參考文獻 |
[1]ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[2] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[4] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[5] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[6] Yang, M. C., et al. "Ultra-fine grained structure and high-content precipitates enable ultrastrong yet strain-hardenable medium-entropy alloy." Journal of Materials Research and Technology 27 (2023): 2868-2873.
[7] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[8] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[9] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[10] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[11] Wei, Daixiu, et al. "Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys." International Journal of Plasticity 159 (2022): 103443.
[12] Qi, Yongliang, et al. "Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping." Journal of Materials Science & Technology 75 (2021): 154-163.
[13] Zhang, Haitao, et al. "Tuning deformation mechanisms of face-centered-cubic high-entropy alloys via boron doping." Journal of Alloys and Compounds 911 (2022): 165103.
[14] Q. F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[15] J.W. Yeh, Y. L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys - A new era of exploitation, Mater. Sci. Forum 560 (2007) 1-9.
[16] B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (2014).
[17] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233-238.
[18] S. Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. 21 (2011) 433-446.
[19] Mizutani, Uichiro. "Hume-Rothery rules for structurally complex alloy phases." Mrs Bulletin 37.2 (2012): 169-169.
[20] Jien-Wei, Y. E. H. "Recent progress in high entropy alloys." Ann. Chim. Sci. Mat 31.6 (2006): 633-648.
[21] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[22] Zhou, Yang, et al. "Design of non-equiatomic medium-entropy alloys." Scientific reports 8.1 (2018): 1236.
[23] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[24] Li, Li, et al. "Lattice-distortion dependent yield strength in high entropy alloys." Materials Science and Engineering: A 784 (2020): 139323.
[25] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46
[26] Gwalani, Bharat, et al. "Composition-dependent apparent activation-energy and sluggish grain-growth in high entropy alloys." Materials Research Letters 7.7 (2019): 267-274.
[27] He, J. Y., et al. "Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system." Acta Materialia 62 (2014): 105-113.
[28] Pradeep, Konda Gokuldoss, et al. "Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design." Materials Science and Engineering: A 648 (2015): 183-192.
[29] Raturi, Abheepsit, N. P. Gurao, and Krishanu Biswas. "ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys." Journal of Alloys and Compounds 806 (2019): 587-595.
[30] Tang, Zhi, et al. "Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization." Materials Science and Engineering: A 647 (2015): 229-240.
[31] Shabani, Ali, et al. "Microstructure and mechanical properties of a multiphase FeCrCuMnNi high-entropy alloy." Journal of Materials Engineering and Performance 28 (2019): 2388-2398.
[32] Laplanche, G., et al. "Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi." Acta Materialia 128 (2017): 292-303.
[33] Cantor, Brain, et al. "Microstructural development in equiatomic multicomponent alloys." Materials Science and Engineering: A 375 (2004): 213-218.
[34] Wu, Zhenggang, et al. "Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys." Intermetallics 46 (2014): 131-140.
[35] Wu, Zhenggang, et al. "Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures." Acta Materialia 81 (2014): 428-441.
[36] Bajpai, Sakshi, et al. "Recent progress in the CoCrNi alloy system." Materialia 24 (2022): 101476.
[37] He, J. Y., et al. "A precipitation-hardened high-entropy alloy with outstanding tensile properties." Acta Materialia 102 (2016): 187-196.
[38] Zhao, Y. L., et al. "Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy." Acta Materialia 138 (2017): 72-82.
[39] Liang, Yao-Jian, et al. "High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys." Nature communications 9.1 (2018): 4063.
[40] Li, Wanpeng, et al. "Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures." Applied Materials Today 23 (2021): 101037.
[41] Komarasamy, Mageshwari, et al. "A novel method to enhance CSL fraction, tensile properties and work hardening in complex concentrated alloys―Lattice distortion effect." Materials Science and Engineering: A 736 (2018): 383-391.
[42] Wei, Daixiu, et al. "Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys." Scripta Materialia 165 (2019): 39-43.
[43] Kocks, U. F., and H. Mecking. "Physics and phenomenology of strain hardening: the FCC case." Progress in materials science 48.3 (2003): 171-273.
[44] Weertman, Johannes. "Theory of steady‐state creep based on dislocation climb." Journal of Applied Physics 26.10 (1955): 1213-1217.
[45] Hume-Rothery, William, and Herbert M. Powell. "On the theory of super-lattice structures in alloys." Zeitschrift für Kristallographie-Crystalline Materials 91.1-6 (1935): 23-47.
[46] Hall, E. O. "The deformation and ageing of mild steel: III discussion of results." Proceedings of the Physical Society. Section B 64.9 (1951): 747.
[47] Petch, N. J. "The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel." Acta Metallurgica 34.7 (1986): 1387-1393.
[48] Jouiad, M., et al. "Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging." Materials & Design 102 (2016): 284-296.
[49] Wang, Qing, et al. "Coherent precipitation and strengthening in compositionally complex alloys: a review." Entropy 20.11 (2018): 878.
[50] Kim, Seong Gyoon, and Yong Bum Park. "Grain boundary segregation, solute drag and abnormal grain growth." Acta Materialia 56.15 (2008): 3739-3753.
[51] Ardell, Alan J. "Precipitation hardening." Metallurgical Transactions A 16 (1985): 2150-2165.
[52] Veyssière, Patrick. "Yield stress anomalies in ordered alloys: a review of microstructural findings and related hypotheses." Materials Science and Engineering: A 309 (2001): 44-48.
[53] Caillard, Daniel. "Yield-stress anomalies and high-temperature mechanical properties of intermetallics and disordered alloys." Materials Science and Engineering: A 319 (2001): 74-83. |