參考文獻 |
[1] ASM International. Handbook Committee, Properties and Selection : Irons, Steels, and High-Performance Alloys, Vol.1, Materials Park, OH : ASM International, 1990.
[2] ASM International. Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol.2, Materials Park, OH : ASM International, 1990.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[4] W.Y. Tang, M.H. Chuang, H.Y. Chen, J.W. Yeh, Microstructure and Mechanical Performance of Brand-New Al0.3CrFe1.5MnNi0.5 High-Entropy Alloys, Adv. Eng. Mater. 11 (2009) 788-794.
[5] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74–78.
[6] B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. George, R. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures, Nat. Commun. 7 (2016) 10602.
[7] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292-303.
[8] Y.C. Liao, T.H. Li, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Designing novel lightweight, high-strength and high-plasticity Tix(AlCrNb)100-x medium-entropy alloys, Intermetallics 117 (2020) 106673.
[9] X. Zhang, P. Lin, J. Huang, Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys, J. Mater. Res. Technol. 9 (2020) 8136-8147.
[10] J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Mater. 151 (2018) 366-376.
[11] S.H. Shim, J.G. Moon, H. Pouraliakbar, B. J Lee, S.I. Hong, H.S. Kim, Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd. 897 (2022) 163217.
[12] Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546-550.
[13] L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility, J. Alloys Compd. 896 (2021) 162852.
[14] Y.L. Qi, T.H. Cao, H.X. Zong, Y.K. Wu, L. He, X.D. Ding, F. Jiang, S.B. Jin, G. Sha, J. Sun, Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping, J. Mater. Sci. Technol. 75 (2021) 154-163.
[15] Q.F. He, Z. Y. Ding, Y. F. Ye & Y. Yang, Design of High-Entropy Alloy: A Perspective from Nonideal Mixing, JOM 69 (2017) 2092-2098.
[16] J.W. Yeh, Y. L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys - A new era of exploitation, Mater. Sci. Forum 560 (2007) 1-9.
[17] B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (2014).
[18] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci. 118 (2021) 100777.
[19] A.R. Miedema, P.F. Châtel, F.R. Boer, Cohesion in alloys - fundamentals of a semi-empirical model, Physica B+C 100 (1980) 1-28.
[20] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233-238.
[21] U. Mizutani, Hume–Rothery Rules for Structurally Complex Alloy Phases, CRC Press (2010).
[22] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today 19 (2016) 349-362.
[23] S. Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. 21 (2011) 433-446.
[24] J.W. Yeh, 高熵合金的發展, 華岡工程學報27 (2011) 1-18.
[25] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (2018) 2-22.
[26] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (2013) 4887-4897.
[27] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metal Mater Trans A 35 (2004) 1465-1469.
[28] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
[29] Y.Y. Chen, T. Duval, U.T. Hong, J.W. Yeh, H.C. Shih, L.H. Wang, J.C. Oung, Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288◦C high-purity water, Mater. Lett. 61 (2007) 2692-2696.
[30] Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater. 59 (2011) 182-190.
[31] R. Li, J. Gao, K. Fan, Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys, Mater. Sci. Forum 650 (2010) 265-271.
[32] X. Du, R. Wang, C. Chen, B. Wu, J. Huang, Preparation of a Light-Weight MgCaAlLiCu High-Entropy Alloy, Key Eng. Mater. 727 (2017) 132-135.
[33] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628-2638.
[34] H. Springer, C. Baron, A. Szczepaniak, V. Uhlenwinkel, D. Raabe, Stiff, light, strong and ductile: nano-structured High Modulus Steel, Sci. Rep. 7 (2017) 2757.
[35] N.D. Stepanov, N. Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x=0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Tech. 31 (2015) 1184-1193.
[36] Y. Di, M. L Wang, L.K. Zhang, H.W. Yan, Y.A. Zhang, Y.P. Lu, A novel Ti45V45(AlCrMo)10 lightweight medium-entropy alloy with outstanding mechanical properties, Mater. Lett. 339 (2023) 134089.
[37] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44-49.
[38] M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Appl. Mater. Today 12 (2021) 101162.
[39] K.S. Chung, J.H. Luan, C.H. Shek, Strengthening and deformation mechanism of interstitially N and C doped FeCrCoNi high entropy alloy, J. Alloy. Compd. 904 (2022) 164118.
[40] W.D. Callister Jr, D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons (2012).
[41] G. Qin, W.T. Xue, R.R. Chen, H.T. Zheng, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, H.Z. Fu, Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon, Materialia 6 (2019) 100259.
[42] J.Y. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, Z.K. Li, H.F. Zhang, Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping, J. Mater. Sci. Technol. 78 (2021) 74-80.
[43] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-hill New York (1986).
[44] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36.
[45] T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy, J. Alloys Compd. 478 (2009) 269-272.
[46] M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, X.L. Wu, Strain hardening in Fe16Mn10Al0.86C5Ni high specific strength steel, Acta Mater. 109 (2016) 213-222.
[47] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci. 123 (2022) 100709.
[48] M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl. Mater. Today 18 (2020), 100498.
[49] J. Su, D. Raabe, Z. Li, Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy, Acta Mater. 163 (2019) 40-54.
[50] P.S. Chen, S.J. Shiu, P.H. Tsai, Y.C. Liao, J.S.C. Jang, H.J. Wu, S.Y. Chang, C.Y. Chen, I.Y. Tsao, Remarkable enhanced mechanical properties of TiAlCrNbV medium-entropy alloy with Zr additions, Materials 15 (2022) 6324.
[51] D.C. Cui, Z.S. Yang, B.J. Guo, L.X. Liu, Z.J. Wang, J.J. Li, J.C. Wang, F. He, Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy, Intermetallics 151 (2022) 107727.
[52] B.T. Yang, L.L. Ma, P.P. Zhao, Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys, Mater. Sci. Eng. A 863 (2023) 144524.
[53] Y.C. Liao, W.T. Ye, P.S. Chen, P.H. Tsai, J.S.C. Jang, K.C. Hsieh, C.Y. Chen, J.C. Huang, H.J. Wu, Y.C. Lo, C.W. Huang, I.Y. Tsao, Effect of Al concentration on the microstructural and mechanical properties of lightweight Ti60Alx(VCrNb)40-x medium-entropy alloys, Intermetallics 135 (2021) 107213.
[54] Online Materials Information Resource - MatWeb. Matweb.com. (2022). Retrieved 4 January 2022, from http://www.matweb.com/index.aspx.
[55] S. Shin, C. Zhu, C. Zhang, K. Vecchio, Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization. Mater. Res. Lett. 7 (2019) 467-473.
[56] L. Wang, S. Chen, B. Li, T. Cao, B. Wang, L. Wang, Y. Ren, J. Liang, Y. Xue, Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Trans. 56 (2015) 1800-1806.
[57] S. Zherebtsov, N. Yurchenko, E. Panina, M. Tikhonovsky, N. Stepanov, Gumlike mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics 116 (2020) 106652.
[58] 徐聖家,熱機處理對TiAlNbCrVZr系高熵合金微結構和機械性質影響之研究,2021年
[59] 郭寶謄,微量合金法摻雜硼對輕量中熵合金微結構改良與機械性質提升之研究,2023年
[60] Gaurav Singh, Upadrasta Ramamurty, Reprint: Boron modified titanium alloys. Progress in Materials Science 120 (2021) 100815 |