參考文獻 |
[1] Wei, K., Guan, H., Luo, Q., He, J., Sun, S., Recent advances in CO2 capture and reduction. Nanoscale 2022, 14, 11869-11891.
[2] Zhang, S., Chen, L., Luan, X., Li, H., The selectivity consideration on Cu cluster between HER and CO2 reduction. Chem. Phys. 2022, 557, 111487.
[3] Nguyen, T. N., Guo, J., Sachindran, A., Li, F., Seifitokaldani, A., Dinh, C. T., Electrochemical CO2 reduction to ethanol: from mechanistic understanding to catalyst design. J. Mater. Chem. A 2021, 9, 12474-12494.
[4] Ye, R. P., Ding, J., Gong, W., Argyle, M. D., Zhong, Q., Wang, Y., Russell, C. K., Xu, Z., Russell, A. G., Li, Q., CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698.
[5] Liu, L., Akhoundzadeh, H., Li, M., Huang, H., Alloy catalysts for electrocatalytic CO2 reduction. Small Methods 2023, 7, 2300482.
[6] Jones, J. P., Prakash, G. S., Olah, G. A., Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 2014, 54, 1451-1466.
[7] Zhu, D. D., Liu, J. L., Qiao, S. Z., Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[8] Tomboc, G. M., Choi, S., Kwon, T., Hwang, Y. J., Lee, K., Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.
[9] Lum, Y., Cheng, T., Goddard III, W. A., Ager, J. W., Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337-9340.
[10] Feaster, J. T., Shi, C., Cave, E. R., Hatsukade, T., Abram, D. N., Kuhl, K. P., Hahn, C., Nørskov, J. K., Jaramillo, T. F., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822-4827.
[11] Birdja, Y. Y., Pérez-Gallent, E., Figueiredo, M. C., Göttle, A. J., Calle-Vallejo, F., Koper, M. T., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732-745.
[12] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
[13] Göttle, A. J., Koper, M. T., Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458-465.
[14] Li, Y. C., Wang, Z., Yuan, T., Nam, D. H., Luo, M., Wicks, J., Chen, B., Li, J., Li, F., De Arquer, F. P. G., Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584-8591.
[15] Amghizar, I., Vandewalle, L. A., Van Geem, K. M., Marin, G. B., New trends in olefin production. Engineering 2017, 3, 171-178.
[16] Shi, H., Luo, L., Li, C., Li, Y., Zhang, T., Liu, Z., Cui, J., Gu, L., Zhang, L., Hu, Y., Stabilizing Cu+ species in Cu2O/CuO catalyst via carbon intermediate confinement for selective CO2RR. Adv. Funct. Mater. 2024, 34, 2310913.
[17] Todorova, T. K., Schreiber, M. W., Fontecave, M., Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2019, 10, 1754-1768.
[18] Bagchi, D., Roy, S., Sarma, S. C., C. Peter, S., Toward unifying the mechanistic concepts in electrochemical CO2 reduction from an integrated material design and catalytic perspective. Adv. Funct. Mater. 2022, 32, 2209023.
[19] Wang, Y., Liu, J., Zheng, G., Designing copper‐based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.
[20] Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E., Chan, K., Hahn, C., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610-7672.
[21] Chen, Y., Miao, R. K., Yu, C., Sinton, D., Xie, K., Sargent, E. H., Catalyst design for electrochemical CO2 reduction to ethylene. Matter 2024, 7, 25-37.
[22] Huang, Y., Handoko, A. D., Hirunsit, P., Yeo, B. S., Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749-1756.
[23] Liu, X., Xiao, J., Peng, H., Hong, X., Chan, K., Nørskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
[24] Bagger, A., Ju, W., Varela, A. S., Strasser, P., Rossmeisl, J., Electrochemical CO2 reduction: a classification problem. ChemPhysChem 2017, 18, 3266-3273.
[25] Zhou, Y., Che, F., Liu, M., Zou, C., Liang, Z., De Luna, P., Yuan, H., Li, J., Wang, Z., Xie, H., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974-980.
[26] Eilert, A., Cavalca, F., Roberts, F. S., Osterwalder, J. r., Liu, C., Favaro, M., Crumlin, E. J., Ogasawara, H., Friebel, D., Pettersson, L. G., Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285-290.
[27] Xiao, H., Goddard III, W. A., Cheng, T., Liu, Y., Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. 2017, 114, 6685-6688.
[28] Mistry, H., Varela, A. S., Bonifacio, C. S., Zegkinoglou, I., Sinev, I., Choi, Y. W., Kisslinger, K., Stach, E. A., Yang, J. C., Strasser, P., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
[29] Gao, D., Zegkinoglou, I., Divins, N. J., Scholten, F., Sinev, I., Grosse, P., Roldan Cuenya, B., Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825-4831.
[30] Handoko, A. D., Ong, C. W., Huang, Y., Lee, Z. G., Lin, L., Panetti, G. B., Yeo, B. S., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 2016, 120, 20058-20067.
[31] Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., Yeo, B. S., Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal. 2015, 5, 2814-2821.
[32] De Luna, P., Quintero-Bermudez, R., Dinh, C. T., Ross, M. B., Bushuyev, O. S., Todorović, P., Regier, T., Kelley, S. O., Yang, P., Sargent, E. H., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103-110.
[33] Liang, Z. Q., Zhuang, T. T., Seifitokaldani, A., Li, J., Huang, C. W., Tan, C. S., Li, Y., De Luna, P., Dinh, C. T., Hu, Y., Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.
[34] Lee, S. H., Lin, J. C., Farmand, M., Landers, A. T., Feaster, J. T., Avilés Acosta, J. E., Beeman, J. W., Ye, Y., Yano, J., Mehta, A., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 2020, 143, 588-592.
[35] Gao, D., Scholten, F., Roldan Cuenya, B., Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 2017, 7, 5112-5120.
[36] Irtem, E., Arenas Esteban, D., Duarte, M., Choukroun, D., Lee, S., Ibáñez, M., Bals, S., Breugelmans, T., Ligand-mode directed selectivity in Cu-Ag core-shell based gas diffusion electrodes for CO2 electroreduction. ACS Catal. 2020, 10, 13468-13478.
[37] Pankhurst, J. R., Iyengar, P., Loiudice, A., Mensi, M., Buonsanti, R., Metal-ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction. Chem. Sci. 2020, 11, 9296-9302.
[38] Zhong, Y., Xu, Y., Ma, J., Wang, C., Sheng, S., Cheng, C., Li, M., Han, L., Zhou, L., Cai, Z., An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self‐assembly. Angew. Chem. Int. Ed. 2020, 132, 19257-19263.
[39] Tao, Z., Wu, Z., Wu, Y., Wang, H., Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 2020, 10, 9271-9275.
[40] Fan, Q., Zhang, X., Ge, X., Bai, L., He, D., Qu, Y., Kong, C., Bi, J., Ding, D., Cao, Y., Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.
[41] Zhang, T., Li, Z., Zhang, J., Wu, J., Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 2020, 387, 163-169.
[42] da Silva, A. H., Raaijman, S. J., Santana, C. S., Assaf, J. M., Gomes, J. F., Koper, M. T., Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology. J. Electroanal. Chem. 2021, 880, 114750.
[43] Jaster, T., Gawel, A., Siegmund, D., Holzmann, J., Lohmann, H., Klemm, E., Apfel, U. P., Electrochemical CO2 reduction toward multicarbon alcohols-The microscopic world of catalysts & process conditions. Iscience 2022, 25, 104010.
[44] Yu, J., Wang, J., Ma, Y., Zhou, J., Wang, Y., Lu, P., Yin, J., Ye, R., Zhu, Z., Fan, Z., Recent progresses in electrochemical carbon dioxide reduction on copper‐based catalysts toward multicarbon products. Adv. Funct. Mater. 2021, 31, 2102151.
[45] Zhang, J., Qiao, M., Li, Y., Shao, Q., Huang, X., Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn (IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722-39727.
[46] Ma, W., Xie, S., Zhang, X. G., Sun, F., Kang, J., Jiang, Z., Zhang, Q., Wu, D. Y., Wang, Y., Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019, 10, 892.
[47] Choi, S., Park, Y., Choi, J., Lee, C., Cho, H. S., Kim, C. H., Koo, J., Lee, H. M., Structural effectiveness of AgCl-decorated Ag nanowires enhancing oxygen reduction. ACS Sustain. Chem. Eng. 2021, 9, 7519-7528.
[48] Xie, J., Li, S., Zhang, X., Zhang, J., Wang, R., Zhang, H., Pan, B., Xie, Y., Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5, 4615-4620.
[49] Zhang, B., Chen, S., Wulan, B., Zhang, J., Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.
[50] Huang, Y., Ong, C. W., Yeo, B. S., Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 2018, 11, 3299-3306.
[51] Shao, P., Wan, Y. M., Yi, L., Chen, S., Zhang, H. X., Zhang, J., Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. Small 2024, 20, 2305199.
[52] Meng, X., Gao, L., Chen, Y., Qin, L., Li, J., Li, X., Qi, K., Zhang, J., Wang, J., Cu/Zn bimetallic catalysts prepared by facial potential steps electrodeposition favoring Zn deposition and grain boundary formation for efficient CO2ER to ethylene. Fuel 2024, 369, 131775.
[53] Zhang, Y., Zhou, Q., Lu, X. Y., Zhang, X. Y., Gong, F., Sun, W. Y., Lowering *CO Affinity over Cu Nanoparticles for Enhanced Electrochemical CO2 Conversion to Multi-Carbon Products at High Current Density. CCS Chem. 2024, 1-43.
[54] Zhang, X., Ren, B., Li, H., Liu, S., Xiong, H., Dong, S., Li, Y., Luo, D., Cui, Y., Wen, G., Regulating ethane and ethylene synthesis by proton corridor microenvironment for CO2 electrolysis. J. Energy Chem. 2023, 87, 368-377.
[55] Gao, W., Xu, Y., Xiong, H., Chang, X., Lu, Q., Xu, B., CO Binding Energy is an Incomplete Descriptor of Cu‐Based Catalysts for the Electrochemical CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202313798.
[56] Jia, Y., Ding, Y., Song, T., Xu, Y., Li, Y., Duan, L., Li, F., Sun, L., Fan, K., Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C2+ products. Adv. Sci. 2023, 10, 2303726.
[57] Zhang, X., Li, J., Li, Y. Y., Jung, Y., Kuang, Y., Zhu, G., Liang, Y., Dai, H., Selective and high current CO2 electro-reduction to multicarbon products in near-neutral KCl electrolytes. J. Am. Chem. Soc. 2021, 143, 3245-3255.
[58] Tan, D., Wulan, B., Ma, J., Cao, X., Zhang, J., Interface molecular functionalization of Cu2O for synchronous electrocatalytic generation of formate. Nano Lett. 2022, 22, 6298-6305.
[59] Zeng, J., Rino, T., Bejtka, K., Castellino, M., Sacco, A., Farkhondehfal, M. A., Chiodoni, A., Drago, F., Pirri, C. F., Coupled copper–zinc catalysts for electrochemical reduction of carbon dioxide. ChemSusChem 2020, 13, 4128-4139.
[60] Lee, S., Kim, D., Lee, J., Electrocatalytic production of C3‐C4 compounds by conversion of CO2 on a chloride‐induced bi‐phasic Cu2O‐Cu catalyst. Angew. Chem. Int. Ed. 2015, 54, 14701-14705.
[61] Yao, Y., Shi, T., Chen, W., Wu, J., Fan, Y., Liu, Y., Cao, L., Chen, Z., A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 2024, 15, 1257. |