博碩士論文 111329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.223.172.180
姓名 吳懷特(Huai-Te Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量硼元素的摻雜對於 CoCrNiAlTi 五元 中熵合金微觀結構與機械性質影響之研究
(Effects of minor boron doping on the microstructure and mechanical properties of CoCrNiAlTi quinary medium-entropy alloy)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 高熵合金因其具有良好的機械性能和應用價值成為當今研究的熱門題目,對於航太、車輛、能源、醫療、國防等,所需金屬材料性質之需求更是與日俱增,因此如何突破目前金屬材料於各領域使用的性質上限是一大重要的考量。其中高降伏強度且具有一定延性的合金是一個重要的指標,而根據前人之研究中,Co43Cr15Ni30Al5Ti7五元中熵合金,在經過適當之熱處理製程後將具有超高強度(~2100MPa)及延性(~10%)之組合,故在本研究中將以優化熱處理製程及硼元素的摻雜對於機械性質的影響來作為研究。
此研究通過將硼元素以0.1~0.4 at. %微量摻雜至Co43Cr15Ni30Al5Ti7五元中熵合金中,以電弧熔煉並使用墜落式鑄造鑄成具有單一FCC相之合金板材,並對其進行1000℃-6小時的均質化熱處理,而後將合金板材冷滾軋80%,再以不同溫度及時間進行再結晶熱處理,最後將試片進行機械性質分析。
實驗結果顯示合金經900℃-2小時再結晶退火後,可獲得最適合的降伏強度與延性之組合,所以該熱處理條件根據定為爾後摻雜不同硼含量合金研究之熱處理參數。另外,對摻雜不同比例硼元素之中熵合金再進行750℃-4小時的時效處理以析出L12相。透過L12結構之析出物與FCC相之基地整合(Coherent)的效果,進一步的提升降伏強度並保留其延性。
最後根據研究結果之機械性質及分析硼元素摻雜之效果得知,經過900℃-2小時再結晶退火加上750℃-4小時之時效熱處理的試片,其中摻雜0.3 at. %硼元素的中熵合金將具有最佳的機械性能,其降伏強度為1817MPa、最大抗拉強度為2313MPa,且具有14.5%的延性,而比強度更是高達288 MPa‧cm3/g。
摘要(英) High-entropy alloys (HEAs) have become a hot topic in research today due to their excellent mechanical properties and practical applications. There is a growing demand for metallic materials with specific properties in aerospace, automotive, energy, medical, defense, and other industries. Therefore, it is very important to break through the current limits of metallic material properties in various fields. High yield strength combined with a certain level of ductility is a crucial indicator.
According to previous studies, the Co43Cr15Ni30Al5Ti7 quinary HEA after appropriate heat treatment processes is expected to achieve a combination of ultra-high strength (~2100 MPa) and ductility (~10 %). This study aims to optimize the heat treatment process and investigate the impact of boron doping on the mechanical properties of this quinary HEA.
In this research, boron elements were added in trace amounts (0.1~0.4 at.%) to the Co43Cr15Ni30Al5Ti7 HEA. The alloy was arc-melted and cast into single-phase FCC alloy plates using drop-casting. The alloy plates underwent homogenization heat treatment at 1000°C for 6 hours, followed by cold rolling to 80% reduction. Subsequently, recrystallization heat treatment was performed at different temperatures and durations to analyze their mechanical properties.
Experiment showed that the optimal combination of yield strength and ductility was achieved after annealing at 900°C for 2 hours. This annealing parameter was then used for further study on the alloys with different additions of boron doping. The alloys with different addition of boron doping were aged at 750°C for 4 hours to precipitate L12 phase after recrystallization annealing. The coherent integration of L12 precipitates with the FCC matrix further enhanced the yield strength while maintaining ductility.
Based on the research results and analysis of mechanical properties influenced by boron doping, it is determined that the high-entropy alloy after cold rolled 80% then treated with 900°C for 2 hours and followed by aging at 750°C for 4 hours exhibits the best mechanical performance. Specifically, the alloy doped with 0.3 at.% boron achieves an optimal yield strength is 1817MPa, its maximum tensile strength is 2313MPa, and it has a ductility of 14.5%, the specific strength is as high as 288 MPa‧cm3/g.
關鍵字(中) ★ 中熵合金
★ 微量元素摻雜
★ 非等原子比
★ 時效處理
關鍵字(英) ★ medium-entropy alloys
★ trace element doping
★ non-equiatomic composition
★ aging treatment
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
1 第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
2 第二章 文獻回顧 4
2-1 高熵合金之沿革及定義 4
2-2 高熵合金之固溶相形成條件 5
2-3 高熵合金四大效應 7
2-3-1 高熵效應(High-Entropy Effect) 7
2-3-2 嚴重晶格扭曲效應(Severe-Lattice-Distortion Effect) 8
2-3-3 延遲擴散效應(Sluggish Diffusion Effect) 8
2-3-4 雞尾酒效應(Cocktail Effect) 9
2-4 高熵合金之成分設計 9
2-4-1 非等比例高熵合金 10
2-4-2 中熵合金之發展 10
2-4-3 CoCrNi合金系統 11
2-5 影響機械性質之機制 12
2-5-1 應變硬化 12
2-5-2 固溶強化 13
2-5-3 晶界強化 13
2-5-4 析出硬化 14
3 第三章 實驗方法及步驟 18
3-1 中熵合金試片製備 18
3-1-1 合金成分配製 18
3-1-2 電弧熔煉 18
3-1-3 墜落式鑄造 18
3-1-4 均質化熱處理 19
3-1-5 冷滾軋 19
3-1-6 再結晶退火熱處理 20
3-1-7 時效熱處理 20
3-2 分析方法 20
3-2-1 成分分析 20
3-2-2 密度分析 21
3-2-3 熱性質分析 21
3-2-4 微觀結構分析 22
3-2-5 機械性質分析 23
4 第四章 結果與討論 39
4-1 中熵合金熱處理製程選定 39
4-1-1 熱性質分析 39
4-1-2 均質化溫度及時間選定 40
4-1-3 再結晶退火溫度及時間選定 40
4-1-4 時效溫度及時間選定 42
4-2 不同硼含量之中熵合金基本性質分析 42
4-2-1 固溶相參數計算 42
4-2-2 成分分析 42
4-2-3 合金密度分析 43
4-3 不同硼含量之中熵合金微觀結構及機械性質分析 43
4-3-1 X光繞射分析 43
4-3-2 機械性質分析 44
4-3-3 微觀結構分析 45
5 第五章 結論 71
6 第六章 參考文獻 72
參考文獻 [1]ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[2] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[4] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[5] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[6] Yang, M. C., et al. "Ultra-fine grained structure and high-content precipitates enable ultrastrong yet strain-hardenable medium-entropy alloy." Journal of Materials Research and Technology 27 (2023): 2868-2873.
[7] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[8] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[9] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[10] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[11] Wei, Daixiu, et al. "Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys." International Journal of Plasticity 159 (2022): 103443.
[12] Qi, Yongliang, et al. "Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping." Journal of Materials Science & Technology 75 (2021): 154-163.
[13] Zhang, Haitao, et al. "Tuning deformation mechanisms of face-centered-cubic high-entropy alloys via boron doping." Journal of Alloys and Compounds 911 (2022): 165103.
[14] Q. F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[15] J.W. Yeh, Y. L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys - A new era of exploitation, Mater. Sci. Forum 560 (2007) 1-9.
[16] B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (2014).
[17] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233-238.
[18] S. Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. 21 (2011) 433-446.
[19] Mizutani, Uichiro. "Hume-Rothery rules for structurally complex alloy phases." Mrs Bulletin 37.2 (2012): 169-169.
[20] Jien-Wei, Y. E. H. "Recent progress in high entropy alloys." Ann. Chim. Sci. Mat 31.6 (2006): 633-648.
[21] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[22] Zhou, Yang, et al. "Design of non-equiatomic medium-entropy alloys." Scientific reports 8.1 (2018): 1236.
[23] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[24] Li, Li, et al. "Lattice-distortion dependent yield strength in high entropy alloys." Materials Science and Engineering: A 784 (2020): 139323.
[25] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46
[26] Gwalani, Bharat, et al. "Composition-dependent apparent activation-energy and sluggish grain-growth in high entropy alloys." Materials Research Letters 7.7 (2019): 267-274.
[27] He, J. Y., et al. "Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system." Acta Materialia 62 (2014): 105-113.
[28] Pradeep, Konda Gokuldoss, et al. "Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design." Materials Science and Engineering: A 648 (2015): 183-192.
[29] Raturi, Abheepsit, N. P. Gurao, and Krishanu Biswas. "ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys." Journal of Alloys and Compounds 806 (2019): 587-595.
[30] Tang, Zhi, et al. "Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization." Materials Science and Engineering: A 647 (2015): 229-240.
[31] Shabani, Ali, et al. "Microstructure and mechanical properties of a multiphase FeCrCuMnNi high-entropy alloy." Journal of Materials Engineering and Performance 28 (2019): 2388-2398.
[32] Laplanche, G., et al. "Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi." Acta Materialia 128 (2017): 292-303.
[33] Cantor, Brain, et al. "Microstructural development in equiatomic multicomponent alloys." Materials Science and Engineering: A 375 (2004): 213-218.
[34] Wu, Zhenggang, et al. "Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys." Intermetallics 46 (2014): 131-140.
[35] Wu, Zhenggang, et al. "Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures." Acta Materialia 81 (2014): 428-441.
[36] Bajpai, Sakshi, et al. "Recent progress in the CoCrNi alloy system." Materialia 24 (2022): 101476.
[37] He, J. Y., et al. "A precipitation-hardened high-entropy alloy with outstanding tensile properties." Acta Materialia 102 (2016): 187-196.
[38] Zhao, Y. L., et al. "Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy." Acta Materialia 138 (2017): 72-82.
[39] Liang, Yao-Jian, et al. "High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys." Nature communications 9.1 (2018): 4063.
[40] Li, Wanpeng, et al. "Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures." Applied Materials Today 23 (2021): 101037.
[41] Komarasamy, Mageshwari, et al. "A novel method to enhance CSL fraction, tensile properties and work hardening in complex concentrated alloys―Lattice distortion effect." Materials Science and Engineering: A 736 (2018): 383-391.
[42] Wei, Daixiu, et al. "Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys." Scripta Materialia 165 (2019): 39-43.
[43] Kocks, U. F., and H. Mecking. "Physics and phenomenology of strain hardening: the FCC case." Progress in materials science 48.3 (2003): 171-273.
[44] Weertman, Johannes. "Theory of steady‐state creep based on dislocation climb." Journal of Applied Physics 26.10 (1955): 1213-1217.
[45] Hume-Rothery, William, and Herbert M. Powell. "On the theory of super-lattice structures in alloys." Zeitschrift für Kristallographie-Crystalline Materials 91.1-6 (1935): 23-47.
[46] Hall, E. O. "The deformation and ageing of mild steel: III discussion of results." Proceedings of the Physical Society. Section B 64.9 (1951): 747.
[47] Petch, N. J. "The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel." Acta Metallurgica 34.7 (1986): 1387-1393.
[48] Jouiad, M., et al. "Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging." Materials & Design 102 (2016): 284-296.
[49] Wang, Qing, et al. "Coherent precipitation and strengthening in compositionally complex alloys: a review." Entropy 20.11 (2018): 878.
[50] Kim, Seong Gyoon, and Yong Bum Park. "Grain boundary segregation, solute drag and abnormal grain growth." Acta Materialia 56.15 (2008): 3739-3753.
[51] Ardell, Alan J. "Precipitation hardening." Metallurgical Transactions A 16 (1985): 2150-2165.
[52] Veyssière, Patrick. "Yield stress anomalies in ordered alloys: a review of microstructural findings and related hypotheses." Materials Science and Engineering: A 309 (2001): 44-48.
[53] Caillard, Daniel. "Yield-stress anomalies and high-temperature mechanical properties of intermetallics and disordered alloys." Materials Science and Engineering: A 319 (2001): 74-83.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明