參考文獻 |
[1] ASM International. Handbook Committee, “Properties and Selection: Irons, Steels, and High-Performance Alloys”, Vol.1, Materials Park, OH: ASM International, 1990.
[2] Aluminum-Lithium Alloys Fight Back. https://aluminiuminsider.com/aluminium -lithium-alloys-fight-back/
[3] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe. Stiff, light, strong and ductile: nano-structured High Modulus Steel. Scientific Reports 2017, 7, 2757.
[4] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater 2004, 6, 299-303.
[5] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A 2004, 375, 213-218.
[6] Zhiming Li, Konda Gokuldoss Pradeep, Yun Deng, Dierk Raabe, Cemal Cem Tasan. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230.
[7] Zhiming Li, Dierk Raabe. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. JOM 2017, 69, 2099–2106.
[8] K. H. Huang, J. W. Yeh. A Study On Multicomponent Alloy Systems containing Equal-Mole Elements. Department of Materials Science and Engineering. Hsinchu: National Tsing Hua University, 1996.
[9] J. W. Yeh. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.
[10] W. D. Callister, D. G. Rethwisch. Materials Science and Engineering; Wiley: Hoboken, NJ, USA, 2011; Volume 8.
[11] A. Helth, U. Siegel, U. Ku¨hn, T. Gemming, W. Gruner, S. Oswald, T. Marr, J. Freudenberger, J. Scharnweber, C.G. Oertel, W. Skrotzki, L. Schultz, J. Eckert. Influence of boron and oxygen on the microstructure and mechanical properties of high-strength Ti66Nb13Cu8Ni6.8Al6.2 alloys. Acta Materialia 2013, 61, 3324–3334.
[12] O. N. Senkov, S. L. Semiatin. Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working. Journal of Alloys and Compounds 2015, 649, 1110–1123.
[13] Jinxiong Hou, Min Zhang, Shengguo Ma, Peter. K. Liaw, Yong Zhang, Junwei Qiao. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. 2017, 707, 593–601.
[14] R. R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P. P. Bhattacharjee. Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Mater. Charact. 2018, 136, 286–292.
[15] Shuying Chen, Ko-Kai Tseng, Yang Tong, Weidong Li, Che-Wei Tsai, Jien-Wei Yeh, Peter K. Liaw. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J. Alloys Compd. 2019, 795, 19–26.
[16] Yung-Chien Huang, Yi-Cheng Lai, Yu-Hsien Lin, Shyi-Kaan Wu. A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy. J. Alloys Compd. 2021, 855, 157404.
[17] Y. C. Liao, P. S. Chen, P. H. Tsai, J. S.C. Jang, K. C. Hsieh, H. W. Chang, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Effect of thermomechanical treatment on the microstructure evolution and mechanical properties of lightweight Ti65(AlCrNb)35 medium-entropy alloy. Intermetallics 2022, 143, 107470.
[18] Ming-Hung Tsai, Jien-Wei Yeh. High-Entropy Alloys: A Critical Review. Materials Research Letters 2014, 2, 107–123.
[19] Rui Li, Jia Cheng Gao, Ke Fan. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Mater. Sci. Forum 2010, 650, 265–271.
[20] Xing Hao Du, Rui Wang, Cai Chen, Bao Lin Wu, J.C. Huang. Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy. Key Eng. Mater. 2017, 727, 132–135.
[21] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, P. K. Liaw. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Advanced engineering materials 2008, 10, 534-538.
[22] X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics 2012, 132, 233-238.
[23] Akira Takeuchi, Kenji Amiya, Takeshi Wada, Kunio Yubuta, Wei Zhang, Akihiro Makino. Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy 2013, 15, 3810–3821.
[24] Jien Wei Yeh, Yu Liang Chen, Su Jien Lin, Swe Kai Chen. High-entropy alloys - A new era of exploitation. Materials Science Forum 2007, 560, 1–9.
[25] Sheng GUO, C. T. LIU. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International 2011, 21, 433–446.
[26] R. A. Swalin, J. Arents. Thermodynamics of Solids. Journal of The Electrochemical Society 1962.
[27] Brent Fultz. Vibrational thermodynamics of materials. In Progress in Materials Science 2010.
[28] S. Guo, C. T. Liu. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International 2011, 21, 433-446.
[29] David R. Gaskell. Introduction to the thermodynamics of materials. 3rd ed, Washington: Taylor & Francis 1995, 80-84.
[30] Y. Zhang, X. Yang, P. K. Liaw. Alloy design and properties optimization of high-entropy alloys. In JOM 2012, 64(7), 830–838.
[31] J. W. Yeh. Alloy design strategies and future trends in high-entropy alloys. Jom 2013, 65(12), 1759–1771.
[32] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc, S. J. Lin. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics 2007, 103, 41-46.
[33] K. Y. Tsai, M. H. Tsai, J. W. Yeh. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia 2013, 61, 4887-4897.
[34] Carlyn R. LaRosa, Mulaine Shiha, Céline Varvenne, Maryam Ghazisaeidi. Solid solution strengthening theories of high-entropy alloys. Materials Characterization 2019, 151, 310-317.
[35] J. Zhang, X. Li, Y. Zhang, F. Zhang, H. Wu, X.Z. Wang, Q. Zhou, H. Wang. Sluggish dendrite growth in an undercooled high entropy alloy. Intermetallics 2020, Vol.119.
[36] L. S. Zhang, G. L. Ma, L. C. Fu, J. Y. Tian. Recent Progress in High-entropy Alloys. Advanced Materials Research 2013, 631-632, 227-232.
[37] Y. C. Liao, P. S. Chen, C. H. Li, P. H. Tsai, J. S. C. Jang. Development of Novel Lightweight Dual‐Phase Al‐Ti‐Cr‐Mn‐V Medium‐Entropy Alloys with High Strength and Ductility. Entropy 2020, 22, 74.
[38] Y. C. Liao, T. H. Li, P. H. Tsai, J. S. C Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys. Intermetallics 2020, 117, 106673.
[39] Yong Zhao, Mingliang Wang, Hongzhi Cui, Yuqiao Zhao, Xiaojie Song, Yong Zeng, Xiaohua Gao, Feng Lu, Canming Wang, Qiang Song. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys. Journal of Alloys and Compounds 2019, 805, 585-596.
[40] Franz Müller, Bronislava Gorr, Hans-Jürgen Christ, Julian Müller, Benjamin Butz, Hans Chen, Alexander Kauffmann, Martin Heilmaier. On the oxidation mechanism of refractory high entropy alloys. Corrosion Science 2019, 159, 108161.
[41] P. S. Chen, Y. C. Liao, Y. T. Lin, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, I. Y. Tsao. Development of Novel Lightweight Al-Rich Quinary Medium-Entropy Alloys with High Strength and Ductility. Materials 2021, 14, 4223.
[42] R. Li, J. C. Gao, K. Fan. Study to microstructure and mechanical properties of Mg containing high entropy alloys, Materials Science Forum 2010, 650, 265-271.
[43] R. Li, J. C. Gao, K. Fan. Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum 2011, 686, 235-241.
[44] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758-1765.
[45] L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon,N. Emery, I. Guillot. New structure in refractory high-entropy alloys. Materials Letters 2014, 132, 123-125.
[46] Khaled M. Youssef, Alexander J. Zaddach, Changning Niu, Douglas L. Irving, Carl C. Koch. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99.
[47] N. D. Stepanov, N. Y. Yurchenko, D.V. Skibin, M. A. Tikhonovsky, G. A. Salishchev. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal of Alloys and Compounds 2015, 652, 266–280.
[48] Duancheng Ma, Mengji Yao, K.G. Pradeep, Cemal C. Tasan, Hauke Springer, Dierk Raabe. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015, 98, 288–296.
[49] S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chena, B.L. Shen. Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys. Vacuum 2019, 163, 263-268.
[50] Minku Choi, Ibrahim Ondicho, Nokeun Park, Nobuhiro Tsuji. Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure. Journal of Alloys and Compounds 2019, 780, 959-966.
[51] Yang Zhou, Dong Zhou, Xi Jin, Lu Zhang, Xingyu Du, Bangsheng Li. Design of non-equiatomic medium-entropy alloys. Sci. Rep. 2018, 8, 1236.
[52] N. D. Stepanov, D. G. Shaysultanov, R. S. Chernichenko, M. A. Tikhonovsky, S. V. Zherebtsov. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203.
[53] M. J. Yao, K. G. Pradeep, C. C. Tasan, D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr highentropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 2014, 72–73, 5–8.
[54] R. Cahn, P. Haasen. Physical metallurgy. 4th ed, Amsterdam: North-Holland.
[55] X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang. Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys. Journal of Alloys and Compounds 2020, 831.
[56] Y. C. Liao, W. T. Ye, P. S. Chen, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C. Huang, H. J. Wu, Y. C. Lo, C. W. Huang, I. Y. Tsao. Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys, Intermetallics 2021, 135, 107213.
[57] A. Helth, U. Siegel, U. Ku¨hn, T. Gemming, W. Gruner, S. Oswald, T. Marr, J. Freudenberger, J. Scharnweber, C.G. Oertel, W. Skrotzki, L. Schultz, J. Eckert. Influence of boron and oxygen on the microstructure and mechanical properties of high-strength Ti66Nb13Cu8Ni6.8Al6.2 alloys. Acta Materialia 2013, 61, 3324–3334.
[58] J. Pang, H. Zhang, L. Zhang, Z. Zhu, H. Fu, H. Li, A. Wang, Z. Li, H. Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping. Journal of Materials Science & Technology 2021, 78, 74–80.
[59] Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycookc, T. Hashimotob. Grain refining mechanism in the Al/Al–Ti–B system. Acta Materialia 2015, 84, 292–304.
[60] National Research Council, Division on Engineering and Physical Sciences, Board on Manufacturing and Engineering Design, Commission on Engineering and Technical Systems, Unit Manufacturing Process Research Committee. Unit Manufacturing Processes: Issues and Opportunities in Research, 1995
[61] Qingsong Fan, Bo Yuan, Meng Xie, Minghua Shi, Jun Zhou, Zhongbo Yang, Wenjin Zhao. Effects of hot rolling temperature and aging on the second phase particles of Zr-Sn-Nb-Fe zirconium alloy. Nuclear Materials and Energy 2019, 20, 100700.
[62] Xiaosheng Luan, Wenxiang Zhao, Zhiqiang Liang, Shihong Xiao, Guoxiang Liang, Yifan Chen, Shikun Zou, Xibin Wang. Experimental study on surface integrity of ultra-high-strength steel by ultrasonic hot rolling surface strengthening. Surface and Coatings Technology 2020, 392, 125745.
[63] Junjie He, Danli Zhu, Chao Deng, Kai Xiong, Jiyang Xie, Yong Mao, Jin Li. Microstructure evolution and deformation behavior of Au–20Sn eutectic alloy during hot rolling process. Journal of Alloys and Compounds 2020, 831, 154824.
[64] Y. C. Liao, P. S. Chen, P. H. Tsai, J. S. C. Jang, K. C. Hsieh, C. Y. Chen, J. C Huang, H. J. Wu, I.Y. Tsao. Tailored rapid annealing to obtain heterostructured ultra-high-strength lightweight Ti-rich medium-entropy alloys. Results in Materials 2022, 16, 100342.
[65] Xiaolei Wu, Yuntian Zhu. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters 2017, 5,527-532.
[66] D. A. Hughes, N. Hansen, D. J Bammann. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia 2023, 48, 147–153.
[67] Marc André Meyers, Krishan Kumar Chawla. Mechanical behavior of materials. Cambridge University Press 2009.
[68] Junyang He, Surendra Kumar Makineni, Wenjun Lu, Yuanyuan Shang, Zhaoping Lu, Zhiming Li, Baptiste Gault. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Materialia 2020, 175, 1–6.
[69] Tianhao Wang, Shivakant Shukla, Mageshwari Komarasamy, Kaimiao Liu, Rajiv S. Mishra. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing. Materials Letters 2019, Volume 236, 472-475.
[70] Praveen Sathiyamoorthi, Hyoung Seop Kim. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Progress in Materials Science 2020, 100709.
[71] M. F. Ashby. The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1970, 21, 399–424.
[72] Xiaolei Wu, Muxin Yang, Fuping Yuan, Guilin Wu, Yujie Wei, Xiaoxu Huang, Yuntian Zhu. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences 2015, 112, 14501–14505.
[73] Muxin Yang, Yue Pan, Fuping Yuan, Yuntian Zhu, Xiaolei Wu. Back stress strengthening and strain hardening in gradient structure. Materials Research Letters 2016, 4, 145–151.
[74] M. X. Yang, F. P. Yuan, Q. G. Xie, Y. D. Wang, E. Ma, X. L. Wu. Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia 2016, 109, 213–222.
[75] Yuntian Zhu, Xiaolei Wu. Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters 2019, 7, 393–398.
[76] P. S. Chen, S. J. Shiu, P. H. Tsai, Y. C. Liao, J. S. C. Jang, H. J. Wu, S. Y. Chang, C. Y. Chen, I. Y. Tsao. Remarkable Enhanced Mechanical Properties of TiAlCrNbV Medium-Entropy Alloy with Zr Additions. Materials 2022, 15, 6324.
[77] Po-Sung Chen, Jun-Rong Liu, Pei-Hua Tsai, Yu-Chin Liao, Jason Shian-Ching Jang, Hsin-Jay Wu, Shou- Yi Chang, Chih-Yen Chen, I-Yu Tsao. Enhancing the Strength and Ductility Synergy of Lightweight Ti-Rich Medium-Entropy Alloys through Ni Microalloying. Materials. Submitted.
[78] 郭寶謄. 微量合金法摻雜硼對輕量中熵合金微結構改良與機械性質提升之研究. 國立中央大學2023.
[79] Rhiannon Phillips, Kenny Jolley, Ying Zhou, Roger Smith. Influence of temperature and point defects on the X-ray diffraction pattern of graphite. Carbon Trends 2021, 5, 100124
[80] J. G. M. van Berkum, A. C. Vermeulen, R. Delhez, T. H. de Keijser, E. J. Mittemeijer. Applicabilities of the Warren–Averbach analysis and an alternative analysis for separation of size and strain broadening. Journal of Applied Crystallography 1994, 27, 345–357.
[81] A. El kissani, L. Nkhaili, A. Ammar, K. Elassali, A. Outzourhit. Synthesis, annealing, characterization, and electronic properties of thin films of a quaternary semiconductor; copper zinc tin sulfide. Spectroscopy Letters 2016, 49, 343–347.
[82] Muxin Yang, Dingshun Yan, Fuping Yuan, Ping Jiang, Evan Ma, Xiaolei Wu. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proceedings of the National Academy of Sciences 2018, 115, 7224–7229.
[83] Qi Zhang, Shuofan Li, Yi Cao, Shilin Xu, Xianjie Zhang, Junbiao Wang, Chaorun Si. Nanostructure evolution of reticular nano-TiB whiskers reinforced titanium matrix composite subjected to ultrasonic shot peening. Journal of Alloys and Compounds 2023, 948, 169704
[84] Jae Bok Seol, Jae Wung Bae, Zhiming Li, Jong Chan Han, Jung Gi Kim, Dierk Raabe, Hyoung Seop Kim. Boron doped ultrastrong and ductile high-entropy alloys. Acta Materialia 2018, 151, 366–376.
[85] P. Esser; C. Schankies; V. Khalajzadeh; C. Beckermann. Advanced modeling of shrinkage porosity in castings. IOP Conference Series: Materials Science and Engineering 2020, 861, 012022.
[86] Yi Jia, Shulong Xiao, Jing Tian, Lijuan Xu,Yuyong Chen. Modeling of TiAl Alloy Grating by Investment Casting. Metals 2015, 5, 2328–2339.
[87] Tongzheng He, Yuyong Chen. Influence of Mold Design on Shrinkage Porosity of Ti-6Al-4V Alloy Ingots. Metals 2022, 12, 2122. |