博碩士論文 111329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:3.129.194.182
姓名 陳博宥(Po-Yu Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量摻雜硼元素對TiAlNbCrVZr中熵合金微結構和機械性質影響之研究
(Effect of boron doping on the microstructure and mechanical properties of light-weight TiAlNbCrVZr MEA through thermo-mechanical treatment)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 這項研究以之前開發的Ti65(AlCrNbV)28Zr7輕量化富鈦中熵合金為基礎,通過添加微量硼元素,製作成(Ti65(AlCrNbV)28Zr7)100-xBx (x=0.1、0.2、0.4、0.6)系列合金,並研究硼元素含量對合金性能的影響。而後,透過熱處理來調節合金的特性,並結合微觀結構和機械性能的分析結果,探討其強化機制。
以電弧熔煉將各成分熔成圓錠,並鑄造成板材後,由EBSD分析結果可知,在硼元素的摻雜對於晶粒有明顯的細化效果,且在SEM下觀察到有析出物的產生,並使合金之硬度由未添加硼元素的331 Hv上升至B0.6的364 Hv,另外,在鑄造態時,B0.2的強度可達到1081MPa,且擁有14 %的延性,強度比未添加硼元素前增加了7 %,而隨著硼含量的增加,其強度有增加的趨勢,但延性也會相對降低。
(Ti65(AlCrNbV)28Zr7)100-xBx系列合金經過熱處理後,發現在不同處理條件下,隨著硼元素的增加,合金的強度和硬度均有所提高。此外,觀察到在材料的微觀結構中,硼元素的摻雜抑制了合金退火後的再結晶行為,進而使得再結晶溫度提高。在進行再結晶退火熱處理之後,B0.2、B0.1延性皆超過20%,而B0.4及B0.6在較短時間的熱處理下呈現相近的降伏強度,然而在拉長熱處理時間後B0.6之降伏強度會高於B0.4,其強度可達1382 MPa,延性則有14.7 %。最後,在(Ti65(AlCrNbV)28Zr7)100-xBx系列合金中,綜合鑄造態之機械性質,B0.4合金具有最佳之降伏強度1265 MPa及延性18.3%的綜合性質。
摘要(英) Based on the previously developed Ti65(AlCrNbV)28Zr7 lightweight medium-entropy alloy, minor amount of boron elements were added to create the series of (Ti65(AlCrNbV)28Zr7)100-xBx alloys. The effect of boron content on microstructure evolution and the mechanical properties of these alloys were investigated. Subsequently, the characteristics of alloys were adjusted through thermomechanical heat treatment, and the strengthening mechanism was explored by combining microstructure analyses and mechanical testing.
From the analysis results of using Electron Backscatter Diffraction (EBSD), it was observed that the additions of boron led to a significant refinement in grain size. Furthermore, in B0.6 alloy, many clear precipitates was observed under scanning electron microscopy (SEM). Meanwhile, the hardness of boron-added alloy exhibited an increasing trend from 331 Hv for B0 to 364 Hv for B0.6. Additionally, in the as-cast state, the strength of B0.2 reached 1081 MPa with a ductility of 14%, representing a 7% increase in strength compared with B0. Moreover, the strength of boron-added alloys also increased with increasing boron content, but the ductility show a decreasing trend with increasing boron content.
After annealing of 742°C, 812°C, 854°C, 881°C, respectively heat treatment, it was observed that the (Ti65(AlCrNbV)28Zr7)100-xBx alloy series exhibited increased strength and hardness with increasing the additions of boron under different treatment conditions. Additionally, boron doping was found to inhibit recrystallization behavior in the alloy microstructure, resulting in an elevation of recrystallization temperature. After recrystallization, both B0.2 and B0.1 alloys showed ductility exceeding 20%, while B0.4 and B0.6 presented comparable strength after shorter heat treatment durations. However, with prolonged heat treatment, B0.6 exhibited higher strength than B0.4, reaching 1382 MPa, with a ductility of 14.7%. In summary, considering the mechanical properties among all of the (Ti65(AlCrNbV)28Zr7)100-xBx alloy series, the B0.4 alloy demonstrated the best combination of yield strength and ductility (YS: 1265 MPa, EL: 18.3%).
Keyword: Lightweight medium-entropy alloys, minor element doping, non-equiatomic, thermo-mechanical treatment.
關鍵字(中) ★ 輕量化中熵合金
★ 微量元素摻雜
★ 非等原子比
★ 熱機處理
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 viii
圖目錄 ix
1 第一章 緒論 1
1-1 前言 1
1-2 研究目的 1
2 第二章 文獻回顧 3
2-1 高熵合金之沿革及定義 3
2-2 高熵合金之固溶相形成條件 4
2-3 高熵合金四大效應 6
2-3-1 高熵效應(High-Entropy Effect) 6
2-3-2 嚴重晶格扭曲效應(Severe-Lattice-Distortion Effect) 7
2-3-3 緩慢擴散效應(Sluggish Diffusion Effect) 8
2-3-4 雞尾酒效應(Cocktail Effect) 8
2-4 高熵合金之成分設計 9
2-4-1 非等比例高熵合金 9
2-4-2 中熵合金之發展 9
2-4-3 輕量化中熵合金 10
2-5 影響機械性質之機制 11
2-5-1 固溶強化 11
2-5-2 晶界強化 12
2-5-3 析出硬化 12
2-5-4 異構組織強化 13
2-5-5 熱機處理 13
3 第三章 實驗方法及步驟 21
3-1 合金成分元素選擇 21
3-2 中熵合金試片製備 21
3-2-1 合金成分配製 21
3-2-2 電弧熔煉 21
3-2-3 中熵合金板材製作-墜落式鑄造 22
3-2-4 均質化熱處理 22
3-2-5 熱滾軋 23
3-2-6 冷滾軋 23
3-2-7 再結晶退火熱處理 23
3-3 中熵合金密度分析 24
3-4 微觀組織分析 24
3-4-1 X光繞射分析儀 24
3-4-2 光學顯微鏡 25
3-4-3 掃描式電子顯微鏡 25
3-4-4 能量散射光譜儀 25
3-4-5 電子背向散射繞射分析儀 26
3-4-6穿透式電子顯微鏡(TEM) 26
3-5 機械性質分析 26
3-5-1 維式硬度測試 26
3-5-2 拉伸測試分析 27
4 第四章 結果與討論 43
4-1 富鈦中熵合金成分設計 43
4-1-1 硼元素摻雜含量選定 43
4-1-2 固溶相之參數計算 43
4-1-3 合金密度分析 44
4-2 富鈦中熵合金鑄態性質分析 44
4-2-1 X-ray繞射分析 44
4-2-2 微觀組織分析 44
4-2-3 機械性質分析 45
4-3 富鈦中熵合金之熱機處理 46
4-3-1 滾軋試片形貌與退火溫度選定 46
4-3-2 X-ray繞射分析 47
4-3-3 微觀組織分析 47
4-3-4 機械性質分析 48
4-3-5 熱機處理之微結構與機制分析 50
5 第五章 結論 76
6 第六章 參考文獻 78
參考文獻 [1] ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[2] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[4] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[5] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[6] B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. George, R. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016) 10602.
[7] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292-303.
[8] Y.C. Liao, T.H. Li, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys, Intermetallics 117 (2020) 106673.
[9] X. Zhang, P. Lin, J. Huang, Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys, J. Mater. Res. Technol. 9 (2020) 8136-8147.
[10] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[11] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[12] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[13] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[14] Y.L. Qi, T.H. Cao, H.X. Zong, Y.K. Wu, L. He, X.D. Ding, F. Jiang, S.B. Jin, G. Sha, J. Sun, Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping, J. Mater. Sci. Technol. 75 (2021) 154-163.
[15] Q.F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[16] J.W. Yeh, Y. L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys - A new era of exploitation, Mater. Sci. Forum 560 (2007) 1-9.
[17] B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (2014).
[18] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[19] A.R. Miedema, P.F. Châtel, F.R. Boer, Cohesion in alloys - fundamentals of a semi-empirical model, Physica B+C 100 (1980) 1-28.
[20] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233-238.
[21] U. Mizutani, Hume–Rothery Rules for Structurally Complex Alloy Phases, CRC Press (2010).
[22] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today 19 (2016) 349-362.
[23] S. Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. 21 (2011) 433-446.
[24] J.W. Yeh, 高熵合金的發展, 華岡工程學報27 (2011) 1-18.
[25] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[26] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.
[27] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metal Mater Trans A 35 (2004) 1465-1469.
[28] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
[29] Y.Y. Chen, T. Duval, U.T. Hong, J.W. Yeh, H.C. Shih, L.H. Wang, J.C. Oung, Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288◦C high-purity water, Mater. Lett. 61 (2007) 2692-2696.
[30] Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater. 59 (2011) 182-190.
[31] R. Li, J. Gao, K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum 650 (2010) 265-271.
[32] X. Du, R. Wang, C. Chen, B. Wu, J. Huang, Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy, Key Eng. Mater. 727 (2017) 132-135.
[33] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638.
[34] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe, Stiff, light, strong and ductile: nano-structured High Modulus Steel, Sci. Rep. 7 (2017) 2757.
[35] N.D. Stepanov, N. Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Tech. 31 (2015) 1184-1193.
[36] Y. Di, M. L Wang, L.K. Zhang, H.W. Yan, Y.A. Zhang, Y.P. Lu, A novel Ti45V45(AlCrMo)10 lightweight medium-entropy alloy with outstanding mechanical properties, Mater. Lett. 339 (2023) 134089.
[37] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44-49.
[38] M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today 12 (2021) 101162.
[39] K.S. Chung, J.H. Luan, C.H. Shek, Strengthening and deformation mechanism of interstitially N and C doped FeCrCoNi high entropy alloy, J. Alloy. Compd. 904 (2022) 164118.
[40] W.D. Callister Jr, D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons (2012).
[41] G. Qin, W.T. Xue, R.R. Chen, H.T. Zheng, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon, Materialia 6 (2019) 100259.
[42] J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, H.F. Zhang, Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping, J. Mater. Sci. Technol. 78 (2021) 74-80.
[43] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-hill New York (1986).
[44] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36.
[45] T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd. 478 (2009) 269-272.
[46] M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Strain hardening in Fe16Mn10Al0.86C5Ni high specific strength steel, Acta Mater. 109 (2016) 213-222.
[47] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci. 123 (2022) 100709.
[48] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today 18 (2020), 100498.
[49] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40-54.
[50] P.S. Chen, S.J. Shiu, P.H. Tsai, Y.C. Liao, J.S.C. Jang, H.J. Wu, S.Y. Chang, C.Y. Chen, I.Y. Tsao, Remarkable enhanced mechanical properties of TiAlCrNbV medium-entropy alloy with Zr additions, Materials 15 (2022) 6324.
[51] D.C. Cui, Z.S. Yang, B.J. Guo, L.X. Liu, Z.J. Wang, J.J. Li, J.C. Wang, F. He, Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy, Intermetallics 151 (2022) 107727.
[52] B.T. Yang, L.L. Ma, P.P. Zhao, Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys, Mater. Sci. Eng. A 863 (2023) 144524.
[53] Y.C. Liao, W.T. Ye, P.S. Chen, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys, Intermetallics 135 (2021) 107213.
[54] Online Materials Information Resource - MatWeb. Matweb.com. (2022). Retrieved 4 January 2022, from http://www.matweb.com/index.aspx.
[55] S. Shin, C. Zhu, C. Zhang, K. Vecchio, Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization. Mater. Res. Lett. 7 (2019) 467-473.
[56] L. Wang, S. Chen, B. Li, T. Cao, B. Wang, L. Wang, Y. Ren, J. Liang, Y. Xue, Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Trans. 56 (2015) 1800-1806.
[57] S. Zherebtsov, N. Yurchenko, E. Panina, M. Tikhonovsky, N. Stepanov, Gumlike mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics 116 (2020) 106652.
[58] 徐聖家,熱機處理對TiAlNbCrVZr系高熵合金微結構和機械性質影響之研究,2021年
[59] 郭寶謄,微量合金法摻雜硼對輕量中熵合金微結構改良與機械性質提升之研究,2023年
[60] Gaurav Singh, Upadrasta Ramamurty, Reprint: Boron modified titanium alloys. Progress in Materials Science 120 (2021) 100815
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明