參考文獻 |
1. Burdea, G. C., & Coiffet, P, Virtual reality technology. (John Wiley & Sons, 2003).
2. LaValle, S. M. Virtual reality. (Cambridge university press, 2023).
3. Yuen, S. C. Y., Yaoyuneyong, G., & Johnson, E, “Augmented reality: An overview and five directions for AR in education,” Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11 (2011).
4. Azuma, R. T. “A survey of augmented reality,” Presence: teleoperators & virtual environments, 6(4), 355-385 (1997).
5. Nordin, G. P., Johnson, R. V., & Tanguay Jr, A. R.. Tanguay, “Diffraction properties of stratified volume holographic optical elements,” JOSA A 9(12) 2206-2217 (1992).
6. Zhao, C., Liu, J., Fu, Z., & Chen, R. T, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Applied physics letters 71(11), 1464-1466 (1997).
7. Solomashenko, A., Kuznetsov, A., Nikolaev, V., & Afanaseva, O, “Development of a holographic waveguide with thermal compensation for augmented reality devices,” Applied Sciences 12(21) 11281 (2022).
8. Gabor, D. Holography, 1948-1971.Science 177,299-313 (1972).
9. Hariharan, P, Optical Holography: Principles, techniques and applications. (Cambridge University Press, 1996).
10. Gabor, D, “A new Microscopic principle,” Nature 161, 777-778 (1948).
11. Gabor, D., Kock, W. E., & Stroke, G. W. “ Holography: The fundamentals, properties, and applications of holograms are reviewed,” Science 173(3991), 11-23 (1971).
12. Barbastathis, G., Balberg, M., & Brady, D. J, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811-813 (1999).
13. Kogelnik, H., “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
14. 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所 博士論文,中華民國九十八年。
15. Fernández, R., Gallego, S., Márquez, A., Francés, J., Fuster, V. N., Neipp, C., ... & Pascual, I, “Shrinkage measurement for holographic recording materials,” Holography: Advances and Modern Trends V. SPIE p. 64-72 (2017).
16. Moothanchery, M., Naydenova, I., Bavigadda, V., Martin, S., & Toal, V, “Real-time shrinkage studies in photopolymer films using holographic interferometry,” Real-Time Image and Video Processing 2012 Vol. 8437. SPIE, 2012.
17. Moothanchery, M., Bavigadda, V., Toal, V., & Naydenova, I. “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52, 8519-8527 (2013).
18. Kumar, M. (Ed.), Holographic Materials and Applications (BoD–Books on Demand 2019).
19. Ramos, G., Álvarez-Herrero, A., Belenguer, T., del Monte, F., & Levy, D, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Applied optics, 43(20), 4018-4024 (2004).
20. Hu, Y., Kowalski, B. A., Mavila, S., Podgórski, M., Sinha, J., Sullivan, A. C., ... & Bowman, C. N. “Holographic Photopolymer Material with High Dynamic Range (Δ n) via Thiol–Ene Click Chemistry,” ACS Applied Materials & Interfaces 12(39) 44103-44109 (2020).
21. 黃郁泓,體積全像光學元件之波長及角度選擇性,國立中央大學光電科學研究所碩士論文,中華民國一百一十一年。
22. Bruder, F. K., Bang, H., Fäcke, T., Hagen, R., Hönel, D., Orselli, E., ... & Walze, G, “Precision holographic optical elements in Bayfol HX photopolymer,” Practical Holography XXX: Materials and Applications. Vol. 9771, 8-28, SPIE (2016).
23. Piao, J.A.; Li, G.; Piao, M.L.; Kim, N, “Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer,” J. Opt. Soc. Korea 17, 242–248(2013).
24. Shalit, A., Lucchetta, D. E., Piazza, V., Simoni, F., Bizzarri, R., & Castagna, R, “Polarization-dependent laser-light structured directionality with polymer composite materials,” Materials Letters, 81, 232–234 (2012).
25. Zhang, N., Liu, J., Han, J., Li, X., Yang, F., Wang, X., ... & Wang, Y, “Improved holographic waveguide display system,” Applied Optics.54, 3645–3649 (2015).
26. Leith, E. N., & Upatnieks, J, “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America, 52(10), 1123-1130(1962).
27. Melzer, J. E., & Moffitt, K, Head mounted displays, 1st Edition (CRC Press, 1997)
28. Sutherland, I. E, “A head-mounted three dimensional display,” fall joint computer conference, part I, p. 757-764 (1968).
29. Kaisu Isomäki & Katariina Pakarinen, “How extended reality can help in creating unique nature experiences?” https://www.labopen.fi/lab-pro/how-extended-reality-can-help-in-creating-unique-nature-experiences/
30. Daniel, “DreamGlass Air Portable Augmented Reality Screen,” https://gadgetsin.com/dreamglass-air-portable-augmented-reality-screen.htm.
31. Mirko Compagno, “Covid and Big Tech are driving Augmented Reality into healthcare,” https://mirkocompagno.wordpress.com/2021/06/18/covid-and-big-tech-are-driving-augmented-reality-into-healthcare/.
32. Gigante, M. A. Virtual reality: definitions, history and applications. In Virtual reality systems (Academic Press, 1993).
33. Snyder, A. W., & Love, J. D, Optical waveguide theory. (London, Chapman and hall 1983).
34. Okamoto, K, Fundamentals of optical waveguides. (Elsevier, 2021).
35. ar, M., Doll, T., kovi, J., & Scherer, A, “Design and fabrication of silicon photonic crystal optical waveguides,” Journal of lightwave technology, 18(10), 1402, (2000).
36. Levola, T, “Diffractive optics for virtual reality displays,” Journal of the Society for Information Display, 14(5), 467-475, (2006).
37. Scharon Harding, “North Focals Review: Stealthy, Stylish Smart Glasses,” https://www.tomshardware.com/reviews/north-focals-smart-glasses-ar,5968.html.
38. Chris Grayson, “Holographic Waveguides: What You Need To Know To Understand The Smartglasses Market,” https://www.uploadvr.com/waveguides-smar |