu, W. Li, Y. Li, and C. Wang, "Research on electrospun nanofiber-based binder-Free electrode materials for supercapacitors," Acta Physico-Chimica Sinica, vol. 36, no. 2, 1904056, 2020.
[40] L. Xu, L. Zhang, B. Cheng, and J. Yu, "Rationally designed hierarchical NiCo2O4-C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors," Carbon, vol. 152, 652, 2019.
[41] C. Tran and V. Kalra, "Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors," Journal of Power Sources, vol. 235, 289, 2013.
[42] C. Ma, Z. Li, J. Li, Q. Fan, L. Wu, J. Shi, and Y. Song, "Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors," Applied Surface Science, vol. 456, 568, 2018.
[43] T. Zhou, Q. Jiang, L. Wang, Z. Qiu, Y. Liu, J. Zhou, and B. Liu, "Facile preparation of nitrogen-enriched hierarchical porous carbon nanofibers by Mg(OAc)2-assisted electrospinning for flexible supercapacitors," Applied Surface Science, vol. 456, 827, 2018.
[44] B.-H. Kim, K. S. Yang, H.-G. Woo, and K. Oshida, "Supercapacitor performance of porous carbon nanofiber composites prepared by electrospinning polymethylhydrosiloxane (PMHS)/polyacrylonitrile (PAN) blend solutions," Synthetic Metals, vol. 161, no. 13, 1211, 2011.
[45] L. Zhang, Y. Jiang, L. Wang, C. Zhang, and S. Liu, "Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor," Electrochimica Acta, vol. 196, 189, 2016.
[46] K. Wei, K.-O. Kim, K.-H. Song, C.-Y. Kang, J. S. Lee, M. Gopiraman, and I.-S. Kim, "Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: a highly flexible electrode material for supercapacitor," Journal of Materials Science & Technology, vol. 33, no. 5, 424, 2017.
[47] L. Chen, D. Li, L. Chen, P. Si, J. Feng, L. Zhang, Y. Li, J. Lou, and L. Ci, "Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors," Carbon, vol. 138, 264, 2018.
[48] W. Wang, Y. Yuan, J. Yang, L. Meng, H. Tang, Y. Zeng, Z. Ye, and J. Lu, "Hierarchical core–shell Co3O4/graphene hybrid fibers: potential electrodes for supercapacitors," Journal of Materials Science, vol. 53, no. 8, 6116, 2018.
[49] X. Li, Y. Tang, J. Song, W. Yang, M. Wang, C. Zhu, W. Zhao, J. Zheng, and Y. Lin, "Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor," Carbon, vol. 129, 236, 2018.
[50] C.-q. Yi, J.-p. Zou, H.-z. Yang, and X. Leng, "Recent advances in pseudocapacitor electrode materials: Transition metal oxides and nitrides," Transactions of Nonferrous Metals Society of China, vol. 28, no. 10, 1980, 2018.
[51] I. Shown, A. Ganguly, L. C. Chen, and K. H. Chen, "Conducting polymer‐based flexible supercapacitor," Energy Science & Engineering, vol. 3, no. 1, 2, 2014.
[52] S. Trasatti and G. Buzzanca, "Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 29, no. 2, A1, 1971.
[53] A. Kumar, H. K. Rathore, D. Sarkar, and A. Shukla, "Nanoarchitectured transition metal oxides and their composites for supercapacitors," Electrochemical Science Advances, vol. 2, no. 6, 2100187, 2021.
[54] S. Jayakumar, P. C. Santhosh, M. M. Mohideen, and A. V. Radhamani, "A comprehensive review of metal oxides (RuO2, Co3O4, MnO2 and NiO) for supercapacitor applications and global market trends," Journal of Alloys and Compounds, vol. 976, 173170, 2024.
[55] P. Samanta, S. Ghosh, P. Samanta, N. C. Murmu, and T. Kuila, "Alteration in capacitive performance of Sn-decorated MnO2 with different crystal structure: An investigation towards the development of high-performance supercapacitor electrode materials," Journal of Energy Storage, vol. 28, 101281, 2020.
[56] Y. Chen, C. Zhou, G. Liu, C. Kang, L. Ma, and Q. Liu, "Hydroxide ion dependent α-MnO2 enhanced via oxygen vacancies as the negative electrode for high-performance supercapacitors," Journal of Materials Chemistry A, vol. 9, no. 5, 2872, 2021.
[57] V. Quispe-Garrido, G. A. Cerron-Calle, A. Bazan-Aguilar, J. G. Ruiz-Montoya, E. O. López, and A. M. Baena-Moncada, "Advances in the design and application of transition metal oxide-based supercapacitors," Open Chemistry, vol. 19, no. 1, 709, 2021.
[58] J. Zhao, Y. Tian, A. Liu, L. Song, and Z. Zhao, "The NiO electrode materials in electrochemical capacitor: A review," Materials Science in Semiconductor Processing, vol. 96, 78, 2019.
[59] R. Liang, Y. Du, P. Xiao, J. Cheng, S. Yuan, Y. Chen, J. Yuan, and J. Chen, "Transition metal oxide electrode materials for supercapacitors: A review of recent developments," Nanomaterials (Basel), vol. 11, no. 5, 1248, 2021.
[60] S. Suganya, G. Maheshwaran, M. Ramesh Prabhu, P. Devendran, M. Krishna Kumar, and S. Sudhahar, "Enhanced electrochemical activity of ternary Co-Mn-Zn oxide for the fabrication of hybrid supercapacitor applications," Journal of Energy Storage, vol. 56, 106057, 2022.
[61] M. Kaur, P. Chand, and H. Anand, "Binder free electrodeposition fabrication of NiCo2O4 electrode with improved electrochemical behavior for supercapacitor application," Journal of Energy Storage, vol. 52, 104941, 2022.
[62] N. A. Salleh, S. Kheawhom, N. Ashrina A Hamid, W. Rahiman, and A. A. Mohamad, "Electrode polymer binders for supercapacitor applications: A review," Journal of Materials Research and Technology, vol. 23, 3470, 2023.
[63] T. X. Nguyen, C.-C. Tsai, V. T. Nguyen, Y.-J. Huang, Y.-H. Su, S.-Y. Li, R.-K. Xie, Y.-J. Lin, J.-F. Lee, and J.-M. Ting, "High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst," Chemical Engineering Journal, vol. 466, 143352, 2023.
[64] X. Lu and C. Zhao, "Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities," Nature Communications, vol. 6, 6616, 2015.
[65] Q. Akbar Sial, L. Thai Duy, R. Singh, S. Iqbal, R. Yeasmin, Y.-J. Lee, S. S. Kalanur, and H. Seo, "A multifunctional TiN/Ni electrode for wearable supercapacitor and sensor with an insight into charge storage mechanism," Applied Surface Science, vol. 555, 149718, 2021.
[66] S. Newby, W. Mirihanage, and A. Fernando, "Modern Developments for Textile-Based Supercapacitors," ACS Omega, vol. 8, no. 14, 12613, 2023.
[67] Y. Ai, Z. Lou, S. Chen, D. Chen, Z. M. Wang, K. Jiang, and G. Shen, "All rGO-on-PVDF-nanofibers based self-powered electronic skins," Nano Energy, vol. 35, 121, 2017.
[68] Y. Su, N. Li, L. Wang, R. Lin, Y. Zheng, G. Rong, and M. Sawan, "Stretchable transparent supercapacitors for wearable and implantable medical devices," Advanced Materials Technologies, vol. 7, no. 1, 2100608, 2021.
[69] Q. Abbas, H. Khurshid, R. Yoosuf, J. Lawrence, B. A. Issa, M. A. Abdelkareem, and A. G. Olabi, "Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors," Scientific Reports, vol. 13, no. 1, 15654, 2023.
[70] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, no. 5, 299, 2004.
[71] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J. P. Maria, "Entropy-stabilized oxides," Nature Communications, vol. 6, 8485, 2015.
[72] B. Liang, Y. Ai, Y. Wang, C. Liu, S. Ouyang, and M. Liu, "Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance," Materials (Basel), vol. 13, no. 24, 5798, 2020.
[73] A. Amiri and R. Shahbazian-Yassar, "Recent progress of high-entropy materials for energy storage and conversion," Journal of Materials Chemistry A, vol. 9, no. 2, 782, 2021.
[74] J. Ruiz Esquius and L. Liu, "High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis," Materials Futures, vol. 2, no. 2, 022102, 2023.
[75] H. Li, J. Lai, Z. Li, and L. Wang, "Multi-sites electrocatalysis in high-entropy alloys," Advanced Functional Materials, vol. 31, no. 47, 2106715, 2021.
[76] S. Shi, C. Xu, C. Yang, J. Li, H. Du, B. Li, and F. Kang, "Flexible supercapacitors," Particuology, vol. 11, no. 4, 371, 2013.
[77] X. Lu, M. Yu, G. Wang, Y. Tong, and Y. Li, "Flexible solid-state supercapacitors: design, fabrication and applications," Energy & Environmental Science, vol. 7, no. 7, 2160, 2014.
[78] C.-L. Huang, L.-M. Chiang, C.-A. Su, and Y.-Y. Li, "MnO2/carbon nanotube-embedded carbon nanofibers as core–shell cables for high performing asymmetric flexible supercapacitors," Journal of Industrial and Engineering Chemistry, vol. 103, 142, 2021.
[79] Z. Lu, Y. Chao, Y. Ge, J. Foroughi, Y. Zhao, C. Wang, H. Long, and G. G. Wallace, "High-performance hybrid carbon nanotube fibers for wearable energy storage," Nanoscale, vol. 9, no. 16, 5063, 2017.
[80] C. V. V. Muralee Gopi, R. Vinodh, S. Sambasivam, I. M. Obaidat, and H.-J. Kim, "Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications," Journal of Energy Storage, vol. 27, 101035, 2020.
[81] Y. Wang, X. Wu, Y. Han, and T. Li, "Flexible supercapacitor: Overview and outlooks," Journal of Energy Storage, vol. 42, 103053, 2021.
[82] C. H. Kim, C.-M. Yang, Y. A. Kim, and K. S. Yang, "Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance," Applied Surface Science, vol. 497, 143693, 2019.
[83] F. Fadil, N. D. N. Affandi, M. I. Misnon, N. N. Bonnia, A. M. Harun, and M. K. Alam, "Review on electrospun nanofiber-applied products," Polymers (Basel), vol. 13, no. 13, 2087, 2021.
[84] S. N. J. Syed Zainol Abidin, M. S. Mamat, S. A. Rasyid, Z. Zainal, and Y. Sulaiman, "Electropolymerization of poly(3,4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor," Electrochimica Acta, vol. 261, 548, 2018.
[85] J. Yan, J.-H. Choi, and Y. G. Jeong, "Freestanding supercapacitor electrode applications of carbon nanofibers based on polyacrylonitrile and polyhedral oligomeric silsesquioxane," Materials & Design, vol. 139, 72, 2018.
[86] J. K. Gan, Y. S. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, "Graphene/polypyrrole-coated carbon nanofiber core–shell architecture electrode for electrochemical capacitors," RSC Advances, vol. 5, no. 17, 12692, 2015.
[87] S. K. Nataraj, K. S. Yang, and T. M. Aminabhavi, "Polyacrylonitrile-based nanofibers—A state-of-the-art review," Progress in Polymer Science, vol. 37, no. 3, 487, 2012.
[88] F. Raza, X. Ni, J. Wang, S. Liu, Z. Jiang, C. Liu, H. Chen, A. Farooq, and A. Ju, "Ultrathin honeycomb-like MnO2 on hollow carbon nanofiber networks as binder-free electrode for flexible symmetric all-solid-state supercapacitors," Journal of Energy Storage, vol. 30, 101467, 2020.
[89] G. Wu, Z. Yang, Z. Zhang, B. Ji, C. Hou, Y. Li, W. Jia, Q. Zhang, and H. Wang, "High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers," Electrochimica Acta, vol. 395, 139141, 2021.
[90] A. Amiri, K. Bashandeh, M. Naraghi, and A. A. Polycarpou, "All‐solid‐state supercapacitors based on yarns of Co3O4-anchored porous carbon nanofibers," Chemical Engineering Journal, vol. 409, 128124, 2021.
[91] L. Sun, Y. Sun, Q. Fu, and C. Pan, "Facile preparation of NiO nanoparticles anchored on N/P-codoped 3D carbon nanofibers network for high-performance asymmetric supercapacitors," Journal of Alloys and Compounds, vol. 888, 161488, 2021.
[92] X. Chen, Z. Zhao, Y. Zhou, Y. Shu, M. Sajjad, Q. Bi, Y. Ren, X. Wang, X. Zhou, and Z. Liu, "MWCNTs modified α-Fe2O3 nanoparticles as anode active materials and carbon nanofiber paper as a flexible current collector for lithium-ion batteries application," Journal of Alloys and Compounds, vol. 776, 974, 2019.
[93] B. Pant, M. Park, G. P. Ojha, J. Park, Y. S. Kuk, E. J. Lee, H. Y. Kim, and S. J. Park, "Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors," Journal of Colloid and Interface Science, vol. 522, 40, 2018.
[94] B. S. Singu, E. S. Goda, and K. R. Yoon, "Carbon Nanotube–manganese oxide nanorods hybrid composites for high-performance supercapacitor materials," Journal of Industrial and Engineering Chemistry, vol. 97, 239, 2021.
[95] J. H. Kim, C. Choi, J. M. Lee, M. J. de Andrade, R. H. Baughman, and S. J. Kim, "Ag/MnO2 Composite sheath-core structured yarn supercapacitors," Scientific Reports, vol. 8, no. 1, 13309, 2018.
[96] C. Choi, S. H. Kim, H. J. Sim, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepro, G. M. Spinks, R. H. Baughman, and S. J. Kim, "Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors," Scientific Reports, vol. 5, 9387, 2015.
[97] X. Ling, G. Zhang, Z. Long, X. Lu, Z. He, J. Li, Y. Wang, and D. Zhang, "Core–shell structure γ-MnO2-PANI carbon fiber paper-based flexible electrode material for high-performance supercapacitors," Journal of Industrial and Engineering Chemistry, vol. 99, 317, 2021.
[98] Y. Yang, B.-w. Deng, X. Liu, Y. Li, B. Yin, and M.-b. Yang, "Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials," Electrochimica Acta, vol. 324, 134891, 2019.
[99] N. Li, X. Zhu, C. Zhang, L. Lai, R. Jiang, and J. Zhu, "Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors," Journal of Alloys and Compounds, vol. 692, 26, 2017.
[100] W. Zhang, Z. Guo, Q. Liang, R. Lv, W. Shen, F. Kang, Y. Weng, and Z.-H. Huang, "Flexible C–Mo2C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery," RSC Advances, vol. 8, no. 30, 16657, 2018.
[101] J. Ju, H. Zhao, W. Kang, N. Tian, N. Deng, and B. Cheng, "Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications," Electrochimica Acta, vol. 258, 116, 2017.
[102] P. Ning, X. Duan, X. Ju, X. Lin, X. Tong, X. Pan, T. Wang, and Q. Li, "Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors," Electrochimica Acta, vol. 210, 754, 2016.
[103] S. K. Nataraj, Q. Song, S. A. Al-Muhtaseb, S. E. Dutton, Q. Zhang, and E. Sivaniah, "Thin, flexible supercapacitors made from carbon nanofiber electrodes decorated at room temperature with manganese oxide nanosheets," Journal of Nanomaterials, vol. 2013, 272093, 2013.
[104] N. K. Han, Y. C. Choi, D. U. Park, J. H. Ryu, and Y. G. Jeong, "Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications," Composites Science and Technology, vol. 196, 108212, 2020.
[105] S. A. Delbari, L. S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A. Sabahi Namini, Q. V. Le, M. Shokouhimehr, M. Shahedi Asl, and M. Mohammadi, "Transition metal oxide-based electrode materials for flexible supercapacitors: A review," Journal of Alloys and Compounds, vol. 857, 158281, 2021.
[106] R. Liu, A. Zhou, X. Zhang, J. Mu, H. Che, Y. Wang, T.-T. Wang, Z. Zhang, and Z. Kou, "Fundamentals, advances and challenges of transition metal compounds-based supercapacitors," Chemical Engineering Journal, vol. 412, 128611, 2021.
[107] Z.-Y. Liu, Y. Liu, Y. Xu, H. Zhang, Z. Shao, Z. Wang, and H. Chen, "Novel high-entropy oxides for energy storage and conversion: From fundamentals to practical applications," Green Energy & Environment, vol. 8, no. 5, 1341, 2023.
[108] E. Y. Pikalova, E. G. Kalinina, N. S. Pikalova, and E. A. Filonova, "high-entropy materials in SOFC technology: theoretical foundations for their creation, features of synthesis, and recent achievements," Materials (Basel), vol. 15, no. 24, 8783, 2022.
[109] Y. Yin, W. B. Zhang, X. L. Zhang, M. M. Theint, J. L. Yang, Z. Q. Yang, J. J. Li, S. Liang, and X. J. Ma, "Low-dimensional high entropy oxide (FeCoCrMnNi)3O4 for supercapacitor applications," Dalton Transactions, vol. 52, no. 26, 9005, 2023.
[110] B.-J. Liu, T.-H. Yin, Y.-W. Lin, C.-W. Chang, H.-C. Yu, Y. Lim, H. Lee, C. Choi, M.-K. Tsai, and Y. Choi, "A cost-effective, nanoporous, high-entropy oxide electrode for electrocatalytic water splitting," Coatings, vol. 13, no. 8, 13081461, 2023.
[111] B. Talluri, M. L. Aparna, N. Sreenivasulu, S. S. Bhattacharya, and T. Thomas, "High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material," Journal of Energy Storage, vol. 42, 103004, 2021.
[112] F. Gao, J. Yu, Y. Liu, Y. Miao, F. Zhang, and M. Guo, "Preparation and electrical properties of high entropy La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 perovskite ceramics powder," Journal of Inorganic Materials, vol. 36, no. 4, 431, 2021.
[113] B. Talluri, K. Yoo, and J. Kim, "High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions," Journal of Environmental Chemical Engineering, vol. 10, no. 1, 106932, 2022.
[114] D. Wang, Z. Liu, S. Du, Y. Zhang, H. Li, Z. Xiao, W. Chen, R. Chen, Y. Wang, Y. Zou, and S. Wang, "Low-temperature synthesis of small-sized high-entropy oxides for water oxidation," Journal of Materials Chemistry A, vol. 7, no. 42, 24211, 2019.
[115] J. X. Yang, B. H. Dai, C. Y. Chiang, I. C. Chiu, C. W. Pao, S. Y. Lu, I. Y. Tsao, S. T. Lin, C. T. Chiu, J. W. Yeh, P. C. Chang, and W. H. Hung, "Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions," ACS Nano, vol. 15, no. 7, 12324, 2021.
[116] A. Pasupathi and Y. Subramaniam, "A novel strategy for rapid synthesis of nanostructured high-entropy metal oxides through thermal plasma for supercapacitor applications," Energy & Fuels, vol. 38, no. 6, 5534, 2024.
[117] D. Pankratova, S. M. Giacomelli, K. Yusupov, F. Akhtar, and A. Vomiero, "Co-Cr-Fe-Mn-Ni oxide as a highly efficient thermoelectric high-entropy alloy," ACS Omega, vol. 8, no. 16, 14484, 2023.
[118] Z. Liu, J. Zhang, C. Liu, W. Chen, W. He, S. Ouyang, Z. Zheng, B. Liang, S. Yang, Y. Ai, and Y. Wang, "Facile synthesis and supercapacitor performance of M3O4(M=FeCoCrMnMg) high entropy oxide powders," Journal of Inorganic Materials, vol. 36, no. 4, 425, 2021.
[119] D. Zhang, S. Xu, T. Li, M. Zhang, J. Qi, F. Wei, Q. Meng, Y. Ren, P. Cao, and Y. Sui, "High-entropy oxides prepared by dealloying method for supercapacitors," ACS Applied Engineering Materials, vol. 1, no. 2, 780, 2023.
[120] Y. Zhang, T. Lu, Y. Ye, W. Dai, Y. Zhu, and Y. Pan, "Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for Co-prosperity of efficiency and stability in an oxygen evolution reaction," ACS Applied Materials & Interfaces, vol. 12, no. 29, 32548, 2020.
[121] Y. Zhang, W. Dai, P. Zhang, T. Lu, and Y. Pan, "In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions," Journal of Alloys and Compounds, vol. 868, 159064, 2021.
[122] T. X. Nguyen, Y. C. Liao, C. C. Lin, Y. H. Su, and J. M. Ting, "Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction," Advanced Functional Materials, vol. 31, no. 27, 2101632, 2021.
[123] S. Smith, M. Delaney, and M. Frey, "Anti-escherichia coli functionalized silver-doped carbon nanofibers for capture of E. coli in microfluidic systems," Polymers (Basel), vol. 12, no. 5, 1117, 2020.
[124] C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, and J.-P. Hsu, "Deposition of MnO2 nanoneedles on carbon nanotubes and graphene nanosheets as electrode materials for electrochemical capacitors," Journal of Alloys and Compounds, vol. 660, 99, 2016.
[125] C.-S. Liu, C.-L. Huang, H.-C. Fang, K.-Y. Hung, C.-A. Su, and Y.-Y. Li, "MnO2-based carbon nanofiber cable for supercapacitor applications," Journal of Energy Storage, vol. 33, 102130, 2021.
[126] Y. Chen, Y. Hu, J. Chen, Y. Lu, Z. Zhao, A. R. Akbar, Q. Yang, Z. Shi, and C. Xiong, "Fabrication of porous carbon nanofibril/MnO2 composite aerogels from TEMPO-oxidized cellulose nanofibrils for high-performance supercapacitors," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 626, 127003, 2021.
[127] K. Wang, S. Gao, Z. Du, A. Yuan, W. Lu, and L. Chen, "MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance," Journal of Power Sources, vol. 305, 30, 2016.
[128] A. C. Lazanas and M. I. Prodromidis, "Electrochemical impedance spectroscopy-A tutorial," ACS Measurement Science Au, vol. 3, no. 3, 162, 2023.
[129] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, and C. S. Ozkan, "Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors," Scientific Reports, vol. 4, 4452, 2014.
[130] X. Z. Song, Y. H. Zhao, F. Zhang, J. C. Ni, Z. Zhang, Z. Tan, X. F. Wang, and Y. Li, "Coupling plant polyphenol coordination assembly with Co(OH)2 to enhancee electrocatalytic performance towards oxygen evolution reaction," Nanomaterials (Basel), vol. 12, no. 22, 3792, 2022.
[131] J. Baek, M. D. Hossain, P. Mukherjee, J. Lee, K. T. Winther, J. Leem, Y. Jiang, W. C. Chueh, M. Bajdich, and X. Zheng, "Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction," Nature Communications, vol. 14, no. 1, 5936, 2023.
[132] T. X. Nguyen, J. Patra, J.-K. Chang, and J.-M. Ting, "High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance," Journal of Materials Chemistry A, vol. 8, no. 36, 18963, 2020.
[133] T. Zhang, J. Li, B. Zhang, G. Wang, K. Jiang, Z. Zheng, and J. Shen, "High-entropy alloy CuCrFeNiCoP film of Cu-based as high-efficiency electrocatalyst for water splitting," Journal of Alloys and Compounds, vol. 969, 172439, 2023.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明