博碩士論文 111329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.15.150.178
姓名 郭庭維(Ting-Wei Kuo)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 通過添加氧化鋅和聚乙烯吡咯烷酮的修飾提升銅在電催化二氧化碳還原乙烯的選擇性與穩定性之研究
(Enhancing the Selectivity and Stability of Cu in Electrocatalytic CO2 Reduction to C2H4 through ZnO Addition and PVP Modification)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 隨著工業發展和化石燃料使用的增加,二氧化碳排放量持續上升,導致全球
暖化和氣候變遷等問題。電化學二氧化碳還原反應(CO2RR)是透過碳捕捉、利用
與封存(CCUS)將CO2轉化為有價值燃料的重要策略。然而,CO2RR面臨了選擇
性不佳以及難以轉化為高價值C2產物的挑戰。
本研究中,通過添加ZnO和聚乙烯吡咯烷酮(PVP)的修飾,促進Cu催化劑
將CO2轉化為C2H4的能力,進而生產有用的燃料並同時實現碳中和。本研究分
成兩部分討論,第一部分研究了在CO2RR過程中,透過在Cu中添加ZnO,分
析其產物選擇性的變化。在-1.0 V(vs. RHE)下,Cu和ZnO的主要產物分別是C2H4
(FEC2H4=36.7%) 和 CO (FECO=76.3%)。Cu75-ZnO25/C (Cu/Zn = 3:1)之 FEC2H4顯著
提高,達到46.5%,相比純Cu增加了20%。然而,7小時後其FEC2H4下降了40%,
僅剩22%。結果表明,將Cu與能產生CO的ZnO結合,可以提高關鍵中間體
CO的局部濃度,從而增強C-C偶合動力學。
第二部分中,在催化劑合成時加入PVP可以抑制H2和CH4的生成,並同時
保持FEC2H4。Cu93-ZnO7/C-PVP 展示了顯著的穩定性。在-1.0 V (vs.RHE),7 小
時後FEC2H4保持在與初始效能相近值(50.2%)。原位 X 光吸收光譜(in-situ X-ray
absorption spectroscopy)分析顯示,Cu93-ZnO7/C-PVP 的高 C2H4選擇性和穩定性,
歸因於在CO2RR 條件下由 PVP 保護而穩定 Cuδ+。因此,這提供了更多活性位
點,從而增強了C2H4選擇性。
總體而言,本研究強調了ZnO和PVP在提高Cu催化劑CO2RR選擇性和穩
定度的協同作用,為更高效的 CO2利用和更永續性的燃料生產技術開闢了新的
思路。
摘要(英) With industrial development and the increasing use of fossil fuels, carbon dioxide
emissions have risen continuously, leading to issues such as global warming and climate
change. The electrochemical carbon dioxide reduction reaction (CO2RR) is a crucial
strategy for carbon capture, utilization, and storage (CCUS) of CO2 into valuable fuels.
However, CO2RR faces challenges due to its poor selectivity, and the difficulty of
conversion into high-value C2 products.
In this study, the CO2 – ethylene (C2H4) conversion of Cu catalysts is promoted by
ZnO addition and PVP modification to produce useful fuels and achieve carbon
neutrality simultaneously. The first part examines the change in product selectivity after
adding ZnO into Cu during CO2RR. At -1.0 V (vs. RHE), the main product of Cu and
ZnO is C2H4 (FEC2H4= 36.7%) and CO (FECO=76.3%), respectively. For Cu75-ZnO25/C
(Cu/Zn = 3:1), FEC2H4 significantly improves, reaching 46.5%, and representing a 20%
increase in FEC2H4 compared to Cu. However, after 7 hours, it experienced a 40%
decline, leaving the FEC2H4 at only 22%. The results show that by combining Cu with
ZnO, which generates CO, the local concentration of the key intermediate CO can be
increased, thereby enhancing the C-C coupling kinetics.
In the second part, polyvinylpyrrolidone (PVP) is introduced during the catalyst
synthesis to suppress H2 and CH4 products while maintaining FEC2H4. Cu93-ZnO7/C
PVP demonstrates remarkable stability. At -1.0 V (vs. RHE), the FEC2H4 maintains the
original value (50.2%) after 7 hours. In-situ X-ray absorption spectroscopy analysis
shows that the high C2H4 selectivity and stability of Cu93-ZnO7/C-PCP is attributable
to the stable Cuδ+ protected by PVP under CO2RR conditions. Consequently, this
provides more active sites, thereby enhancing ethylene selectivity.
Overall, the study highlights the synergistic effects of ZnO and PVP in enhancing
ii
the efficiency and stability of Cu catalysts for CO2RR, paving the way for more efficient
CO2 utilization and more sustainable fuel production technologies.
關鍵字(中) ★ 二氧化碳還原反應
★ 銅
★ 鋅
★ C2產物
★ 聚乙烯吡咯烷酮
★ 乙烯
★ 原位X光吸收光譜
關鍵字(英) ★ electrochemical CO2 reduction reaction (CO2RR)
★ copper
★ zinc
★ C2 product
★ polyvinylpyrrolidone (PVP)
★ ethylene
★ in-situ X-ray absorption spectroscopy (in-situ XAS)
論文目次 摘要.....i
Abstract.....ii
致謝.....iv
List of Contents........vii
List of Figures.....ix
List of Tables.....xi
Chapter 1 Introduction.....1
1.1 The Mechanism of CO2RR.....2
1.2 The Mechanism and Pathway of C2H4 Formation.....6
1.3 Cu-Based Catalysts for C2H4 Selectivity and Stability .....9
1.4 Motivation and Objective.....11
Chapter 2 Experimental Section.....12
2.1 Preparation of Catalysts.....12
2.1.1 Materials.....12
2.1.2 Synthesis of Cux-ZnOy/C catalysts.....12
2.1.3 Synthesis of Cux-ZnOy-PVP/C catalysts.....12
2.2 Characterizations of Catalysts.....14
2.3 CO2RR Measurement of Catalysts.....15
Chapter 3 Result and Discussion.....18
3.1 The Physical Characterization of Materials.....18
3.1.1 Characterization of Cu/C modified by ZnO..18
3.1.2 Characterization of PVP-modified Cu-ZnO/C.21
3.2 The CO2RR Performance of Catalysts.............30
3.2.1 Electrochemical CO2RR performance.....30
3.2.2 In situ XAS investigation.....37
Chapter 4 Conclusions.....39
Reference.....40
參考文獻 [1] Wei, K., Guan, H., Luo, Q., He, J., Sun, S., Recent advances in CO2 capture and reduction. Nanoscale 2022, 14, 11869-11891.
[2] Zhang, S., Chen, L., Luan, X., Li, H., The selectivity consideration on Cu cluster between HER and CO2 reduction. Chem. Phys. 2022, 557, 111487.
[3] Nguyen, T. N., Guo, J., Sachindran, A., Li, F., Seifitokaldani, A., Dinh, C. T., Electrochemical CO2 reduction to ethanol: from mechanistic understanding to catalyst design. J. Mater. Chem. A 2021, 9, 12474-12494.
[4] Ye, R. P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C. K., Xu, Z., Russell, A. G., Li, Q., CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698.
[5] Liu, L., Akhoundzadeh, H., Li, M., Huang, H., Alloy catalysts for electrocatalytic CO2 reduction. Small Methods 2023, 7, 2300482.
[6] Jones, J. P., Prakash, G. S., Olah, G. A., Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 2014, 54, 1451-1466.
[7] Zhu, D. D., Liu, J. L., Qiao, S. Z., Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[8] Tomboc, G. M., Choi, S., Kwon, T., Hwang, Y. J., Lee, K., Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.
[9] Lum, Y., Cheng, T., Goddard III, W. A., Ager, J. W., Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337-9340.
[10] Feaster, J. T., Shi, C., Cave, E. R., Hatsukade, T., Abram, D. N., Kuhl, K. P., Hahn, C., Nørskov, J. K., Jaramillo, T. F., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822-4827.
[11] Birdja, Y. Y., Pérez-Gallent, E., Figueiredo, M. C., Göttle, A. J., Calle-Vallejo, F., Koper, M. T., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732-745.
[12] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
[13] Göttle, A. J., Koper, M. T., Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458-465.
[14] Li, Y. C., Wang, Z., Yuan, T., Nam, D. H., Luo, M., Wicks, J., Chen, B., Li, J., Li, F., De Arquer, F. P. G., Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584-8591.
[15] Amghizar, I., Vandewalle, L. A., Van Geem, K. M., Marin, G. B., New trends in olefin production. Engineering 2017, 3, 171-178.
[16] Shi, H., Luo, L., Li, C., Li, Y., Zhang, T., Liu, Z., Cui, J., Gu, L., Zhang, L., Hu, Y., Stabilizing Cu+ species in Cu2O/CuO catalyst via carbon intermediate confinement for selective CO2RR. Adv. Funct. Mater. 2024, 34, 2310913.
[17] Todorova, T. K., Schreiber, M. W., Fontecave, M., Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2019, 10, 1754-1768.
[18] Bagchi, D., Roy, S., Sarma, S. C., C. Peter, S., Toward unifying the mechanistic concepts in electrochemical CO2 reduction from an integrated material design and catalytic perspective. Adv. Funct. Mater. 2022, 32, 2209023.
[19] Wang, Y., Liu, J., Zheng, G., Designing copper‐based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.
[20] Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E., Chan, K., Hahn, C., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610-7672.
[21] Chen, Y., Miao, R. K., Yu, C., Sinton, D., Xie, K., Sargent, E. H., Catalyst design for electrochemical CO2 reduction to ethylene. Matter 2024, 7, 25-37.
[22] Huang, Y., Handoko, A. D., Hirunsit, P., Yeo, B. S., Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749-1756.
[23] Liu, X., Xiao, J., Peng, H., Hong, X., Chan, K., Nørskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
[24] Bagger, A., Ju, W., Varela, A. S., Strasser, P., Rossmeisl, J., Electrochemical CO2 reduction: a classification problem. ChemPhysChem 2017, 18, 3266-3273.
[25] Zhou, Y., Che, F., Liu, M., Zou, C., Liang, Z., De Luna, P., Yuan, H., Li, J., Wang, Z., Xie, H., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974-980.
[26] Eilert, A., Cavalca, F., Roberts, F. S., Osterwalder, J. r., Liu, C., Favaro, M., Crumlin, E. J., Ogasawara, H., Friebel, D., Pettersson, L. G., Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285-290.
[27] Xiao, H., Goddard III, W. A., Cheng, T., Liu, Y., Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. 2017, 114, 6685-6688.
[28] Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y. W., Kisslinger, K., Stach, E. A., Yang, J. C., Strasser, P., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
[29] Gao, D., Zegkinoglou, I., Divins, N. J., Scholten, F., Sinev, I., Grosse, P., Roldan Cuenya, B., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825-4831.
[30] Handoko, A. D., Ong, C. W., Huang, Y., Lee, Z. G., Lin, L., Panetti, G. B., Yeo, B. S., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 2016, 120, 20058-20067.
[31] Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., Yeo, B. S., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal. 2015, 5, 2814-2821.
[32] De Luna, P., Quintero-Bermudez, R., Dinh, C. T., Ross, M. B., Bushuyev, O. S., Todorović, P., Regier, T., Kelley, S. O., Yang, P., Sargent, E. H., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103-110.
[33] Liang, Z. Q., Zhuang, T. T., Seifitokaldani, A., Li, J., Huang, C. W., Tan, C. S., Li, Y., De Luna, P., Dinh, C. T., Hu, Y., Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.
[34] Lee, S. H., Lin, J. C., Farmand, M., Landers, A. T., Feaster, J. T., Avilés Acosta, J. E., Beeman, J. W., Ye, Y., Yano, J., Mehta, A., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2020, 143, 588-592.
[35] Gao, D., Scholten, F., Roldan Cuenya, B., Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 2017, 7, 5112-5120.
[36] Irtem, E., Arenas Esteban, D., Duarte, M., Choukroun, D., Lee, S., Ibáñez, M., Bals, S., Breugelmans, T., Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction. ACS Catal. 2020, 10, 13468-13478.
[37] Pankhurst, J. R., Iyengar, P., Loiudice, A., Mensi, M., Buonsanti, R., Metal-ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction. Chem. Sci. 2020, 11, 9296-9302.
[38] Zhong, Y., Xu, Y., Ma, J., Wang, C., Sheng, S., Cheng, C., Li, M., Han, L., Zhou, L., Cai, Z., An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self‐assembly. Angew. Chem. Int. Ed. 2020, 132, 19257-19263.
[39] Tao, Z., Wu, Z., Wu, Y., Wang, H., Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 2020, 10, 9271-9275.
[40] Fan, Q., Zhang, X., Ge, X., Bai, L., He, D., Qu, Y., Kong, C., Bi, J., Ding, D., Cao, Y., Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.
[41] Zhang, T., Li, Z., Zhang, J., Wu, J., Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 2020, 387, 163-169.
[42] da Silva, A. H., Raaijman, S. J., Santana, C. S., Assaf, J. M., Gomes, J. F., Koper, M. T., Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology. J. Electroanal. Chem. 2021, 880, 114750.
[43] Jaster, T., Gawel, A., Siegmund, D., Holzmann, J., Lohmann, H., Klemm, E., Apfel, U. P., Electrochemical CO2 reduction toward multicarbon alcohols-The microscopic world of catalysts & process conditions. Iscience 2022, 25, 104010.
[44] Yu, J., Wang, J., Ma, Y., Zhou, J., Wang, Y., Lu, P., Yin, J., Ye, R., Zhu, Z., Fan, Z., Recent progresses in electrochemical carbon dioxide reduction on copper‐based catalysts toward multicarbon products. Adv. Funct. Mater. 2021, 31, 2102151.
[45] Zhang, J., Qiao, M., Li, Y., Shao, Q., Huang, X., Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn (IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722-39727.
[46] Ma, W., Xie, S., Zhang, X. G., Sun, F., Kang, J., Jiang, Z., Zhang, Q., Wu, D. Y., Wang, Y., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019, 10, 892.
[47] Choi, S., Park, Y., Choi, J., Lee, C., Cho, H. S., Kim, C. H., Koo, J., Lee, H. M., Structural effectiveness of AgCl-decorated Ag nanowires enhancing oxygen reduction. ACS Sustain. Chem. Eng. 2021, 9, 7519-7528.
[48] Xie, J., Li, S., Zhang, X., Zhang, J., Wang, R., Zhang, H., Pan, B., Xie, Y., Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615-4620.
[49] Zhang, B., Chen, S., Wulan, B., Zhang, J., Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.
[50] Huang, Y., Ong, C. W., Yeo, B. S., Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 2018, 11, 3299-3306.
[51] Shao, P., Wan, Y. M., Yi, L., Chen, S., Zhang, H. X., Zhang, J., Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. Small 2024, 20, 2305199.
[52] Meng, X., Gao, L., Chen, Y., Qin, L., Li, J., Li, X., Qi, K., Zhang, J., Wang, J., Cu/Zn bimetallic catalysts prepared by facial potential steps electrodeposition favoring Zn deposition and grain boundary formation for efficient CO2ER to ethylene. Fuel 2024, 369, 131775.
[53] Zhang, Y., Zhou, Q., Lu, X. Y., Zhang, X. Y., Gong, F., Sun, W. Y., Lowering *CO Affinity over Cu Nanoparticles for Enhanced Electrochemical CO2 Conversion to Multi-Carbon Products at High Current Density. CCS Chem. 2024, 1-43.
[54] Zhang, X., Ren, B., Li, H., Liu, S., Xiong, H., Dong, S., Li, Y., Luo, D., Cui, Y., Wen, G., Regulating ethane and ethylene synthesis by proton corridor microenvironment for CO2 electrolysis. J. Energy Chem. 2023, 87, 368-377.
[55] Gao, W., Xu, Y., Xiong, H., Chang, X., Lu, Q., Xu, B., CO Binding Energy is an Incomplete Descriptor of Cu‐Based Catalysts for the Electrochemical CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202313798.
[56] Jia, Y., Ding, Y., Song, T., Xu, Y., Li, Y., Duan, L., Li, F., Sun, L., Fan, K., Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C2+ products. Adv. Sci. 2023, 10, 2303726.
[57] Zhang, X., Li, J., Li, Y. Y., Jung, Y., Kuang, Y., Zhu, G., Liang, Y., Dai, H., Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J. Am. Chem. Soc. 2021, 143, 3245-3255.
[58] Tan, D., Wulan, B., Ma, J., Cao, X., Zhang, J., Interface molecular functionalization of Cu2O for synchronous electrocatalytic generation of formate. Nano Lett. 2022, 22, 6298-6305.
[59] Zeng, J., Rino, T., Bejtka, K., Castellino, M., Sacco, A., Farkhondehfal, M. A., Chiodoni, A., Drago, F., Pirri, C. F., Coupled copper–zinc catalysts for electrochemical reduction of carbon dioxide. ChemSusChem 2020, 13, 4128-4139.
[60] Lee, S., Kim, D., Lee, J., Electrocatalytic production of C3‐C4 compounds by conversion of CO2 on a chloride‐induced bi‐phasic Cu2O‐Cu catalyst. Angew. Chem. Int. Ed. 2015, 54, 14701-14705.
[61] Yao, Y., Shi, T., Chen, W., Wu, J., Fan, Y., Liu, Y., Cao, L., Chen, Z., A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 2024, 15, 1257.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明